ORIGINAL ARTICLE

Conservation linkages of endangered medicinal plant and exploration of phytochemicals, pharmaceutical screening and in silico validation against diabetics using in vivo wild and in vitro regenerated plant Boucerosia diffusa Wight.

Arumugam Vignesh¹ • Thomas Cheeran Amal^{1,2} • Sivakumar Janani Sree ¹ • Subramaniam Selvakumar ³ • • Krishnan Vasanth¹

Received: 17 December 2022 / Accepted: 26 May 2023 © King Abdulaziz City for Science and Technology 2023

Abstract

Abbroviations

Boucerosia diffusa Wight, is an important endangered medicinal plant belonging to the family Asclepiadaceae. In this study, an efficient protocol has been developed for B. diffusa using nodal explants for callus induction and direct organogenesis. The optimal callus induction (83.7%) was observed on 0.6 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) in Murashige and Skoog medium. The shoot regeneration was observed on different concentrations and combinations of 6-benzylaminopurine (BAP) and 2,4-D using shoot induction (88.5%) was observed on 0.5 mg/L BAP and 0.6 mg/L 2,4-D. Maximum root induction frequency (85.6%) was obtained on 0.6 mg/L α-naphthalene-acetic acid (NAA) and 0.5 mg/L BAP. The fully developed plants were acclimatized (98.86% survival rate) and transferred to natural photoperiod conditions. The phytochemical and pharmacological activity was determined in in vitro-regenerated plants (IRP) and was compared to in vivo wild plants (IWP). The primary and the secondary metabolite contents of bioactive compounds were significantly higher in the methanolic extract of IRP. A comparative antioxidant activity study shows IRP exhibited better scavenging activity. The antidiabetic activity of α - amylase (IC₅₀ $-71.56 \pm 15.4 \,\mu\text{g/mL}$) and α -glucosidase (IC₅₀ $-82.94 \pm 12.84 \,\mu\text{g/mL}$) inhibitor activity also exhibited maximum in methanolic extract of IRP. Furthermore, chemical composition was analyzed using gas chromatography—mass spectroscopy (GC-MS). Antibacterial activity against human pathogenic bacteria, IRP methanolic extracts showed a maximum zone of inhibition (75 μ g/mL) observed against Salmonella typhi (23.5 \pm 0.5 mm) compared to the IWP. Molecular docking analysis of B. diffusa inhibition of antidiabetic activity showed better affinity in β-Sitosterol.

Keywords Boucerosia diffusa Wight. · Caralluma diffusa (Wight) N. E. Br. · Micropropagation · Phytochemical analysis · Antidiabetic activity · Antibacterial analysis

Appreviations:			
2,4-D	2,4-dichlorophenoxyacetic acid		
BAP	6-benzylaminopurine		
BSA	Bovine serum albumin		
DMSO	Dimethyl sulfoxide		
DPPH.	2,2-diphenyl-1-picrylhydrazyl		
✓ Krishnan Vasanthvasanthlabbu@gmail.com			

	vasanthlabbu@gmail.com
1	Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India

ICAR-Central Institute for Cotton Research, RS, Coimbatore, Tamil Nadu 641 003, India

Published online: 15 June 2023

EDTA	Ethylene-diamine-tetra-acetic acid
GC-MS	Gas chromatography-mass spectroscopy
IAA	Indole-3-acetic acid
IBA	Indole-3-butyric acid
IRP	In vitro-regenerated plants
IWP	In vivo wild plants
KIN	Kinetin
MHA	Mueller-Hinton medium,
MS medium	Murashige and Skoog medium
NAA	1-naphthaleneacetic acid
PVPP	Polyvinyl polypyrrolidone
TDZ	Thidiazuron
ZOI	Zone of inhibition

Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India