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ABSTRACT 

The computation of natural vegetation is a time-consuming and carried out monotonous. This work concentrates 

on providing a sensor-based natural vegetation process or monitoring system. The significant element for this 

vegetation process is based on IoT sensors with micro-controllers for system processing, establishing 

communications among the interconnected nodes and various connected sensors. Some real-time data access is 

performed with the remote monitoring technologies. An available online dataset is considered for validation 

using Regional- Convolutional Neural Networks (R-CNN) and a rule-based system model. This approach is 

used for analyzing the standardized values. When the collected values are higher than the fixed threshold value, 

an alert is generated and moved to the remote location. The efficiency of the proposed R-CNN model is used to 

acquire natural vegetation monitoring system with lower power devices, higher mobility, and precision 

values.The sensitivity of R-CNN model is 98.58%, 94.50% specificity, 98.89% PPV, 96.58% NPV, and 96.58% 

prediction accuracy. 

 

Keywords: IoT- Internet of Things, regional convolutional neural networks,rule generation, higher mobility. 

 

1. INTRODUCTION 

It is noted that the forest inventory relies on the remote sensing approaches and forest management 1. In remote 

sensing, light detection and ranging are adopted for accurately predicting the forest attributes, i.e., diameter and 

height of the tree, crown base height, leaf area index, and canopy cover for extracting more information. At 

present, Unmanned Aerial Vehicle (UAV)-borne, airborne, terrestrial LiDAR, and mobile are some of the 

commonly used approaches in the natural vegetation process. Moreover, these systems have their drawbacks in 

predicting the essential information 2. The UAV-borne and down-looking airborne can offer highly resourceful 

canopy tree information; however, it lacks track information3. As this method, the mobile LiDAR system, i.e., 

the backpack, can offer essential tree truck information but lacks in providing the vertical field of measurement 

and view range and outcomes in the missed canopy information 4. The terrestrial laser scanning-based single 
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location scans suffer from the occlusion effect over the leaves and trees and multi-scan TLS data registration, 

which is time-consuming 5. The multi-platform data fusion has the efficiency to offer a resourceful solution to 

deal with the constraints of every detection and ranging platform.  

 

At present, there are diverse commonly adopted cloud registration frameworks like point-based, feature-based, 

and target-based techniques 6. Here, target-based approaches require the help of exterior data to registered 

detection and ranging point clouds, for example, positioning information from Global Positioning System 

(GPS), target registration can be predicted easily or color information attained from cameras. Next, feature-

based approaches work like of target-based approach that uses polygons/lines/points for registering LiDAR 

points; however, these features are predicted with issues like traffic signs, roads, roofs, and buildings 7. 

Subsequently, point-based approaches match directly with point clouds relying on the geometric information 

offered by these ranging points. The iterative nearest point approach is extensively adopted under these 

categories. Moreover, point cloud registration models are generally problematic over forest regions. The 

external registration information needed by the target-based methods is inaccurate, unavailable, or hard to attain 

in forests. For instance, GPS positioning data are unreliable over the forest canopies due to multi-path errors 

and GPS signal attenuation 8. Moreover, handling the ground targets or attaining color imagery is extremely 

expensive and time-consuming. Feature-based approaches are extensively utilized in urban and indoor 

environments where regular features like orthogonal and parallel line segments and conjugate least-squares 

surfaces are determined easily 9.  

 

Generally, the forest environment is highly complex and irregular than the urban and indoor environments and 

shows regular and similar features as in urban and indoor environments. It is absent or difficult to find it 10. 

Usually, point-based approaches like ICP require regular detection and ranging points for registering coarsely 

before executing the algorithm. Moreover, these coarse registrations over the forest environments are generally 

attained by manual selection of tie points which is time-consuming and labor-intensive. 

 

In recent times, there are diverse marker-free data-based fusion approaches anticipated by various researchers 

to handle the issues in missing reference features over forest regions. For instance, H. Guan et al. 11 uses 

geometrics features over the light-based detection and ranging points for registering the multi-scale TLS data. 

H. Song et al.12 anticipated a multi-scan data registration approaches with the adoption of populated triple sets, 

eigenvalues, and tree locations. X. Liu et al. 13 adopt simulated annealing to predict the optimal 3D-

transformation among the corresponding coordinate systems of the tree locations derived from the UAV and 

backpack data. These approaches rely entirely on the geometric information of tree-stem, or it looks for the 

globally optimized registration outcomes with tree attribute constraints like tree locations and DBHs. Moreover, 

the geometric information of tree steam is generally not available from the top-end data like UAV data and 

optimized globally to attain a solution that fails in accuracy estimation of tree-related attributes, and the accuracy 

is generally lower. The major challenge of this study is how to efficiently and accurately register the multi-
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platform points in the forest regions? And how is this challenge efficiently handled for forest applications? H. 

Xia et al. 14 discuss a novel multi-platform data registration framework for forest applications using the unique 

spatial tree distribution over the forest regions by registration process 15.  

 

2. RELATED WORKS 

Drylands face crucial challenges with native vegetation deterioration due to anthropogenic activities and 

climatic changes, as Nogueria et al. 16 described. These activities are crucially influenced by the ecosystem's 

available services and vegetation patterns, and it causes harmful influence over the natural resources and human-

being sustainability. Dryland ecosystems are characterized by constraint and sparse native vegetation due to 

weather conditions, i.e., low precipitation and high temperature. Moreover, vegetation in the desert region plays 

a substantial role in battling promulgating carbon sequestration. Guo et al. 17 discuss the significance of native 

vegetation, which is crucial for understanding the atmosphere and earth, like soil erosion, droughts, and climatic 

changes. Therefore, monitoring vegetation is a pre-dominant phase in restoration to identify degraded fields. 

Zou et al. 18 discuss the concepts of remote sensing images for the past few decades and offer synoptic insight 

towards the territory coverage and hauling out essential information on the phenomenon with nominal economic 

factors. These technologies provide information extraction from the ecological elements merged with the 

ancillary data over the GIS to evaluate degradation over a certain period. Thus, researchers use spectral 

measurements acquired from various satellite sensors like vegetation indices (VI) to examine the seasonal 

vegetation and compute the drought consequences.  

 

Various investigators perform extensive studies on remote sensing to monitor and map vegetation at regional 

and local scaling based on the different sensors discussed by 19. The sensors acquire the images in pre-defined 

spatial resolution to specify ground measurement 22. Spectral resolutions change due to wavelength intervals as 

sensors collect the earth's surface reflectance. The temporal resolution of the provided remote sensing images 

is attained from the speed and orbital path. It shows the satellite revisit rate for gathering ideas from a specific 

location 23.  

 

3. METHODOLOGY 

This section shows three stages for predicting the growth of trees over the drylands. It includes dataset 

acquisition, segmentation, and classification. Here, the deep learning classifier model plays a substantial role in 

the prediction process. The simulation is done in the MATLAB 2018a environment, and metrics like prediction 

accuracy are evaluated to show the significance of the model. 

 

a. Dataset 

Here, Moderate Resolution Imaging Spectroradiometer (MODIS) is used for monitoring the development and 

vegetation growth over the land covers of Tamil Nadu (TN). MODIS is available for a 500m resolution (8 days) 

temporal period to derive the Normalized Difference Vegetation Index (NDVI) for mapping the terrestrial 
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vegetation. The onboard terra sensor surface was downloaded from (HTTP:// search.earthdata.nasa.gov). It is 

mathematically expressed as in Eq. (1): 

 

                              NDVI=  (ρ (NIR-red))/(ρ (NIR+red))                                                (1) 

 

Based on Eq. (1), the theoretical values are specified based on the ratio ranging from -1 to +1; however, the 

higher IV is related to higher biomass where the index value (bare soil, water bodies, and non-vegetated areas) 

falls nearer to 0. Table 1 depicts the various land cover regions of TN and corresponding geographical regions. 

Table 2 depicts the NDVI during vegetation greening and browning.  

 

Table 1 Land covers of TN and geographical regions 

S. 

No 
Coverage region Area (sq.km) 

1 Built-up 5289.639 

2 Cropland (Rabi) 13630.053     

3 Cropland (Kharif) 5232.519 

4 Forest (Scrub) 2559.802 

5 Forest (Swamp) 166.526 

6 Forest (Evergreen) 5434.105 

7 Forest (Deciduous) 8684.933 

8 Plantation region 9070.512 

9 Wasteland 536.470 

10 Water bodies 8310.207 

11 Wetland 950.959 

 

Table 2 Natural vegetation (pixel %) 

NDVI  

Season Positive (%) Negative (%) 

Rabi 59.73 40.29 

Kharif 86.53 13.49 

 

b. Traditional Convolutional Neural Networks (CNN) 

The most commonly known and notable network model provides superior performance for learning features 

and performs classification. It is an FFNN (Feed Forward Neural Networks), and the parameters are trained 

with conventional stochastic gradient descent. The CNN model comprises various blocks known as 

convolutional, pooling, and fully connected (FC) layers. These processing layers play a substantial role in the 
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network model. The former convolutional layer carries out convolution operations among the input, filters, and 

output feature maps. Generally, feature mapping is performed in a non-linear activation function (AF). The non-

linear transformation is done in Rectified Linear Unit (ReLU) for feature mapping generated by the first 

convolution layer. It initiates system non-linearity and is used for AF. The convolution layer functionality is to 

haul out various input layered features and attain weight sharing. Every stage's input/output features are 

provided in a set of array forms and known as feature maps. For instance, if the 2D input images x, the provided 

input is decomposed in a sequential manner x={x_1,x_2,…,x_3}. The convolutional layers are expressed as in 

Eq. (3): 

 

 

Here, y_j specifies the j^th output of the convolutional layer, and x_i specifies the input feature map, k_ij is the 

convolutional kernel with input map x_i. * specifies discrete convolutional operator, f is non-linear activation 

function, b_j is trainable bias.  The pooling layers perform the sub-sampling function to diminish the feature 

mapping dimensionality. Based on the average and maximal functions, the functionality of the pooling layer is 

partitioned as average and maximal pooling. The fully connected layers are known as FFNN, which performs 

higher-level feature abstraction. Often, it is the last layer and performs the final non-linear feature combination 

to perform the prediction process. The activation functions of the FC layer have to be chosen with practical 

tasks. The sigmoid functions or softmax are adopted for evaluating the posterior probability of the grid. 

 

c. Regional Convolutional Neural Networks (R-CNN) 

The architecture of the proposed R-CNN model is performed using the AlexNet model. The anticipated R-CNN 

model and the hyperparameters are tuned based on the dataset. The input patches are provided as a 3D data 

representation of a*a*z with 25*25*11. The regional CNN model is composed of 3 convolution layers, two 

pooling, and 3 FC layers. Convolution layers have 64, 128, and 256 kernels and 256 kernels with 3*3 uniform 

kernel sizes. The convolution layers are followed by ReLU activation functions and the pooling layer. Here, 

zero padding is used for retaining the dimensionality, and the pooling layers perform maximal pooling. Zero 

padding is used for retaining the dimensionality, and the pooling layer performs maximal pooling and 

summarizes 2*2 neighborhoods with 2-pixel strides.  

 

The three weighted layers are FC layers with 128, 64, and 32 neurons. The FC layers output is fed to a 2-way 

classifier known as softmax and evaluates the probabilities of the class labels. The CNN parameters are learned 

automatically during training and represented as the convolutional layers’ kernel and FC layers’ weight. R-

CNN training is performed to predict the suitable parameters to reduce the error among the ground truth labels 

and predicted results on the training dataset. Here, the anticipated R-CNN model converts the input patches 

from the pixel values to the probability classification outcomes. Figure depicts the flow diagram of the 

anticipated R-CNN model. 
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Figure 1: Flow diagram of the R-CNN classification model 

 

The parameters are evaluated using the loss function via FFNN. The learning parameters are updated based on 

the loss value using the stochastic gradient. The hyper-parameter variables need to be provided for initiating the 

training process. Recently, dropouts are commenced with a regularization approach, and dropout rates do FC 

layers, and the value is set 0.5 to reduce over-fitting. Random search is more efficient for hyper-parameter 

optimization than manual and grid search. The random search was adapted to hyper-parameter optimization and 

enhanced the speed and accuracy of the model. Table 5 depicts the R-CNN hyper-parameter values. 

 

Table 3: R-CNN parameters and hyper-parameters 

 Parameters Hyper-parameters 

Convolutional 

layer 
Kernels 

Kernel size: 3*3; No. of kernels 64, 128, 

256,Stride = 1 

Padding, AF = ReLU 

Pooling layer --- 
Pooling, Max_pooling, Filter size 2*2, 

Stride 2 

FC layer Weights AF: softmax, No. of weights 

Other  

Weight initialization , Optimizer, Loss 

function 

Window size, Epochs, Dropouts, 

Learning rate 

 

 

Remote sensing images from 

MODIS 

Vegetation Indices 

NDVI 

Statistical analysis and 

validation 
Field vegetation cover 

observations 

R-CNN classification  

Pixel-based analysis  

Prediction accuracy assessment  Best classifier   
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The R-CNN model is appropriate for vegetation analysis, and it cannot reveal more information than the 

available data. The predominant benefit of CNN relies on how this spatial information is extracted with the 

model.  

 

4. NUMERICAL RESULTS AND DISCUSSIONS 

This section discusses the numerical outcomes of the proposed R-CNN model. The simulation is done in 

MATLAB 2018a environment on Intel Core i5 processor, Windows 8 OS, and 16 GB RAM. Some of the 

evaluation criteria are considered the key factor for evaluating the classification performance and guide the 

classifier model to provide better prediction accuracy. There are five statistical measures like overall prediction 

accuracy; sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) improve 

classification ability. These metrics are mathematically expressed as in Eq. (4) – Eq. (7): 

 

 

Here, True Positive (TP) and True Negative (TN) is depicted as the number of samples classified appropriately 

as positive and negative samples, respectively. False Positive (FP) and False Negative (FN) are the numbers of 

misclassified samples. Sensitivity is depicted as the percentage of positive samples appropriately classified, and 

specificity is defined as the percentage of negative samples adequately predicted.  

 

Table 4: Comparison of various metrics during the training process 

 

Phase Performance R-CNN CNN RF SVM MLP KLR 

Training 

 

TP 3127 3127 3054 2861 2800 2940 

TN 2997 2997 2797 2323 2350 2372 

FP 199 200 400 875 850 823 

FN 65 70 143 340 396 345 

Sensitivity (%) 98.58 97.85 95.57 89.60 87.65 89.6 

Specificity (%) 94.50 93.78 87.52 72.70 73.53 74.25 

PPV 98.89 94.03 88.45 76.70 76.9 78.15 

NPV 96.58 97.76 95.18 87.40 85.8 87.5 

Overall prediction accuracy (%) 96.58 95.85 91.60 81.5 80.60 81.99 
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Table 5: Comparison of various metrics during the validation process 

 

Phase Performance R-CNN CNN RF SVM MLP KLR 

Validation 

TP 740 740 582 533 492 580 

TN 667 667 770 750 764 722 

FP 130 134 32 53 37 78 

FN 60 61 220 270 310 223 

Sensitivity (%) 93.56 92.50 72.60 66.60 62.50 72.25 

Specificity (%) 84.56 83.40 96.15 93.50 95.50 90.25 

PPV 85.86 84.80 94.95 91.2 93.20 88.10 

NPV 82.5 91.75 77.85 73.80 71.25 76.50 

Overall prediction accuracy (%) 90.5 87.95 84.78 80.10 78.50 81.25 

 

The validation phase is utilized to examine the classification performance after every epoch. The validation 

outcomes are being used whether the training is terminated and hyper-parameters are fine-tuned. The accuracy 

and loss are two various indicators for computing the training effect. After the training process, the overall 

prediction accuracy is 96.58%, and the loss is tended to be 0.3 after the 100th epoch. The over-fitting issues are 

intended to be reduced, and the overall prediction accuracy is 90.5% after the validation process, and the loss 

is 0.40, respectively. The reduced validation loss specifies that the proposed R-CNN model is aware of over-

fitting issues. 

 

Table 6: Comparison of hyper-parameters of benchmark approaches 

Approaches Hyper-parameters 

RF No. of trees = 160, Maximal_features: sqrt, Bootstrap: True, Maximal_depth = 20 

SVM Penalty factor = 100, Kernel function = RBF, Gamma = 1 

MLP 
No. of hidden layers = 1, Learning rate = 0.001, Momentum = 0.2,  

Alpha = 0.01, Iteration = 300, Activation function = ReLU, Optimizer = Adam 

KLR Kernel function = RBF, Tuning parameter = 0.02, Regularize parameter = 0.025 

 

 

   

Figure 7. a: Sample 1           7. b: Sample 2           7. c: Sample 3 
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Figure: 7. d: Sample 4        7. e: Sample 5           7. f: Sample 6 

 

5. CONCLUSION 

In this research, a novel R-CNN model is designed to predict land cover regions using the MODIS dataset. 

Here, the pre-processing model is explored for predicting the land cover regions to measure vegetative regions. 

This method is used for predicting the validation and training of the samples. The R-CNN model is more 

appropriate for the prediction of land cover susceptibility. Hyper-parameters are optimized to enhance 

prediction accuracy. Various common approaches consider regularization, training samples, architecture 

complexity, and batch normalization are utilized in the R-CNN to reduce overfitting and underfitting issues. 

The dataset is fed to the classifier model, and the prediction probability was designed. Finally, the R-CNN 

performance was evaluated with conventional ML approaches using metrics like accuracy, sensitivity, 

specificity, PPV, and NPV.  The sensitivity of R-CNN model is 98.58%, 94.50% specificity, 98.89% PPV, 

96.58% NPV, and 96.58% prediction accuracy. However, there are various constraints in this research. For 

instance, the impact of diverse R-CNN models for predicting outcomes is not evaluated. Additionally, some 

appropriate data is required for the experimental validation of the approaches. Recently, the R-CNN methods 

are extensively increasing. Various diverse architecture is derived, and different classifiers models need to be 

proposed. Exploring and comparing various classifiers is not appropriate to enhance the prediction process in 

the future.  
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