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ABSTRACT

"The goal of this paper is to illustrate the qualitative behaviour of a fourth order difference equation with
neutral terms of the form

A(5:0) (%)) = 5,(0)yP2(9 = n + 1) + 539y P20 + 1)

where q(¥9) = y(®) — s,(9)y#+( — k) Here B,,p,,Bs, 8, are the ratios of odd positive integers g, >
1,s,,5,,53,S, are positive sequences and n,n"*,k € N aresuch that n > 3,n* >3, k <n — 2. With the help
of comparison techniques, we are able to acquire some novel oscillations results. Examples are given to
illustrate the importance of the discoveries.

Keywords : comparison techniques, fourth order, neutral terms, oscillation.

INTRODUCTION

Due to the fact that neutral difference equations are used in the study of economics, mathematical biology, and many
other areas of mathematics, the issue of establishing oscillation phenomena for these equations has drawn a lot of
attention in recent years [1],[2],[11],[12].[17]. The sources cited there as well as [4],[21],[22],[23] provide some
fascinating new findings on the oscillatory behavior of second-order differential equations. A examination of the
literature reveals that every conclusion made for fourth order difference equations with neutral terms ensures that
each solution oscillates or monotonically approaches to zero. As far as we are aware, no conclusions have been
drawn for fourth order neutral difference equations that suggest that all solutions are just oscillatory. This study's
goal is to provide the equation some revised oscillation restrictions as a result.

A (510 (8%q())™) = 5,(9)yP2(9 — n+ 1) + 55 (B)y (9 +n°) (1)
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whereq(9) = y(9) — s, (9)yP+(9 — k) via comparing first order equations with known oscillatory phenomena, or by
comparing second-order difference equations with neutral terms. The reader can refer to [5],[6],[7] for relevant
results on oscillation theory of applications.

The following conditions are always considered to hold:

(i) B4, B2, B3, Bsare the ratios of odd positive integers with g; > 1;

(ii) s1,5,,53, S,are positive sequences;

(iii)yn,n*,k € Naresuchthatn >3, n* >3k <n-—2.

A solution to (1) is said to be oscillatory if it is neither eventually negative nor finally positive. If not, it is regarded as
non-oscillatory. Equation (1) is oscillatory if and only if all of its solutions are oscillatory."” The aim of this work is to
generate adequate conditions for (1) to oscillate whenever 8, < 1 and subject the assumption

$,(9,9,) — =asd — e whereS, (r,u) = Y7L — 2

o=u

Sﬁl(
1 (@
AUXILIARY RESULTS

Lemma 2.1 (see [7], Lemma 1 and 19, Lemma 2.2).

() If the first order delay difference inequality

Aq(¥) — 5, (9)f(q(¥ —n+1)) <0

has an eventually positive solution, then so does the corresponding delay difference equation.
(IN1f the first order advanced difference inequality

Aq(®) = s,(9)f(g(® —n")) 20

has an eventually positive solution, then so does the corresponding advanced difference equation.

Lemma 2.2. (see [9])

IfX,Y =0, then

XY+ —-1)YY—yXyy1>0 fory>1 (3)
and

XY+ (1 —-y)YY—yXyY¥"1<0OforO<y <1 4

Lemma 2.3. Assume (2). Then AQ(9) > 0 eventually, where
Q:=s5,(a%)" 5)
suggests that one of the below four scenarios occurs:
Case (I). q(9) >0, Aq(®)>0, A%q(®) >0 A3q(¥9)>0;
Case (I). q(¥) >0, Aq(®) >0, A%q(@) >0 A3q(¥)<O0;
Case (I11). q(¥) <0, Aq(®) <0, A%q¥) <0 A3q(®¥)<0;
Case (IV). q(®) <0, Aq@®) >0, A*q®)<0 A3q()<O0.
Proof. From (5), we can find 9, € N, such that

AQM) >0 V9=, (6)
We suppose that there exists 9; =9, with
Q@) >0 U]
From (6) and (7), we get, V9 > 9,.
-1
0®) = Q)+ ) AQ) = Q) >0
0=v;
Thus,
A3q®) >0 v = 9;. (8)

From (6) and (7) we obtain, for 9 > 9,
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1

QF1
Alq(9) =A%q(0:) + i), A'q(e) = A%q(9) + 252, ;1@
1 (@)

1
B 1
> A?q(9;) + X0 L) > A2q(9,) + QFi(8,)S,(9,9;) > > asd - e

sPL@)

because of (2).

Therefore, there exists 9, > 9; with

A?q(9) >0 V9 =9,

From (8) and (9) we get VY = 9,.

AqE) = Aq() + Z A%q(0) = Aq(8) + Z A%q(8,)
0=", 0=",
= Aq(®;) + (9 — 9,)A%q(9,) = o asH - e,
Hence, there exists 9; > 9, withAq(®¥) >0 VI = 9;.
From (9) and (10) we obtain for 9 > 95,
9-1 9-1
q(@) =q@)+ Z Aq(e) = q(93) + Z Aq(93)
0="3 0="3
=q(93) + (¥ —93)Aq(93) > as - oo,
Hence, there exists 9, > 95 with
g¥) >0 VvI9=>0,
By (8)-(11), we get
q(¥) > 0,4q(¥) > 0,A%q(9) > 0,A%q(9) > OVI > 9,
Thus, Case (1) holds if (7) does not hold, then the only other possibilities is g(9) < 0
ford = 9, and thus,
A3q(®) <O0forall9 =9,
we suppose that, there exists 9; > 9, with
Aq(9,) <0
From (12) and (13) we get, V9 > 9,
9-1
Aq(9) = A%q(®)) + ) Aq(o) < A%q(8,) <O
0="9,
Hence
Ag®) <0 VI,
Now, from (12) and (13) we obtain for 9 > 9,

9-1
AqE) =Aq)+ ) Aq(o) SAqE)+ ) A%q(9,)
0="9, 0="9,
< Aq(¥;) + (0 —91)A*q(9;) > —eo asY - oo,
Hence there exists 9, = 9; with
Ag(®) <0 VI=9,
Now, from (14) and (15) we can get, for 9 = 9,,

9-1
q®) =q@;)+ Z Aq(e) < q(9,) + Z Aq(¥9)
0=", 0=9,

< q(0) + (9 —9,)Aq(9;) > —0 9 > oo,
Thus, there exist 9; = 9, with
g(¥) <0 VI =>9,
By equation (12)-(16), we get q¢(9) < 0,4q(9) < 0,A?q(¥) < 0,A%q(¥) < 0.
Thus, Case Il holds. Further, if (13) does not hold, then the only other possibility is
A*q(@)=>0 VI =9,

©)

(10)

(1)

(12

(13)

(14)

(15)

(16)

an
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Suppose that, there exists 9, = 9, with

Aq(¥9,) >0 (18)
Then, from (17) and (18) we get V9; = 9,,
9-1
AqE) = Aq(8)+ ) A%q(e) = Aq(8;) >0,
0="9,
Therefore, there exists 9, > 9; with
Aq(®) >0 VI, =9, (19)
Now, from (18) and (19)V9 = ¥9,,
9-1 9-1
q(@) = q@)+ Z Aq(e) = q(9;) + Z Aq(9;)
0=", 0=9,

= q(9;) + (9 — 9,)Aq(9;) > = as 9 >
Hence, there exists 9; = 9, with
g(¥9) >0 VI > 9. (20)
By Equations (12),(17),(19),(20) we get, q(9) > 0,4q(9) > 0, A%q(9) = 0,A*q(¥) < 0. Case (ll) is so upheld. In the
event g (15) does not hold, the sole option is
Aq(®) >0 VI =9,. (21)
By Equation (12), (14),(16),(21) we get, q(9) < 0,4q(¥) > 0,A%q(9) < 0,A3q(9) < 0, Thus, Case (IV) holds. The rest
the article is based on the assumption that

ko ki, ks ks, ks €N satisfying 3kp <n* ky<n+2,andk, <k;<n+1-k. (22)

Note 2.4:

1. Consider the constraints n > 3,n* > 3, and k <n — 2. For example, one may use k, = k; =k, =1,k; = 2and
k,=4.

2. Consider that 9 + n* — 3k, > 9. Since it is always possible n* — 3k, > 0. Therefore, equations involving 9 + n* —
3k, are advanced type. Furthermore

I+n*+k, —2<9,9-n+k—-2<9;, 9—n+k—-2+k <9, always since n+2—-k;>0n+2-k>0n+2-—
k — k5 > 0. Therefore, equation containingd —n+k; —2,9 —n+k—2,9 —n+ k — 2 + kjare of delay type.

MAIN RESULTS

We will start looking at the new result.

Theorem 3.1.Let B, < 1. Assume that(i)-(iii), (2) and (22) hold. Suppose that there is a sequence s:Q — (0,°). Such
that limy_,..(g,(9)) = 0, where

Ps g, E
9:109):= (1= BB, "*sP=1(9)s,"*(9). (23)
Let 8,,0,,0, € (0,1). If the first-order advanced difference equation

b i i ;
Aq(9) = 0oz (9 +n" — 3ko) T0Z5 . <Zf:t1_kn (Slzg) =tk s3(y))” ) (24)
and the first order delay difference equation
AW (9) + (8,82k)P25,(9) (9 — n+ 1)P2 (9 — m)F-

B2
We@—n+k, —2)[S@—n+k,—19-n-1)]%2=0 (25)

B2
AWE) +—2D WEE® —n+k—2) ( ALl Pt Sl(rl,ﬁl))) =0

(s4)Pe(9-n+k+1)

(26)
and
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B2

AW(19)+hs¢(k2c60)%[wﬁi1(ﬁ—n+k+k3 —)S,@—n+k+ks—1 9—-n+k+k,—1)|"=0(7)

sf"(ﬁ—n+k+1)
are oscillatory, then sois (1)
Proof. Suppose thaty is a non oscillatory solution of (1), say y(¥) >0,y(9 —k) >0, y[@ —n+k) >0,y +n*) >0
eventually
Asi(O) (M%) = s,(9)yP2(9 — n+1) + 55(9)yF(9 +n") >0 (28)
Therefore (5) is fulfilled, and only four cases (1), (1), (111) and (V) can be done according to Lemma (2.3)
Case (1) and (11):

Using y = 4, € (0,1),X = sfl(ﬁ)y(ﬁ —k),Y = <ﬁis(l9)sf_i(l9))m in (4) we obtain —(s(9)y(d — k) — s,(9)yP+(9 —

k)) < g1(9)
y(©) =q@)+ s,y — k) + s(9)y(¥ — k) — s(@®)y(® — k)
=q(9) +s@)y® — k) = (s@)y@ — k) = s, (9)yP+ (@ — k))
2 q(9) +s@)y(@ — k) + g,(9)
> 1+ 2020 ;(g * 0@
As g in both cases (I) and (1) is positive and non-decreasing, there exists L > 0, fulfilling of q(9) > L, and thus, we
obtain

9Ny ® — k) + g, (9
v 2 (142200 )

Then due to (23), there exists k € (0,1) such that

y(@) = kq(¥) (29)
eventually
So, we get

A (51 0)(8%q(9))™) 2 kF25,(9)g(0 = n +1) + kFisy(9)g5@ +n) 2 0 (30

Case(l).Using (30), we get
A(5:0)(8%q(9))™) 2 kPss53(9)g% (9 + ") @31)
Summing (31) from 9 — kyto 9 — 1, we have

-1
B B1 B1
@A) =50 -k) (80 -k)) + > A(s(@(8%(@))
o=1Y—kq
9-1
> ks Z s3(0)qP (e +n")
0=U9-kq
9-1
2 kP @ +n k) D 53(0)
o=1Y—kq
So we get,
Bs B3 =
A*q(9) = k2q52(9 + 1" — ko) (55 Zh=bi, 53(0))" (32
Summing (32) again from 9 — kyto9 — 1, we get
9-1
Nq) =AqW-k)+ Y A2(o)
o=1Y-kq
9-1 5 s 1 0- B1
= Z kp1qhi(o +n" — ko) 5100 Z s3(7)
o=09-k, s1(e r=t-kg
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1
> KFighi(9 +n* — 2k0) 28b-k, (g 20ty 3(r)) (33)
Summing (33) again from 9 — k,to 9 — 1, we get
9-1
M) =AI@-k)+ Y A%q(9)
e=19-kg
1
9-1 B1
PO ez Z > s
kB1 B +n* — Sa(u
r=9-— g ° r=t—k, (r)u r—k ’
- 0

1

>kﬁ1qﬁ1(19+n — 3k,) Z Qz_: (ﬁ i 53(u)>f’1

ko r=t-kq u=r-k,

Hence, we conclude that q is a positive and increasing solution of
1

gs 8 9v-1 Q- 1 r—1 B1
P3 P3
Aq(9) — kprgp1(9 +n* — 3k,) Z Z Z s3(w) >0
L = 31(r) —
o=0-ky \ r=t-kg u=r

while applying Lemma (2.1)I1, (24) also has an eventually positive solution, which is a contradiction.
Case (Il). Let

W = —s, (A q)ﬁl > 0 eventually (34)
By (30) we get
—AW(®) = kP2s,(9)qP2(9 —n + 1) (35)
we know that, eventually,

9-1 9-1
q¥) =q@)+ Z Aq(e) = Z Aq(e)

0=v, 0=v,

)
= (9 —9,)Aq(® — 1) = IAq(d — 1) (1 - 31)
Since % — 0as 9 — oo, there exists 6; € (0,1) such that

q(9) =96, Aq(¥ — 1) eventually (36)
Next, we have

9-1 9-1
Aq(¥) =q(9)+ Z A%q(e) = Z A*q(® —1)
0=1, 0=9,
=@ —9,)A*q(® — 1) = A%*z(9 — 1) (1 - %)

Since %2 — 0as 9 — « there exists 6, € (0,1) such that

Aq(9) = 96,A%q(® — 1) eventually (37)
Now,wegeta=9—n—1,b=a+k; >a.

Th

en, f

rom (34) and (28) we geteventually
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0 < A%q(b) = A’q(a) + X528 Aq(o)

1

B1
= A’q(a) - Th2t 9
s

1
< A2q(a) — b=t ¥ ¢D

s
1
< A?q(a) — WFi(b — 1)S, (b, a)
and therefore,

A2q(a) = WFi(b — 1)S, (b, a) (38)
From (35)-(38), we obtain
—AW®) = kPzs,(9)qP2(9 —n+1)

> (615)F25,(9) (@ —n + 1)P2(Aq(¥ — n))P-

> (8,6,k)P25,(9) (9 — n + 1)P2(9 — n)P2(A2q(9 — n — 1))

B2
> (6,0,k)P25,(9)(® —n + 1)P2(9 — n)ﬁzWﬁi(ﬁ —n+k, -2 —n+k —1,9-n-1))5%

Therefore, W is a positive and decreasing solution of

AW (9) + (6,6,k)Pzs5,(9) (9 — n + 1)F

W - n)ﬁZWg_i(ﬁ —n+k —-2)[S@-n+k—19-n-1]F<0
while applying Lemma 2.1(1), (25) also has an eventually positive solution which contradictory.
Case(l1l) and (1V):
In the rest of the proof, let W be as in (34). Now,
q(®) = y(©) — s,(9)yP+(9 — k) = —s,(9)yP+( — k) eventually
Thus,
1
o)\
Y@ -k = - (L2 (39)
Here from (1) we get eventually,
—AW () = s5,(9)yP2(9 —n+1) +s3(9)yH (¥ +n)
> s,(9)yP(9 —n+1)
@) k2 (40)
25— qh@—n+k+1)
sf"(ﬁ—n+k+1)
Case (Il1).
From (34) and (28) we obtain,
9-1
Nq(8) =A*q@)+ Y A'q(o)

0=v;
1

W B1
= A%q(9;) - Z -
0=9; sfl(g)

-1 =
B —
<_ Wei(9 —1)

1
0=9; sf (o)

< W9 — 1)S,(9,9,)
eventually, which implies from (28) we get
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Aq(®) = Aq(®;) +X525 A%q(o)
< Yozs, A’q(e) < — X525, WA - 1)S(0, 1)

1
< —WF(9 - 2) X525, Si(e,9;) eventually
Therefore, from (28) we obtain,

9-1 9-1
q(@) =q@)+ Z Aq(e) < Z Aq(e)
0="9, 0="9,
9-1 . -1
<- Z WHL(9 — 2) Z S, (r9,)
0=19, r=09;
. 9-1 [9-1
< W@ - 3) Z Z S, (r9,)
0=0, r=19,
eventually.
And thus, from (40) we get eventually,
55(9) B2
—AW(@©) =-—— qps(9 —n+k+1)
sf4(19—n+k+1)
52
r 9-n+k [I9-n+k ]h
$2(9) | kY |
> wi@-n+k-2)[ > | > 509,
sf"(ﬁ —n+k+1) 0=9; r=9; J
B2
9-n+k [9-n+k Pa
s, (9) B2
> wa@-n+k-2)| > [ > 509,
sf"(ﬁ —n+k+1) 0=1; r=1;

Hence, W is a positive and decreasing solution of

9-n+k [I9-n+k Ba
s,(9) B2
AW () + 5 Wb (9 —n+k —2) Z Z s(ro) || <o
sf‘* @W—n+k+1) 0=1; r=1;

while applying Lemma (2.1) I, we see that (26) also has an eventually positive solution, which contradictory.
Case (1V). Let
a=m-n+k+1lb=a+k,>ac=a+k;—1>b—-1ld=a+k,—1>c—-1,

First, we get eventually,
b—-1

0 2q()=a@+ ) Aqe)

o=a
b—-1

> q(a) + Z Aq(b — 1)

>q(a) + 2I;a— a)Aq(b—1)

—q(a) = (b —a)Aq(b - 1) (41)
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Now, we obtain eventually,
c—1

0 <A =Aqb-1+ ) A%(e)
o=b-1
<Aq(b—1)+(c—b+1)A%q(c—1)

b-1 5
<Aq(b—1) +c 1—(7) A2q(c — 1)
Since % — 0as ¢ — o, there exists 6, € (0,1), such that
Aq(b —1) = —cB,A*q(c — 1) eventually. (42)
Then, from (34) and (28) we have
a-1

Nqd) = Aqe-1)+ > Aq()
o=c—1

Ws1(o)

0=t sf'(0)

< —WFi(d — 1)S;(d, c — 1)

S_

“A%q(d) > WFi(d — 1)S,(d.c — 1) (43)
Thus, from (40)-(43) we get
s, (9) B2
—AW@) =4 [(b = a)Aq(b — 1)]#4
sf4(19—n+k+1)
B2 2
32(19) k§4[—C60A2q(C _ ]_)jlﬁ_4

= B
sf4(19—n+k+1)

52 (9)
= B2

sf_"(ﬁ —n+k+1)
which implies W is a positive and decreasing solution of

B2
Ba

(k, CBO)% [Wﬁii(c —-2)S(c—1,c— 1)]

B2

9 Bap 1 Ba
AW () +— s2(9) (JpcB,)5s [Wﬁ1(c—2)51(c—1,c—1) <0
sf4(19—n+k+1)
5,(9) Baf 1 7
AW (9) + — (kycOp)Be |WBi(9 —n+k + k3 —2)S;(9—n+k+k;—19—-n+k+k;—1)[ <O

sf4(19—n+k+1)
Using Lemma (2.1) 1, (27) also has an eventually positive solution which contradicts.
We provide the next results to demonstrate Theorem 3.1.
Corollary 3.2. Assume that(i)-(iii), (2), (22) and (23) hold. If the first order advanced difference equation (24) and the
first oorder delay difference equation (25) and
(

B2
Ba

S1(r,91) '

9-n+k [t-n+k

9
AW(19)+min! - 52(9)
Iksf4(19—n—k+1) 0=9; r=ty

5,(9)
B2

sf"(ﬁ—n+k+1)

B2 B2 B2
(pcB)PlSy (8 —n+ k + ks — 1,0 —n +k + kg — 1)]5s \WFhs(9 —n +k + ks —2) = 0
(44
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are oscillatory for 1 > g, and 6,,6,, 6, € (0,1), then (1) is oscillatory.
Corollary 3.3. Assume 1 > f,and S5 = ; = f5,. Let(i)-(iii), (2), (22) and (23) hold. If

|ImSUpZQ -k, <Z$zt—kn (s (Q)Zf r—ko 53(6))?1):“’;

(45)
limsups, (9) (¥ —n +1)P2(9 —n)P2S, [0 —n+k, — 1,9 —n — 112 = o, (46)
9—>00
2
lim Sup#[ Z;g:k (25 n+k S, (r, 191))]&; = oo, (47)
97 Pao—n+k+1)
and
5,(9) £ &
lim sup " (k,c0p)F+[S; (0 —n+ k + k3 — 1,9 —n+k + ky — 1)]f+ = o, (48)
9—>00

”%9 n+k+1)

then (1) is oscillatory.

Corollary 3.4.Let 1 > Ba, suppose that(i)-(iii), (12) and (22) hold. Assume limy_,..s(9) = 0 where

S@) = —(ﬁ4s4(19))f’4 (49)

Let 8,,0,,0, € (0,1). If (24)-(27) are oscillatory, then so (1).

Corollary 3.5.Let 1 > g,. Assume that(i)-(iii), (2),(22) and (49) hold. Let 8,,6,,0, € (0,1). if (24), (25) and (44) are
oscillatory then (1) is oscillatory.

Corollary 3.6. Let1 > g,and B; = B, = % Assume that(i)-(iii), (2),(22) and (49) hold. Let 8,, 6,,0, € (0,1). if (45)-(48)
hold then (1) is oscillatory.

Examples
Example 4.1. We look at the eqution
A0 +2)* (A% (y9) = 5y5(9 = 1)) = 92y(9 — 3) + (9 + 3)*y* (9 + 6) (50)

Now (50) is in the form (1) where 8, = =3, f, = 1,6, = gk =1ln=4
n* =6, 5;(9) = (9 +2)3 5,(9) =92 5;(9) = (9 + 3)* 5,(9) = %

Then (i)-(iii) are fulfllled and so is (2), because
b-1 1 b-1

~ 1\ 1 w1

AR (—sl(g)) =) ivz= 2 i7"
o=a o=a o=a+2

Now, (see Note 2.4) k, = k; = k, = land k; = 2. And thus (22) is fulfilled and we get,

9+n*—3k,=9+3
9—-n+k —2=9-n+k—-2=9-5

9—n+k+k;=9-3,
Furthermore, [34 < land B8, < B; = B5. So by corollory 3.3, we choose s = s, then

7@ = §(§) (587 (54 )2

5066
(1) 50as9 - o,

Y
And so (23) is fulfilled. We also compute
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1 1
9-1 o-1 1 -1 B1 )| — ($3(8-3)\3 _ o2
o=9-k, <Zr:t—kn (51(9) §=r—kn 33(6)) 1) - (sj(ﬁ—l)) =19s
;)@ —n+ 1) —n)feS [0 —n+k, —1,9—n—1]F2 =929 - 4)

52(9) e _ oy
2O 8o (mizpre s, (o) )| = — 2

3
sfi“(ﬁ—n+k+1) (1_%)

and

52(9) ﬁ_z s _0*(1-3)
% (kZCBO)ﬁ4[51(19—n+k+k3—1,19—n+k+k3—1)]ﬁ4:ﬁ
s —-n+k+1) (1_5)
Hence (45)-(48) hold. Now that all of corollary 3.3's criteria have been fulfilled, Equation (50) is oscillatory
Example 4.2.The equations are considered

A(@+2)* (a2 (y9) - 9yi (0 — 1)) = 92y(9 — 3) + (9 + 3)*y*(9 +6) (51)
Now (51) is in the form (1) where 8; =83 =3,8, = 1,8, :g
k=1n=4n"=6,5,() =@ +2)3,5,(9) =92, s;(9) = (¥ +3)* s, =1. Furthermore, we have 1>p, and
Bz=p = % from corollary 3.6.

9\~ 3

3 3
We compute S(9) = —(B,5,(9)) 3 =— (g) =- (5) — 0, as [ - e and so (49) is fulfilled because all of the other

constraints of corollary 3.6 are satisfied in the same sense as in Example 4.1, (51) is oscillatory
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