PG DEPARTMENT OF CHEMISTRY

SYLLABUS

2022-2024 Batch

Dr. K. POONKODI, M.Sc., M.Phil., Ph.D. Mrs. K. VIMALADEVI, M.Sc., M.Phil., (Ph.D) Ms. R. MINI, M.Sc., M.Phil., (Ph.D) Dr. V. PRABHU, M.Sc., Ph.D. Mrs. M. ANUSUYA, M.Sc., M.Phil., (Ph.D)

NGM COLLEGE (Autonomous)

Affiliated to Bharathiar University Re-Accredited by NAAC & ISO 9001:2015 certified 90, Palghat Road, Pollachi- 642001, Coimbatore (Dist.) Phone: 04259-234868.234870 Fax: 04259-234869

Website: www.ngmc.org

PREAMBLE

NALLAMUTHU GOUNDER MAHALINGAM COLLEGE, POLLACHI

Our dream is to make the college an institution of excellence at the national level by imparting quality education of global standards to make students academically superior, socially committed, ethically strong, spiritually evolved and culturally rich citizens to contribute to the holistic development of the self and society. Training students to become role models in academic arena by strengthening infrastructure, upgrading curriculum, developing faculty, augmenting extension services and imparting quality education through an enlightened management, committed faculty who ensure knowledge transfer, instill research aptitude and infuse ethical, cultural values to transform students into disciplined citizens in order to improve quality of life.

PG DEPARTMENT OF CHEMISTRY

Department of M.Sc., Chemistry was established in July, 2015 with following Vision and Mission. It offers a wide range of courses including Inorganic Chemistry, Organic Chemistry, Physical Chemistry, Medicinal Chemistry, Green Chemistry, Nano Chemistry and Analytical Chemistry etc. Experts from Pure and Applied Chemistry domain will teach the courses and students will develop a thorough understanding of fundamentals and experimental concepts of Chemistry. There will be an opportunity for the students to participate in an extensive and varied seminar, workshop, conferences, association, research club activities, extension and internship programmes and gain experience in a large variety of projects. The outcome based education is established in the year 2019.

VISION

Establish a center of excellence for leading-edge Chemistry education. The main goal will be to produce highly skilled graduates capable of working in the rapidly changing scenario in the field of chemical science and technology during their lifetime.

MISSION

Impart quality education through up-to-date knowledge and information in the field of Chemistry related to science and technology and enable them to take up the challenge of the world to come.

Programme Educational Outcomes

PEO1	To understand major concepts, theoretical principles, experimental findings and the ability to employ them for critical thinking and efficient problem solving skills in different areas of Chemistry.
PEO2	To qualify State, National and International eligibility exams to carry out research in National/International institutes.
PEO3	To pursue successful professional careers in the chemical industry, government, academia, national and international research institutions as innovative scientists.
PEO4	To develop leaders, entrepreneurs and professional employees in contemporary and also global outlook.
PEO5	Graduates will contribute to the growth of the nation and society as ethical and responsible professionals.

Programme Outcomes

Т

After completion of the M.Sc Chemistry Programme, the students must be able to

PO1	Disciplinary knowledge and skills: Capable of demonstrating (i) comprehensive knowledge and understanding of major concepts, theoretical principles and experimental findings in chemistry and its different subfields (analytical, inorganic, organic and physical), and other related fields of study, including broader interdisciplinary subfields such as life science, environmental science and material sciences; (ii) ability to use modern instrumentation for chemical analysis and separation.
PO2	Skilled communicator: Ability to transmit complex technical information relating to chemistry in a clear and concise manner in writing and orally skills.

PO3	Critical thinker and problem solver: Ability to employ critical thinking and efficient problem solving skills in the four basic areas of chemistry (analytical, inorganic, organic, and physical).
PO4	Sense of inquiry: Capability for asking relevant/appropriate questions relating to issues and problems in the field of chemistry, and planning, executing and reporting the results of an experiment or investigation.
PO5	Team player/ lifelong learners: Capable of working effectively in diverse teams in both classroom, laboratory and in industry and field-based situations as well as Capable of self-paced and self-directed learning aimed at personal development and for improving knowledge/skill development and reskilling.
PO6	Skilled project manager: Capable of identifying/mobilizing appropriate resources required for a project, and manage a project through to completion, while observing responsible and ethical scientific conduct; and safety and chemical hygiene regulations and practices.
PO7	Digital literacy: Capable of using computers for chemical simulation and computation and appropriate software for analysis of data, and employing modern library search tools to locate, retrieve, and evaluate chemistry-related information.
PO8	Ethical awareness/reasoning: Avoiding unethical behaviour such as fabrication, falsification or misrepresentation of data or committing plagiarism, and appreciate environmental and sustainability issues.

Programme Specific Outcomes

After completion of the M.Sc Chemistry Programme, the students must be able to

PSO – 01	Become Proficient in synthetic, analytical, electrochemistry, Phytochemistry, spectral techniques, characterization to develop interdisciplinary approach.
PSO – 02	Develop new innovations in chemical, pharmaceutical and allied chemical industries and successfully implement them at an industrial scale.

Mapping

PEOs					
	PEO1	PEO2	PEO3	PEO4	PEO5
POs \ PSOs					
PO1	Н	Н	Н	Н	Н
PO2	М	Н	М	Н	Н
PO3	Н	М	Н	Н	Н
PO4	Н	Н	н	Н	Н
PO5	Н	Н	М	Н	Н
PO6	Н	М	Н	Н	Н
PO7	Н	Н	Н	Н	Н
PO8	Н	Н	М	Н	Н
PSO1	Н	М	Н	Н	Н
PSO2	Н	М	Н	Н	Н

Programme (Code:		M.Sc		Programme	e Title:	Ma	ster of Chemistry	
Course Code:					Inorganic Chemist	ry –I- Solid	Batch:	2022 - 2024	
		22PCY101			State and Nuclear	Chemistry	Semester:	Ι	
Lecture Hrs./Week		5	Tutorial	I	Total Hrs/ Sem	Total Hrs/ Sem 75		4	
Course Objectives									
*	To gai	n know	ledge in soli	d sta	te Chemistry.				
* To emphasize the significance of crystallographic properties and description of crystal structures.									
*	* To acquire awareness about the defects in crystal structure and its effect in electrical properties								

* Ability to know the principle of nuclear model, application of radioactive counting techniques and radioactive isotopes.

Course Outcomes

On the completion of the course the student will be able to

	how a new party of the second	
#	Course Outcomes (CO)	Knowledge Level
CO1	Student will know through knowledge about the basics of solid state chemistry, X-ray crystal structure of the compounds	K2
CO2	Student will understand the various types of close packing arrangements of different solid structures.	K2
CO3	Distinguish the types of solids, their defects and electrical properties of solids.	K4
CO4	Evaluate n/p ratio, binding energy and Q-value of nuclear reactions.	K4
CO5	Apply the nuclear chemistry principles and its application in various fields.	K5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evalu	ate

Mapping											
PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	
CO1	М	Н	Н	Н	М	L	М	М	Н	М	
CO2	М	Н	М	Н	M	94-M	L	М	Н	Н	
CO3	Н	М	Н	М	Н	М	Н	Н	Н	М	
CO4	Н	М	H	H	М	(N) - (N)	М	Н	М	М	
CO5	Н	Н	М	М	М	- 1	М	М	Н	-	

Programme Code:	rogramme Code: M.Sc Programme Title:				Master of Chemistry			
				Organic Chemistr	ry —I-	Batch:	2022 - 2024	
Course Code:		22PCY102		Organic Reaction				
				Mechanisms		Semester:	Ι	
Lecture Hrs./Week	5	Tutorial	-	Total Hrs/Sem	Total Hrs/Sem 75		5	
			Сог	ırse Objectives				
* To understand the aromaticity of organic molecules and reaction mechanisms.								
* To provide knowledge about electrophilic, nucleophilic substitution and Elimination reactions.								
* To learn about t	he basic	c concept abo	out or	ganic reaction inter	rmediates	5.		

On the completion of the course the student will be able to

#	Course Outcomes (CO)	Knowledge Level
CO1	Understand the aromaticity of compounds and develop skills for identifying the kinetics of reactions.	K2
CO2	Explain the mechanism of different types of substitution, addition and elimination reactions for synthesizing organic compounds.	К3
CO3	Apply the mechanisms in solving chemical reactions.	K3
CO4	Inspect the different types of reactions involved in chemical synthesis and various naming reactions.	K4& K5
CO5	Evaluate the various types of reaction mechanisms.	K5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluat	e

Mapping											
PO/PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	
со —											
CO1	Н	-	Н	Н	Η	-	Н	Н	М	М	
CO2	Н	Н	M	Н	Н	Н	Н	Н	Н	Н	
CO3	М	Н	Н	Н	М	Н	Н	М	Н	Н	
CO4	Н	Н	М	Н	Н	М	Н	Н	М	Н	
CO5	Н	-	Н	H	Н	Н	Н	Н	Н	Н	

Programme Code:	M.Sc			Programme Title	e:	Master	of Chemistry		
	22PCY103			Physical Chemist	ry –I –	Batch:	2022 - 2024		
Course Code:				Group Theory and	ł	Somestan	T		
				Chemical Kinetic	S	Semester:	1		
Lecture Hrs./Week	5	Tutorial	-	Total Hrs/Sem 75		Credits:	5		
Course Objective									
* To gain knowledge on basic and applications of group theory.									

* To learn about rate and order of the various reactions.

* To understand the concepts of catalysis, adsorption and its mechanisms.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

#	Course Outcomes (CO)	Knowledge Level
CO1	Summarize the fundamentals of group theory and the fundamental concepts on kinetics and reaction rate.	K2
CO2	Develop knowledge on applications of group theory and various theories of chemical kinetics.	К3
CO3	Predict the IR and Raman active vibration modes for molecules and type of hybridization in nonlinear molecules based on group theory.	К3
CO4	Analyze the use of the kinetics and theories of surface chemistry.	K4
CO5	Examine hybridization scheme for orbital in simple molecules.	K5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evalua	ite

	Mapping											
PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2		
CO1	Н	М	-	\sim	88)	-	Н	Н	-	-		
CO2	Н	Н	М	М	М	-	-	-	М	L		
CO3	Н	Н	Н	Н	Н	M	L	М	М	L		
CO4	Н	Н	М	М	H	L	М	М	Н	М		
CO5	Н	Н	М	М	М	L	М	L	М	-		

Programme code:		M.Sc.		Programme Title	:	Master	Master of Chemistry		
				Inorganic Chemistry - II		Batch :	2022-2024		
Course Code:	22PCY204			Coordination Chen	nistry	Semester	II		
Lecture Hrs./Week	5	Tutorial	-	Total Hrs/ Sem	otal Hrs/ Sem 75		4		
			(Course Objectives					
 * Acquire knowle transition metal 	* Acquire knowledge about theories of complexes, basics of electronic spectroscopy of transition metal complexes, mode of coordination with various geometry.								
* To apply the knowledge of coordination chemistry to research and analyze the term symbols.									
* Realize the imp	* Realize the importance of the important inorganic polymers and their applications.								

On the successful completion of the course, students will be able to

#	Course Outcomes (CO)	Knowledge Level
CO1	Understand the various concepts of coordination chemistry and realize the importance of electronic spectroscopy and magnetic properties of coordination compounds.	K2
CO2	Gaining the knowledge on various types of inorganic reaction mechanism in different geometries.	K2
CO3	Acquiring knowledge on various types of electron transfer mechanism of metalcomplexes and their importance.	K3
CO4	Inferring various symmetries/geometries of coordination complexes and their isomerism and important applications of some inorganic polymers.	K4
CO5	Prepare some important coordination complexes as catalyst for reactions.	K5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate	

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PS01	PS02
CO1	Н	-	Н	Н	Н	<u> </u>	Н	Н	М	М
CO2	Н	Н	М	Н	Н	Н	Н	Н	Н	Н
CO3	М	Н	Н	Н	М	H	Н	М	Н	Н
CO4	Н	Н	М	Н	Н	M	Н	Н	М	Н
CO5	Н	-	Н	Н	Η	Н	Н	Н	Н	Н

On the successful completion of the course, students will be able to

#	CO Statement	Knowledge Level
CO1	Comprehend the basic of oxidation and reduction reactions and photochemistry.	К2
CO2	Outline the importance of pericyclic reactions, to figure out isomerism and conformational analysis of stereochemistry and to understand the structuralelucidation of alkaloids.	К2
CO3	Implement the basic values and analyze the functions of the natural product such as alkaloids.	К3
CO4	Analyze the reagents in chemical reactions, to execute photochemical and pericyclic reactions.	K4
CO5	Evaluate the stereo chemical isomerization, configuration and conformations of molecules.	К5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	;

Mapping

PO /PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
C01	М	М	Н	Н	М	М	М	М	М	М
CO2	Н	Н	Н	Н	Н	М	М	Н	Н	Н
CO3	Н	Н	Н	Н	Н	М	М	Н	Н	М
CO4	М	Η	H	Н	Н	Н	Н	Н	М	Н
CO5	Н	Н	Н	М	Н	М	М	Н	М	М

Programme Code:	Programme Code: M.Sc			Programme Title:		Master of Chemistry			
			Physical Chemistry	–II -	Batch:	2022 - 2024			
Course Code:		22PCY206		Quantum Chemistry	v and	Somostor:	П		
				Nano Chemistry		Semester.	11		
Lecture Hrs./Week	s./Week 5 Tutorial - Total Hrs/Sem 75		Credits:	4					
			Co	urse Objective					
* To motivate the	studen	ts to compreh	end l	knowledge in quantu	m mech	anics.			
* To apply the qua	* To apply the quantum mechanical concept to simple molecules and experiment approximation								
methods.									
* To appraise the	* To appraise the practical applications of nano material synthesis techniques.								

Course Outcomes (CO) On the successful completion of the course, students will be able to

#	CO Statement	Knowledge Level						
CO1	Understand the failure of classical mechanics and formulation of quantum mechanics.	K2						
CO2	Solve the Schrödinger wave equation for simple systems	K4						
CO3	Comprehend the approximate methods in quantum mechanics and apply it to simple molecules	K5						
CO4	To understand and analyze nano material synthetic strategy for various applications.	K3						
CO5	Realize the practical applications of designing and synthesizing nano materials.	К3						
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate							

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	М	Н	М		М	М	Н	Н
CO2	Н	Н	Н	L	Н		L	М	L	Н
CO3	Н	Н	Н	Н	М	М	Н	Н	Н	М
CO4	Н	Н	Н	М	Н	-	Н	М	-	-
CO5	Н	Н	Н	М	Н	М	Н	Н	Н	Н

ecture Hrs./Week	e Hrs./Week 3 Tutorial - Total Hrs/Sem 45 Credits:								
Course Objective									
* To stimulate students to have in-depth knowledge in green chemistry.									
* To acquire a cle	ar idea	about variou	s syı	nthesis of Nanomater	rials and	techniques.			
* To gain knowle	* To gain knowledge about the significance of research and scientific writing.								
* To apply the pri	To apply the principles of Cyber Security and its attack.								

Π

Course Outcomes On the completion of the course the student will be able to

#	CO Statement	Knowledge Level
CO1	Understand the principles and tools of green chemistry.	K2, K3
CO2	Recollect the hazardous effect of chemicals and solvents used in laboratory.	K3
CO3	Ability to write a good research report.	K5
CO4	Get the idea about cyber security.	K3
CO5	Apply the ideas of legal and ethical issues for cybercrime and plagiarism.	K4
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate	2

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	М	Н	Н	Н	М	Н	М	М	Н	М
CO2	М	Н	М	Н	М	Н	М	М	Н	Н
CO3	Н	М	Н	М	Н	Н	Н	Н	Н	М
CO4	Н	М	Н	Н	М	Н	М	Н	М	М
CO5	Н	Н	М	М	М	Н	М	М	Н	М

Programme Code:		M.Sc		Programme Title	e:	Master o	of Chemistry		
				*Major Elective -	-I	Batch:	2022 - 2024		
Course Code:		22PCY2E2		Food Science and		Semester	II		
				Technology		Semester.			
Lecture Hrs./Week	3	Tutorial	-	Total Hrs/Sem	tal Hrs/Sem 45		3		
			Course	e Objective		·			
* To enable the st	tudents	understand th	ne effect	of various methods	of food p	processing.			
* To knowledge about the structure and composition of food materials.									
* To identify diffe	erent co	oking metho	ds and co	ommon adulterants	in foods.				

On the successful completion of the course, students will be able to

#	Course Outcomes (CO)	Knowledge Level
CO1	Understand the outlines of cereal and pulse processing technology.	K2
CO2	Identify food additives and sweeteners.	K3
CO3	Comprehend the nutritive value of fleshy foods.	К3
CO4	Recognize the composition of sugar, spices, nuts and oilseeds.	K4
CO5	Detect the food adulterants and control process.	K5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Ev	aluate

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	М	Н	Н	Н	L	Н	Η	М	Н
CO2	Н	Н	Н	Н	Н	М	Н	Н	М	Н
CO3	М	Н	Н	Н	Н	М	Н	Н	Н	Н
CO4	Н	Н	Н	Н	Н	М	Н	Н	Н	Н
CO5	Н	Н	Н	М	Н	М	Н	М	М	L

Programme Code:		M.Sc		Programme Title	:	Master	of Chemistry			
				Major Elective I –	-	Batch:	2022 - 2024			
Course Code:	22PCY2E3			Advanced Polyme Materials	ric	Semester:	II			
Lecture Hrs./Week	3	Tutorial	-	Total Hrs/Sem 45		Credits:	3			
			Cou	rse Objectives						
* To choose any	researcl	n work related	d to th	e advanced polyme	ric mat	erials.				
* To gain Know	* To gain Knowledge about polymeric composites.									
* To learn the co	onductin	g and biomed	lical p	olymers and its app	lication	18.				

On the successful completion of the course, students will be able to

#	CO Statement	Knowledge
		Level
CO1	Acquire the knowledge about dendrimers, hyper-branched polymers and polymer nanocomposites.	K4
	Recognize the importance of synthetic biomedical polymers for drug delivery and	
CO2	conducting polymers.	K5
CO3	Understand the synthetic route, structure, properties and uses of engineering plastics.	K2
CO4	Analyze the properties of new polymeric materials.	K4
CO5	Synthesize the new conducting and biomedical polymers	K5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	М	Н	Н	М	Н	М	Н	Н
CO2	Н	М	Н	Н	Н	Н	М	Н	Н	Н
CO3	М	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO4	Н	М	Н	Н	-	Н	Н	-	М	L
CO5	Н	Н	Н	H	Н	М	Н	Н	L	Н

Programme Code:		M.Sc		Programme Title:		Master of	Chemistry			
			11	*Non Major Elective		Batch:	2022 - 2024			
Course Code:		22PC Y 2N		Chemistry in Day to Life	Day	Semester:	II			
Lecture Hrs./Week	2	Tutorial	-	Total Hrs/Sem 30		Credits:	2			
			С	ourse Objective						
* To understood in	ndus	trial preparati	ons and	materials of application	in day	today life.				
* To get an awareness about eco-friendly products to lead sustainable life.										
* To enable the stu	ıder	t to understan	d about	the manufacture of com	mercia	products.				

Course Outcomes (CO) On the successful completion of the course, students will be able to

#	Course Outcomes (CO)	Knowledge Level
CO1	Remember fundamental concepts of applied chemistry	K1
CO2	Understand the drugs used in day to day life.	K2
CO3	Test the various forms of drugs, cosmetics and milk products in day to day life.	K3
CO4	Predict the knowledge about the paints and cleansing agents.	K4
CO5	Analyze the composition of fertilizers, pesticides and milk products.	K5
-	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	;

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	Н	-	-	Н	Н	-	Н
CO2	Н	Н	М	М	М	-	-	-	М	Н
CO3	Н	Н	Н	М	Н	М	Н	М	М	Н
CO4	Н	М	Н		Н	Μ	Н	М	-	Н
CO5	Н	М	Н	1 - 3	Н	М	Н	М	-	Н

Programm	e Code:		M.Sc		Programm	e Titl	e:	Master of Chemistry		
Course Co	de:	22PCY207			Inorganic C	Chemi	stry	Batch:	2022 - 2024	
course co	ue.				Practical –I			Semester:	I & II	
Lecture	I Sem	5			Total	Total I 75				
Hrs/Week	II Sem	4	Tutorial	-	Hrs/Sem II 60		Credits:	4		
	Course Objectives									
* To e two	equip the stude common catio	nts w ns ar	vith analytical d two rare ca	l skills ations.	s by analyzing	g the g	given inorg	anic salt mixtu	re containing	
* To p	* To perform systematic qualitative analysis with the strong theoretical back ground.									
* To e	enable the stud	ents t	o prepare sin	nple c	omplexes by	using	published	reactions.		

On the completion of the course the student will be able to

#	CO Statement	Knowledge Level
CO1	Separate common and rare cations.	К3
CO2	Analyze and report cations in a mixture.	K4
CO3	Analysis of synthesized compounds by UV Spectroscopy.	K4
CO4	Prepare and report coordination compounds.	K5
CO5	Develop skills in the synthesis of inorganic complexes.	K6

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	М	Н	Н	Н	Н	Н	Н	М
CO2	Н	Н	М	Н	Н	М	Н	Н	Н	М
CO3	Н	Н	М	Н	Н	Н	Н	Н	Н	Н
CO4	Н	Н	М	Н	Н	М	Н	Н	Н	М
CO5	Н	Н	М	Н	Н	-	Н	Н	Н	М

Program	Programme Code: M.Sc					nme Title	•	Master of Chemistry			
Course C	ode		22PCY208		Organic	Chemistry	y	Batch:	2022 - 2024		
course c	oue	221 € 1200			Practical	-I		Semester:	I & II		
Lecture	I Sem	5			Total	Ι	75	<i>a</i>	4		
Hrs./Weel	II Sem	3	Tutorial	-	Hrs/Sem II 45			Credits:	4		
Course Objective											
* To	enable the stu	dents	to separate tw	vo cor	nponents i	n an orgar	nic mix	ture.			
* To	identify the se	parate	ed component	ts by c	qualitative	tests.					
* To	prepare organi	ic con	npounds and	identi	fy the orga	nic comp	ounds f	from the given	spectral data.		
* Handle UV-Vis. spectrophotometer effectively.											
* Aj	oply different c	hroma	tographic tec	hniqu	es for sepa	trating org	ganic co	ompounds.			

On the successful completion of the course, students will be able to

#		Knowledge
π	CO Statement	Level
CO1	Remember the analysis of organic compounds and aromatic substitution reactions.	K1
CO2	Separate organic mixtures by solvent extraction and chromatographic techniques.	K4
CO3	Analyze organic compounds by IR, NMR and UV visible spectra.	K4
CO4	Develop skills in the synthesis of organic compounds.	K6
CO5	Determine boiling point /melting point.	K5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	М	Н	М	М	Н	Н	Н
CO2	Н	Н	Н	М	Н	М	М	Н	Н	Н
CO3	Н	Н	Н	М	Н	М	М	Н	Н	Н
CO4	Н	Н	Н	М	Н	М	М	Н	Н	Н
CO5	Н	Н	Н	М	Н	М	М	Н	Н	Н

Programn	ne Code:		M.Sc		Program	me Ti	tle:	Master	of Chemistry	
Course Co	do.		22PCY209		Physical C	Chemi	istry	Batch:	2022 - 2024	
Course Co	Juc.		221 C 1 207		Practical -	-I		Semester:	I & II	
Lecture	I Sem	5			Total	Ι	75		4	
Hrs./Week	II Sem	3	Tutorial	-	Hrs/Sem	II	45	Credits:		
Course Objective										
* То	make the stu	idents to	o understand	the p	rinciple and	l to ca	arry out the	potentiometric	titrations.	
* То	determine th	ne pH ar	nd P ^{Ka} values	ofbu	uffers and a	cids.				
* To determine the molecular weight of solutes.										
* To construct the Phase diagram of two components systems.										

On the successful completion of the course, students will be able to

#	Course Outcomes (CO)	Knowledge							
		Level							
CO1	Recollect the concept of potentiometric titration.	K3							
CO2	Understand the simple eutectic system, molecular weight determination by Rast method, partition coefficient and estimation of metal ions using colorimetry.	K4							
CO3	Examine the strength of the solutions and Ka values by potentiometry.	K4							
CO4	Calculate the molecular weight of chemical compounds from K _f values by Rast micro method.	K4							
CO5	Estimate the metal ions using colorimetry.	K5							
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate								

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	М	Н	Н	Н	Н	-	-
CO2	Н	Н	М	М	М	Н	Н	Н	М	-
CO3	Н	Н	Н	Н	Н	М	Н	Н	М	-
CO4	Н	Н	Н	Н	Н	М	М	Н	Н	-
CO5	Н	Н	М	Н	М	М	М	Н	М	-

H-High; M-Medium; L-Low

Programme Code:		M.Sc		Programme Title:		Master of Chemistry			
				Organic Chemistry –III	[—	Batch:	2022 - 2024		
Course Code:		22PCY310		Natural Products and Organic Reagents	Semester:	III			
Lecture Hrs./Week	5	Tutorial	-	Total Hrs/Sem	Credits:	5			
			Cou	rse Objective					
* To promote an a	awarene	ess in the stud	lent at	bout natural products and	their s	ynthesis.			
* To introduce new reagents available in organic synthesis.									
* To synthesize e	co-frien	dly reagents	and ch	nemical pathways for the	develo	pment of greei	n chemistry.		

On the successful completion of the course, students will be able to

#	CO Statement	Knowledge
	NOW IT I MADE	Level
CO1	Comprehend the classes of natural products and the fundamental of condensation and molecular rearrangement reactions.	K2
CO2	Understand isolation, classification and structural elucidation of terpenoids, steroids and naming reactions which includes condensation, molecular rearrangements.	K2
CO3	Implement the biosynthetic idea of proteins and polypeptides.	K3
CO4	Apply the reagents inorganic synthesis.	K3
CO5	Predict the reagents involved inorganic synthesis and evaluate the structure and synthesis of heterocyclic compounds.	K5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

Mapping

PO /PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
C01	М	М	Н	М	Н	L	L	L	Н	Н
CO2	М	М	Н	М	L	L	L	М	Н	Н
CO3	М	Н	Н	Н	Н	М	М	М	Н	М
CO4	Н	Н	Н	Н	Н	М	Н	М	М	Н
CO5	Н	Н	Н	М	Н	М	М	М	M	M

H-High; M-Medium; L-Low

19

Programme Code:		M.Sc		Programme Title	e:	Master	of Chemistry	
				Physical Chemistr	ry –III -	Batch:	2022 - 2024	
Course Code:	(2	22PCY311		Classical and Stati Thermodynamics	istical	Semester:	III	
Lecture Hrs./Week	5	Tutorial	-	Total Hrs/Sem	Hrs/Sem 75		4	
			Co	ourse Objective	•	·		
* To understand	and app	bly the concept	ot of	fugacity, activity a	nd chemi	cal potential.		
* To acquire knowledge on third law of thermodynamics and probability and ensembles.								
* To gain knowl	edge abo	out the distrib	outio	n laws (classical an	d statistic	cal) and their a	applications.	

On the successful completion of the course, students will be able to

#	CO Statement	Knowledge Level
CO1	Interpret the physical significance of chemical potential.	K2
CO2	Apply probability to molecular energy levels.	K3
CO3	Apply thermodynamic concepts to evaluate the relationship between thermodynamic properties.	K3
CO4	Comprehend the quantum statistics and partition function.	K4
CO5	Evaluate statistical thermodynamics to the properties of identical indistinguishable particles like electrons.	K5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Eva	aluate

Mapping

PO /PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
C01	Н	М	Н	М	М	М	М	М	М	М
CO2	М	Н	М	Н	М	М	М	М	М	М
CO3	Н	М	Н	М	Н	Н	Н	Н	М	-
CO4	Н	М	Н	Н	М	Н	Н	Н	Н	М
CO5	М	Н	М	Н	М	Н	М	Μ	Н	Н

Programme Code:		M.Sc		Programme Title:		Master	of Chemistry			
				Organic Spectroscop	у	Batch:	2022 - 2024			
Course Code:	22PCY312					Semester:	III			
Lecture Hrs./Week	5	Tutorial	-	Total Hrs/Sem	75	Credits:	5			
Course Objective										
* To enable the structure techniques.	udent	s to understa	nd tl	ne principles and instru	umenta	tion of variou	s spectroscopic			
 * To acquire knowledge in the structural determination of unknown compounds using various spectroscopic methods. 										
* To apply the spe	ectral	techniques ir	n res	earch and practical situ	lations					

On the successful completion of the course, students will be able to

#	CO Statement	Knowledge Level
CO1	Apply and evaluate the UV/Vis spectroscopy as a qualitative and quantitative method.	K3,K5
CO2	Analyze the vibrations of molecules and identify the functional group present in it.	K4
CO3	Predict the structure of compound using 1D and 2D NMR techniques.	K5
CO4	Assess the mass to charge ratio for the sample under test and to propose the fragmentation pattern.	К5
CO5	Able to identify an unknown organic compound using the spectroscopic principles.	K5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evalu	iate

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	М	Н	-	-	М	Н	Н
CO2	М	Н	Н	Н	Н	L	М	-	Н	Н
CO3	Н	Н	Н	Н	Н	-	-	М	Н	Н
CO4	Н	Н	Н	Н	М	-	-	L	М	Н
CO5	Н	Н	Н	Н	Η	L	L	Н	Н	Н

Mapping

Programme Code:		M.Sc		Programme Title:		Master o	f Chemistry			
Course Code:		22PCY3E4		*Major Elective –II ·	-	Batch:	2022 - 2024			
Course Coue.	Organometallic Ch		Organometallic Chemis	stry	Semester:	III				
Lecture Hrs./Week	3	Tutorial	-	Total Hrs/Sem	45	Credits:	3			
Course Objective										
• Learn about the d	evelopn	nent of organo	ometall	ic chemistry and types	of bonds	in organomet	allic complexes			
• Learn about the in transformations a	nportan s homog	t organometal geneous/ heter	llic con rogene	nplexes and their applic ous catalysts	ations in	various orgar	nic			
• Recognition of organometallic chemistry in Noble Prize for chemistry in 2001, 2005 and 2010										
• To apply organo	metallic	chemistry p	rinciple	es to research for new	compou	nd synthesis				

On the successful completion of the course, students will be able to

#	Course Outcomes (CO)	Knowledge Level
CO1	Understand the historical development of Organometallic chemistry and	K2
	uniqueness in various bonding behavior of organometallic compounds.	
CO2	Gaining the knowledge on metal carbonyl compounds, various types of insertion reactions in carbonyl chemistry and their applications	K4,K2
CO3	Organometallic alkyl, alkylidene and alkylidyne, alkene and alkyne chemistry and application of them in insertion, double carbonylation, olefin metathesis, hydrogenation, hydrosilation, oxidation and polymerisation reactions.	K4,K2
CO4	To synthesis and understand metallocenes, half-sandwich complexes, arene complexes and multidecker complexes.	K4
CO5	Inferring the importance of metallocene chemistry and the applications of metallocenes in stereospecific polymerisation of 1-alkenes and fluxional behaviour of π -electron systems and importance of organometallic chemistry in catalysis and recognition of Noble prizes 2001, 2005 and 2010.	K6
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

	Mapping												
PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2			
CO1	Н	Н	Н	М	Н	М	Н	Н	Н	-			
CO2	Н	Н	Н	М	М	М	Н	L	Н	М			
CO3	Н	Н	Н	Н	Н	М	Н	Н	М	-			
CO4	Η	Η	Н	Н	Н	L	Н	Н	Н	-			
CO5	Н	Н	Н	Н	М	М	М	М	М	-			

Lecture Hrs./Week	3	Tutorial Hrs./Sem.	-	Total Hrs./Sem	em 45 Credits:		3			
Course Objective										
* Origin and the b	asics	of nanoscience	e and	technology with relev	ance to	biology and r	nedicine.			
* The various met	hods	available for p	orepar	ation of nano structur	ed mate	erials and their	applications			
* The role of nanomaterials and their properties in advancing different areas of biology and medicine										

2022 - 2024

III

Course Outcomes

On the successful completion of the course, student will be able to:

#	Course Outcomes (CO)	Knowledge Level
CO1	Demonstrate the various nanoparticles process methods.	K2
CO2	Understand the role of various methods of preparation of Nanomaterials.	K2
CO3	Appreciate the plasmonic properties of nanomaterials	K3
CO4	Interpret the magnetic properties of nanomaterials	K4
CO5	Predict the major properties of nano objects such as nanotubes, quantum dots and nanoparticles.	K5
К	1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Η	Н	М	Н	М	Н	Н	Н	Н
CO2	Н	Н	Н	М	М	М	Н	М	Н	Н
CO3	Н	Н	Н	Н	Н	М	Н	Н	М	Н
CO4	Н	Η	М	Н	Н	М	Н	Н	Н	Н
CO5	Н	Н	М	Н	М	М	М	М	М	Н

	Ŭ
*	To understand the chemistry of dyes.
*	To interpret the various types of dyes, synthesis, reactions and applications.
*	To recognize the pigments, cosmetics and coloring agents.

On the completion of the course the student will be able to

#	CO Statement	Knowledge Level
C01	Learnt the chemistry of dyes.	К3
CO2	Studied the organic intermediate in the dye chemistry.	K4
CO3	Interpret the various types of dyes, synthesis, reactions and applications.	К5
CO4	Expertise in the pigments, cosmetics and colouring agents.	К5
CO5	Synthesize new variety of Dyes.	К5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evalua	ite

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PS01	PS02
CO1	Н	Н	М	Н	Н	М	Н	М	Н	Н
CO2	Н	М	Н	Н	Н	Н	М	Н	Н	Н
CO3	М	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO4	Н	М	Н	Н	Н	Н	М	Н	Н	Н
CO5	Н	Н	Н	М	Н	М	Н	Η	Н	Н
	H-	High,	M-Med	ium,	~~	L-Low	e e			

Programme Code:	M.S	Sc		Programme Title:		Master of Chemistry					
Course Code:	22PCY	'3AL		Applied Chemistry	7	Batch:	2022 - 2024				
				(Optional)		Semester:	III				
Lecture Hrs./Week	-	Tutorial	I	Total Hrs/Sem -		Credits:	Grade				
		Cou	ırs	e Objective							
* To understand th	ne chemistry of d	airy and lea	the	er processing.							
* To acquire know	* To acquire knowledge about ceramic products and lubricants.										
* To learn about e	xplosives and roo	cket fuels.									

On the completion of the course the student will be able to

#	CO Statement	Knowledge Level
CO1	list the properties of milk & predict the quality	K1
CO2	explain the different steps in leather processing and analyze the effluent problems in tanneries	К3
CO3	Use your understanding for the production of manufacturing of ceramic products	K4
CO4	Design and synthesis lubricants with enhanced properties and performance	K4
CO5	Utilize your skills to assess the quality of milk, create leather, and produce the essential raw materials for the ceramics industry.	К5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	;

Mapping

PO /PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO2	Н	Н	М	Н	Н	Н	Н	Н	Н	Н
CO3	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO4	Н	Н	М	Н	М	Н	Н	Н	Н	Н
CO5	Н	Н	Н	М	М	Н	Н	Н	Н	М

Programme Code:	M.Sc			Programme Title:		Master of Chemistry					
				Inorganic Chemistry	–III:	Batch:	2022 - 2024				
Course Code:	22PCY413			Bioinorganic Chemis	stry	Semester:	IV				
Lecture Hrs./Week	5	Tutorial	-	Total Hrs/ Sem	tal Hrs/ Sem 75		5				
Course Objective											
* To understand t	he key	role of varie	ous ele	ements in the living sy	stems.						
* To acquire known photochemistry	wledg of me	e in the nat tal complex	ture, p es.	preparation and proper	rties met	al carbonyl c	omplexes,				
 * To gain insight metalloenzymes 	 * To gain insight into the small molecules binding and transport mechanism involving metalloenzymes. 										
* To know about metal based dru	 To know about the mechanism of binding interactions of metal complexes with bio-molecules and metal based drug action. 										

On the completion of the course the student will be able to

#	CO Statement	Knowledge Level
CO1	Analyze the various biological roles such as metal ion transport and storage, electron.	K4
CO2	Knowledge about the medically- metal in medicine, interaction of metal ions with biomolecules.	K2
CO3	Acquire intense knowledge about various biological roles such as metal ion transport and storage, electron- and proton transfer, O ₂ transport, hydrolysis, etc. taking place at the active site of metalloproteins.	K4
CO4	Gain knowledge about the medically-important topics such as the toxicity of metal ions, and their uses, Ru and Pt complexes in cancer therapy. This would motivate the students to pursue their research in the field of medicinal chemistry.	К3
CO5	Interpretation of bioinorganic chemistry to crack the competitive examinations.	К5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate	

PO /PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Η	М	Н	Н	М	Η	М	М	Н	L
CO2	М	Н	М	Н	М	-	L	М	М	-
CO3	Н	М	Н	Н	Н	М	Н	Н	L	-
CO4	Н	М	Н	Н	М	-	М	Н	Н	Н
CO5	М	Н	М	Н	М	-	М	М	Н	Н

Mapping

Programme Code:		M.Sc			Programme Title:	:	Master of Chemistry			
Course Code:		22PCY414			Instrumental Metho	ods of	Batch:	2022 - 2024		
eouise e		22101111			Chemical Analysis		Semester:	IV		
Lecture Hrs./Week		5	Tutorial	-	Total Hrs/ Sem	75	Credits:	4		
Course Objective										
*	To study the	various	types of erro	rs ai	nd their correlations.					
*	To enable the analytical me	e stude ethods.	nts to attain	kno	wledge on various o	chromate	ographic tech	niques and thermo		
*	[*] To gain knowledge in ESR, Mossbauer spectroscopy and AAS, AES, Polarimetry and Photo Electron Spectrometry.									
*	 To acquire knowledge about the configuration and confirmation of organic molecules by ORD and CD. 									

On the successful completion of the course, students will be able to

#	Course Outcomes (CO)	Knowledge Level
CO1	Classify thermo analytical techniques and to assess the thermal stability of a chemical compound.	K2
CO2	Comprehend the basic principle, instrumentation and applications of various chromatographic techniques, thermal analysis.	K2
CO3	Apply data analysis, various chromatographic techniques to separate the compounds, electron spin resonance and Mossbauer spectroscopy in the field of research.	К3
CO4	Evaluate the basic principle, instrumentation and applications of photoelectron spectroscopy, AAS, FES and Polarimetry.	К5
CO5	Interpret the data in chemical analysis.	K5

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	Н	Н	М	М	Н	Н	-
CO2	Н	Н	Н	М	Н	М	-	Н	Н	-
CO3	Н	Н	Н	Н	Н	М	L	Н	Н	-
CO4	Н	Н	М	М	Н	L	М	Н	Н	-
CO5	Н	Н	Н	Н	М	М	Н	Н	Н	-

Mapping

Programme Code:		M.Sc.,		Programme Title:		Master of Chemistry			
Course Code:		22PCV/F7		*Major Elective –III Phytochemical Tachniques		Batch:	2022 - 2024		
Course Code:		22101417		and Health Chemis	stry	Semester:	IV		
Lecture Hrs./Week	3	Tutorial Hrs./Sem.	-	Total Hrs/ Sem	Fotal Hrs/ Sem 45		3		
			Cou	rse Objective					
* To enable post g	gradua	te students in C	Chemi	istry to gain knowledg	ge on phyte	o chemical tech	niques.		
* To enable them to be familiar with techniques of extraction, separation and purification and simple identification strategies of drugs/natural products.									
* To acquaint with	* To acquaint with health and hygiene food system along carbohydrates and vitamins.								
* To learn the mo	de of 1	mechanism for	comr	non diseases					

Course Outcomes On the successful completion of the course, students will be able to

	CO Statement	Knowledge
CO1	Understanding on necessity and role of carbohydrates and vitamins for humans.	K2
CO2	Remember the phytochemical techniques -extraction, separation and purification.	K5
CO3	Implement the basic values and analyze the functions of food, foodpyramidand hygiene food system.	K5
CO4	Evaluate the mechanism for biological function of carbohydrates and vitamins.	K4
CO5	Analyze the mechanism and causes of common diseases.	K5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evalua	te

Mapping

PO /PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	M	М	Н	М	Н	M	Н	Н	М	М
CO2	Н	М	Н	М	Н	М	М	М	М	Н
CO3	Н	М	Н	М	Н	Н	Н	М	М	Н
CO4	Н	Н	М	Н	М	М	М	М	М	Н
CO5	Н	Н	Н	Н	Н	Н	H	Н	М	Н

Programme Code:		M.Sc		Programme Title:		Master of Chemistry				
				Major Elective III -	_	Batch:	2022 – 2024 IV			
Course Code:		22PCY4E8		Computational Chemistry		Semester:	IV			
Lecture Hrs./Week	3	Tutorial	-	Total Hrs/Sem 45		Credits:	3			
			Cou	irse Objectives						
* To Draw Cher	nical str	uctures by Ch	nemdr	aw and graphs by Or	igin.					
* To gain knowl	edge ab	out various c	ompu	tational tools and met	hods.					
* To learn Gauss	sian and	DFT studies								

On the successful completion of the course, students will be able to

#	CO Statement	Knowledge Level
CO1	Know the available free databases like MOL, SMILES.	K2
CO2	Draw the chemical structure and graphs using Chemdraw and Origin.	К3
CO3	Gain the theoretical knowledge about Slater and Gaussian functions.	К3
CO4	Evaluate the molecular mechanics, abinitio, semi empirical and DFT studies.	K5
CO5	Calculate the optimization studies for various molecules.	K5

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2			
C01	Н	Н	Н	М	Н	Н	М	Н	М	Н			
CO2	Н	Н	Н	Н	Н	H	М	Μ	Н	Н			
CO3	Н	Н	Н	М	-	Н	Н	М	М	М			
CO4	Н	М	М	Н	-	М	-	М	М	М			
CO5	Н	Н	Н	Н	Н	Н	Н	Н	М	Н			

Mapping

- * To acquire knowledge about the microwave and ultra sound assisted synthesis.
 * To understand the concept of phase-transfer catalysis.
 - * To gain knowledge about ionic liquids, Crown ethers and their applications.

On the successful completion of the course, students will be able to

#	Course Outcomes (CO)	Knowledge Level
CO1	Define green chemistry and explain basic principles.	K2
CO2	Discuss and appraise green reagents, microwave and ultrasound assisted Synthesis.	K2
CO3	Analyse the synthetic applications and advantages of ionic liquids.	K4
CO4	Appraise the advantages and the applications of phase transfer catalyst in organic synthesis.	К5
CO5	Propose Crown ethers for various reactions.	К5
K	1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	, ,

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	М	Н	М	Н	Н	Н	Н
CO2	Н	Н	Н	М	М	М	Н	L	Н	М
CO3	Н	Н	Н	Н	-	М	Н	Н	М	Н
CO4	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
CO5	Н	Н	Н	Н	-	М	М	М	М	М

Programn	ne Code:		M.Sc		Program	nme Title	:	Master of C	Master of Chemistry			
Course Co	de		22PCY415	2PCY415 Inorganic Chemistry Batch: 2022					2022 - 2024			
	uc.		221 0 1 113		Practica	ıl –II		Semester:	III & IV			
Lecture Hrs./Week	III Sem	4	Tutorial	Total Tutorial - Hrs/		III	60	Credits:	4			
	IV Sem	5			Sem	IV	75					
				Cou	rse Objec	tive						
* То	analyse quar	ititati	vely the meta	l ior	ns such as	Cu, Ni, Fe	e, Zn, (Ca and Ba in a	a mixture.			
* То	* To estimate quantitatively Magnesium, Calcium and Zinc by complexometry.											
* То	* To separate the components in ink and flowers by Chromatography.											

On the completion of the course the student will be able to

#	CO Outcomes	Knowledge Level						
CO1	Separate and estimate the metal ions in a mixture.	K5						
CO2	Estimate the metal ions in complexes.	K4						
CO3	Separate the components in natural and commercial products.	K4						
CO4	Estimation of various inorganic ions.	K5						
CO5	Distinguish the chromatographic techniques.	K4						
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate							

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	М	Н	Н	М	-	М	М	Н	М
CO2	Н	Н	Н	М	Н	-	М	М	Н	М
CO3	Н	Н	Н	Н	Н	-	Н	М	Н	Н

H-High; M-Medium; L-Low

Programn	Programme Code: M.Sc			Program	nme Title	:	Master of Chemistry			
Course Co	de	22PCY416			Organic	Chemistry	1	Batch:	2021 - 2023	
Course et	Juc.		22101110		Practical	-II		Semester:	III & IV	
Lecture Hrs./Week	III Sem	4	Tutorial	_	Total Hrs/	III	60	Credits:	4	
	IV Sem	5			Sem	IV	75			
	·			Cou	irse Objec	ctive				
* To	estimate org	anic co	mpounds qua	ntitati	ively.					
* То	learn and pra	actice tl	he methods of	f prep	aration of s	some orga	nic cor	npounds.		
* То	* To understand some chromatographic techniques.									

On the completion of the student will be able to

L

#	Course Outcomes	Knowledge Level
CO1	Remember and practice aromatic substitution reactions and the basic principles of various chromatographic techniques.	K2, K4
CO2	Understand and evaluate the estimation of phenol, aniline, ketone and glucose.	K4
CO3	Estimate certain natural products and separate the compounds using chromatographic technique.	K5
CO4	Test the different types of chemical constituents in plant extracts.	K4
CO5	Furnish the pupil to estimate the adulteration level in the oil.	K4
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Eval	uate

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	Н	Н	Н	Μ	Н	Н	Н
CO2	Н	М	Н	Н	М	Н	Μ	Н	Н	Н
CO3	М	М	Н	Н	L	-	-	-	Н	Н
CO4	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO5	М	М	Н	Н	L	-	М	-	Н	Н

Programme	code:		M.Sc.		Programm	ne Titl	e :	Master of Chemistry		
Course Code:		22PCV417		Physical C	hemist	ry	Batch :	2022-2024		
			22101417		Practical-	II		Semester	Master of ChemistryBatch :2022-2024SemesterIII & IVCredits:4ce measurement, kinetics,	
Lecture	III Sem	4	Tutorial :	Total	III	60	Credits:	4		
Hrs/Week:	IV Sem	5			Hrs/Sem:	IV	75			
Course Objective										
* To equ UV vis	* To equip the future chemist with the knowledge of electrical conductance measurement, kinetics, UV visible spectrometer and conductometric titrations.									
* To learn maintain the record observations on conductometric titrations and chemical kinetics and										
ability	ability to use various instruments.									

On the successful completion of the course, students will be able to

#	Course Outcomes (CO)	Knowledge Level
CO1	Aquire knowledge about conductometric titration, fundamentals of	K2
	adsorption, metal ligand ratio and the acid hydrolysis of ester.	
CO2	Understand various laws of electrochemistry and applications of	K3
	electrical conductance measurements and the applications of chemical	
	kinetics.	
CO3	Determine the cell constant and verify the Debye-Huckel Onsager	K5
	equation and Kohlrausch's law.	
CO4	Determine the relative strength of acids and rate of reaction.	K5
CO5	Estimate the amount of ions condutometrically and evaluate the amount	K6
	of oxalic acid adsorbed using charcoal as adsorbent.	
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evalua	te

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	Н	Н	Н	Η	Н	Н	Н
CO2	Н	М	Н	Н	М	Н	Н	Н	Н	М
CO3	Н	Н	М	Н	Н	М	Η	М	М	Н
CO4	М	Н	Н	М	Н	Н	Η	Н	Н	Н
CO5	Н	Н	М	Н	Н	М	-	-	М	Н

H-High; M-Medium; L-Low

Programme code:		M.Sc.		Programme Title :		Master of Chemistry		
						Batch	2022-2024	
Course Code:		22PCY4P1		Project Work & Viv	a-Voce	Semester	IV	
Lecture Hrs/Week:	-	Tutorial	-	Total Hrs/Sem	Total Hrs/Sem -		5	
				Course Objective	9			
 Make the students to understand the importance of experimental analysis, scientific approach in solving problems related to the environment and society. 								
* Educate and tr	ain t	he students	to w	rite scientific papers.				

On the successful completion of the course, students will be able to

#	Course Outcomes (CO)	Knowledge Level
CO1	Apply the various preliminary skills in laboratory.	K3
CO2	Analyze the various sources of literature review.	K4
CO3	Evaluate the various techniques from the previous studies.	K5
CO4	Apply the suitable parameters in the project work.	K5
CO5	Synthesis the various organic, nano and co-ordination compounds	K6
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Ev	aluate

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	Н	Н	Н	М	Н	Н	Н
CO2	Н	М	Н	H	М	Н	М	Н	Н	Н
CO3	М	М	Н	Н	L	5-	-	-	Н	Н
CO4	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н

Programme code:	M.Sc.	Programme Title :		Master of Chemistry		
Course Code:		Value added course Entrepreneurial Ver	ntures	Batch	2022-2024	
	22PCY2VA	in Chemistry		Semester	II / IV	
Lecture Hrs/Week:	2	Total Hrs/Sem	30	Credits:	2	

	Course Objectives							
* '	To provide knowledge of household products to address the needs of chemical industry.							
*	Able to synthesize house hold Cleaning agents, formulation of cosmeceuticals and hygiene products.							
*	To enhance student sense of enthusiasm for chemistry and to involve them in an intellectually stimulating experience of learning in a supportive environment.							
*	To impart knowledge on marketing approaches on studying consumer need, need gaps and global markets.							
	Employability							
*	To provide worldwide opportunity to study household products.							
*	Students have the opportunity to undertake an optional placement and enhance their entrepreneur							
	skill by offering valuable experience.							
	Advantages							
~ .								

Students will be familiar with the different exposure of chemicals used in day to day life such as Cleaning agents, surfactants and Insect repellent one can design and practice ecofriendly cosmetics of their own.

Course Outcomes

- * To acquire basic information about the possibilities and limitations of household products, their importance and marketing.
- * To familiarize the authorized ingredients for household products, their origin, chemical nature and importance.
- * Develop new innovations in Chemical, pharmaceutical, cosmetics and allied chemical industries and successfully implement them at an industrial scale.
- * Hands on experience for manufacturing industries.

Programme code:	M.Sc.	Programme Title :		Master of Chemistry		
Course Code:	22PCY4VA	Value added cours Analytical techniqu	es	Batch	2022-2024	
				Semester	II / IV	
Lecture Hrs/Week:	2	Total Hrs/Sem	30	Credits:	2	

Scope

* This course will train participants with the knowledge and skills required for success in the practical operation of Volumetric analysis

This course is designed to expertise regulations governing Analytical techniques for using * various industries.

Course Objectives

Upon completion, the participant should be able to:

- To enable the students to attain knowledge on various chromatographic techniques.
- To gain knowledge in Volumetric Analysis and Chromatographic techniques. *

Employability

- Graduates will be qualified to work in Chromatographic techniques as operators to * the expected industry standard.
- * Students have the opportunity to undertake an optional placement and enhance their entrepreneur skill by offering valuable experience.

Advantages

To apply the various analytical techniques for industrial purposes. *

Course Outcomes

- Classify chromatographic techniques and to assess the separation techniques of a * chemical compound.
- Comprehend the basic principle, instrumentation and applications of various * chromatographic techniques.
- Analyze the various methods involved in analytical techniques. *
- Apply the various chromatographic techniques to separate the compounds in the * field of research.

Ducanamma ac dat		MCa		Due que su a Title :	MC - Chamister		
Programme code:		M.Sc.		Programme 11tle :	MSc Chemistry		
Course Code:	CERTIFICATE COURSE-I		Batch	2022-2024			
22PCVCFC01	Fundamentals of Pharmaceutical Chemistry			Semester:	III		
				Credits:	2		
Lecture Hrs/Week	2	Tutorial	-	Total Hrs/Sem:	40		
Course Objectives:							
* To compete during their search for jobs in the pharmaceutical companies.							
* To acquire the knowledge about medicinal plants and medicinally important compounds.							
* To recognize the importance of Antibiotics, sulphadrugs, Analgesics.							
* To analyze the	To analyze the Antipyretics, Antihypertensive, hypotensive and antineoplastic drugs.						

On the successful completion of the course, students will be able to

-

#	CO Outcomes	Knowledge Level		
CO1	Acquire knowledge about theimportant terminologies used in pharmaceutical chemistry, naming of drugs and mechanism of drug action.	K2		
CO2	Learn about medicinal plants and medicinally important compounds.	K4		
CO3	Recognize the importance of Blood, receptor and drug design.	K5		
CO4	Analyzethe Antipyretics, Antihypertensive, hypotensive and antine oplastic drugs.	K4		
CO5	Explain receptors and drug design	K5		
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate				

Dr. R. MUTHUKUMARAN. M.A.,M.Phil.,B.Ed.,Ph.D., PRINCIPAL 11 N.G.M. College, Pollachi - (Coimbatore Districi

1