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Abstract— Compressive sensing (CS) depend on data gathering is a promising method to reduce energy 

consumption in wireless sensor networks (WSNs). The existing CS-based data-gathering approaches 

require a large number of sensor nodes to participate in each CS measurement task, resulting in high 

energy consumption, and do not guarantee load balance. The propose a sparser analysis that depends on 

modified diffusion wavelets, which exploit sensor readings’ spatial correlation in WSNs. In particular, a 
novel data-gathering scheme with combine routing and CS is present. A modified ant colony algorithm-

based diffusion wavelets (ACBDW), where next hop node selection takes a node’s residual energy and 
path length into consideration simultaneously. Moreover, in order to quickness up the coverage rate and 

avoid the local optimal of the algorithm, an improved pheromone impact factor is put forward. The 

diffusion wavelets based on sensor nodes’ degree and different nodes’ distance considering the above 
factors are proposed. To further reduce the transport costs in WSNs, a sparse measurement matrix is 

utilized and modified ant colony routing are jointly applied to mitigate energy consumption and balance 

the network load, especially lowering the transmission costs for those nodes nearest the sink node. The 

experimental result show data-gathering approaches, this proposed algorithm not only minimizes the 

energy consumption of the network, but prolongs the network lifetime. 

Keywords— Compressive Sensing, Data Gathering, Modified Diffusion Wavelets, Ant Colony Algorithm 

Spatial Property  

 
I. INTRODUCTION 

Wireless sensor networks (WSNs) have received significant attention due to their versatility 

and have been deployed widely in applications such as military surveillance, monitoring of 

environment, traffic and critical infrastructures, among others. Increasing the lifetime of a 

wireless sensor network depends directly on minimizing the energy consumption at sensor 

nodes. In a WSN, most of the power is consumed in data transmission and forwarding when 

compared to data sensing and computation (processing). Data collection from impassable 

terrain and then transmit the information to the sink is a fundamental task in periodic sensor 
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networks. However, in order to keep these networks operating for long time, adaptive 

sampling approach to periodic data collection constitutes a fundamental mechanism for 

energy optimization. The key idea behind this path is to allow each sensor node to adapt its 

sampling rates to the physical changing dynamics. In this way, over-sampling can be 

minimized and power efficiency of the overall network system can be further improved. Due 

to the large amounts of data generated by wireless sensor networks (WSN), collection of 

sensing data to be forwarded from the sensor nodes to a central base station constitute a major 

process for WSN[1].This process is known as Data Collection. Unfortunately, the 

transmission of large quantities of data is a threat on the lifetime of the sensor network due to 

the limited energy resources of the sensor nodes. On the other hand, most of the applications 

require all the data generated and doesn’t tolerate any loss of detail as to reach the accuracy 
required. The “periodic sampling” data collection model is characterized by the acquisition of 
sensor data from a number of remote sensor nodes then pushing them to the sink on a 

periodic basis. These periodic models are used for applications where certain conditions or 

processes need to be monitored constantly, such as the temperature or pressure, etc. 

Commonly, the data compression techniques can be divided into two different types; lossless 

and lossy compression. Lossless compression approach, as the name implies involve no loss 

of information. In other words, the original data can be recovered exactly from the 

compressed data. This can be obtained by employing the statistical redundancy to represent 

the sender’s data more with fewer errors. In contrast, lossy compression techniques involve 

some loss of information and data that have been compressed using lossy technique generally 

cannot be recovered or reconstructed exactly. From other view point, the data compression 

techniques in WSNs can be classified into five categories: (1) the string-based compression 

techniques treat sensing data as a chain of characters and then approve the text data 

compression schemes to compress them. (2) The image-based compression techniques 

hierarchically organize WSNs and then employ the idea from the image compression 

solutions to handle sensing data. (3) The distributed source coding approach extend the 

Slepian-Wolf theorem to encode multiple correlated data streams independently at sensor 

nodes and then jointly decode them at the sink. (4) The compressed sensing techniques adopt 

a small number of non-adaptive and randomized linear projection samples to compress 

sensing data. (5) The data aggregation approach select a subset of sensor nodes in the 

network to be responsible for fusing the sensing data from other sensor nodes to reduce the 

amount of data transmissions. Advances in computing and communication technologies have 

led to intensive research effort on wireless sensor networks (WSNs). WSNs have found 

extensive applications in urban traffic monitoring and environmental surveillance. Typically, 

a WSN consists of a number of sensor nodes, which are randomly distributed in the field 

under surveillance, and a sink node. Generally, sensor nodes are required to collect data 

periodically and transmit them to the sink through multi-hop routing, and then the 

information aggregation and extraction tasks are performed at the sink [2]. Considering that 

sensor nodes usually have limited energy supply and that replacing or recharging the batteries 

of sensor nodes is difficult in practical WSN deployments, a primary objective of data 

gathering in WSNs is to obtain an accurate approximation of the signal field with as little 

energy expenditure as possible. Rest of the paper is organized as follows, section I contain 

overview of wireless sensor network and data collection model. Section II contain review of 

exiting compressive data gathering algorithms, Section III contain proposes system and 

module implementations, Section IV contain result and discussion, performance analysis, 

Section V concludes. 
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II. RELATED WORK 

 For the problems of random selection and unbalanced position of projection nodes, this paper 

proposes a compressed data gathering method based on even projection. For the WSN with 

uniformly distributed nodes, a location-based even clustering method is proposed. The 

clustering is implemented with the same size of the grids, which ensures the positional 

balance of the projected nodes. For the WSN with uneven distributed nodes, a node density-

based even clustering method is proposed. The DEC method, taking into account the factors 

of location and density, reduces the energy consumption at isolated points, equalizes the 

energy, and extends the network lifetime. Moreover, the analysis and simulation of the 

relevant parameters affecting the network energy consumption were analyzed. Compared 

with the random projection node method and the random walk method, the proposed method 

performs well and the network lifetime is significantly extended. In the next step, we will 

consider the application of artificial intelligence to further optimize the routing topology of 

the network and make more in-depth research on signal reconstruction to obtain better 

compressed data collection results. The data gathering method by combining the 

Compressive Data Gathering (CDG) presented with sparse random projection presented to 

reduce further the overall number of transmissions and most importantly to distribute the 

energy consumption load more evenly throughout the network to increase the lifetime of 

wireless sensor network. Our method (the Minimum Spanning Tree Projection (MSTP)), 

same as selects different nodes at random to do projection. Where in each projection node 

after collecting the native data from set of nodes sends the projected data to the sink. But 

MSTP unlike uses CDG for each projection node to collect and gathers one weighted sum by 

constructing independent forwarding tree which ensures fewer transmissions. The data 

gathering is able to reduce global scale communication cost without introducing intensive 

computation or complicated transmission control. The load balancing essential is capable of 

extending the lifetime of the entire sensor network as well as individual sensors. 

 Understanding of recovering a given sparse signal with sparse random matrices in the 

presence of channel fading. More specifically, we provide lower bounds on the number of 

measurements that should be collected by the fusion center in order to achieve non uniform 

recovery guarantees with l1 norm minimization-based recovery with independent (not 

necessarily identical) fading channels. With sparse random projections, the nodes transmit 

their observations with a certain probability[3]. We further discuss how to design 

probabilities of transmissions by each node (equivalently the sparsity parameter of the 

random projection matrix) based on the channel fading statistics so that the number of 

measurements required for signal recovery at the fusion center is minimized. consider a 

similar problem of WCS. A distributed compressive sensing arrangement for WSNs in order 

to reduce computational complexity and the communication cost. It considers an  sparse 

random matrix with entries that have a probability g of being nonzero, so that on average 

there are ng non-zeros per row. The resulted data similarity error rate is comparable to that of 

the optimal k-term approximation if the energy of the signal is not concentrated in a few 

elements. Somehow, the sparsity component g of random projections impacts the accuracy of 

signal reconstructions. Usually, the sparsity factor g is statistically determined according to 

the amount of harvested energy and is homogeneous for all sensors only considered AWGN 

channels. Compressive Sensing-based clustering algorithm, a clustered WSN only needs to 

send M measurements from its clusters to the BS. All raw reading data from N sensors will 

be recovered based on those measurements at the BS. The algorithm helps to reduce a 

significant energy consumption to transmit data from the network to the BS. Furthermore, we 

formulate the total power consumption for clustered WSNs that apply the algorithm[4]. We 
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analyze the total power consumption of the network versus number of clusters. Both common 

positions of the BS are considered: the BS at the center and outside the sensing area. Based 

on that, we can obtain the optimal number of clusters that provides the minimum power 

consumption for our networks. The energy-efficient data collection in wireless sensor 

networks (WSNs) that is based on an integration of the clustering and compressive sensing 

(CS). It is well known that natural signals have spatial correlation and therefore the sensor 

readings in a WSN are sparse in a proper basis such as DCT or wavelet. Cluster-based 

routing strategy has several advantages such as conserving communication bandwidth, 

stabilizing the network topology and reducing the rate of energy consumption. The major 

factors influencing the energy consumption of the clustering scheme are the number of 

clusters and the distribution of cluster heads.[5] Optimizing the number of clusters in WSN 

has been addressed by many researchers. But these methods are based on conventional in-

network compression and/or non-compression data gathering. Weighted Compressive Data 

gathering (WCDA)”, which benefits from the advantage of the sparse random measurement 
matrix to reduce the energy consumption. The novelty of the WCDA algorithm lies in the 

power control capacity in sensor nodes to form energy efficient routing trees with focus on 

the load-balancing issue. In the second part, we present another new data aggregation method 

namely “Cluster-based Weighted Compressive Data Aggregation (CWCDA)” to make a 
significant reduction in the energy consumption in our WSN model. The main idea after this 

algorithm is to apply the WCDA algorithm to each cluster in order to reduce significantly the 

number of involved sensor nodes during each CS measurement. Hierarchical Data 

Aggregation method using Compressive Sensing (HDACS) is presented, which combines a 

hierarchical network configuration with CS[6]. Our key idea is to set multiple compression 

thresholds modified based on cluster sizes at different levels of the data aggregation tree to 

optimize the amount of data transmitted. 

III. PROPOSED METHODOLOGY 

Wireless Sensor Networks (WSNs) generally consist of a large number of sensor nodes and a 

sink node deployed in the detected environment to monitor various physical characteristics of 

the real world, such as temperature, voltage, wind direction, and so on. Furthermore, WSNs 

should have a long enough lifetime to successfully fulfill the monitoring task. However, 

sensor nodes are limited in terms of computational ability, communication bandwidth, and 

energy availability.[7] The intuition behind CDG is that higher efficiency can be achieved if 

correlated sensor readings are transmitted jointly rather than separately. Showing how sensor 

readings are incorporate while being relayed along a chain-type topology to the sink. In 

practice, sensors usually increase in a two-dimensional area, and the ensemble of routing 

paths presents a tree structure. Routing protocol in which the sink has four children. Each of 

them leads a sub tree defined by the dotted lines. Data gathering and reconstruction of CDG 

are performed on the sub tree basis.  

         The main contributions of this propose system are: 

 The spatial correlation property of a sensor node leads to inherent data sparsity in 

some areas, such as wavelet domain and DCT domain. 

 In order to solve the sparsity of such signals, compressive sensing (CS) is exploited as 

a novel signal-processing paradigm that provides an efficient compressive method and 

recovers sparse or compressible signals. 

 Spatial property of sensor node readings is exploited to strengthen the performance of 

networks, considering the topology structure and sensor nodes’ distance. 
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 The spatial correlations of sensor node readings to further promote the efficiency of 

the data-gathering algorithm. 

A. Network Model 

 WSNs where N sensor nodes are randomly deployed in a square area. The system model is 

represented by a connected graph , where the vertex set V denotes the nodes in the 

networks, and the edge set E denotes the wireless links between the different nodes[8]. Node 

i can communicate with node j if they are involved in the communication range. It assumes 

that the single hop distance di j between node i and node j can be represented as a Euclidean 

distance. At a sampling instant, each sensor node i takes a measurement xi; the goal of the 

data gathering in WSNs is to collect sufficient information to reconstruct the N-dimensional 

signal . When the distance between transmission node i and receive node, j is 

greater than d0, the multi-path fading model is utilized. When the distance is less than d0, the 

free-space model is adopted. 

 

 

 

where  and  describe the energy consumption of transporting and receiving the L 

bit data packet. denotes the power expended to run the transmitter or receiver circuitry of 

the sensor node[9]. and  represent energy consumption for a multi-path fading 

amplifier and free-space amplifier, respectively. 

B. Modified Diffusion Wavelet 

   To make full use of the spatial correlation property, it takes diffusion wavelets as the sparse 

basis considering the spatial correlation of sensor node readings in WSNs. One is the nodes 

degree, and the other is the distance between the different sensor nodes. In addition, an 

improved QR decomposition of Givens transform is introduced to set up the sparse basis[10]. 

To construct the modified diffusion wavelets in detail. However, diffusion wavelets are 

affected significantly by the diffusion operator, which is equivalent to the wavelet function of 

a discrete wavelet transform. Diffusion is utilized as a smoothing and scaling technique to 

enable multi-scale and coarse-grained application. 

Step 1: Suppose that  denotes a graph with N sensor nodes deployed in the monitoring 

environment. Diffusion wavelets are introduced to set up an orthonormal basis for functions 

supported by the topology graph of WSNs. It takes a random deployment of WSNs to explain 

this process. 
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Step 2: Calculate the weight adjacency matrix of , which is denoted as is 

the weight of the edge in the graph[11]. Here consider two different cases of weight. The 

sensor node degree is chosen as the weight in the first scheme, while the is taken into 

consideration to exploit the spatial correlation features, aiming to mitigate the load of WSNs 

in another scheme. In the former case, a graph and corresponding weight adjacency matrix. 

 

where r is the maximum distance among the sensor nodes that can directly communicate by a 

single hop. is the Euclidean separation between node i and node j. is a negative number, 

while  is a small positive number. 

Step 3: Generate a normalized Laplacian matrix of . In that  is the degree of 

correlations among different function values provided at the vertices of the graph  . In 

the first schedule, denote  using Equation (8), while the other schedule considering spatial 

correlation implements Equation (9). Generally speaking, an eigen value or eigenvector 

shows the special correlations at some scale. It needs to split the space of  if it decomposes 

the signal sampled of the in a multi-scale. 

 

 

Step 4: However, the diffusion operator O stems from , where O shares the same 

eigenvalues as  (less than 1). The diffusion operator is O = ; in this propose, it 

choose the first expression. 

Step 5: Consequently, recursively raise O to power 2, and delete the diminishing eigenvalues 

with a threshold. Step by step, this approach splits the space spanned by the eigenvectors. Let 
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the initial space of O be , which is represented by scale space and wavelet space 

. Wavelet space  is different between and . Then, it derives Equation (10): 

 

accomplish the modified QR decomposition, where indicates the column space of matrix 

O denoted by basis at scale b, and row space is denoted by basis at scale a, represents 

basis  denoted on the basis . 

Step 6: In the end, the diffusion wavelet basis is the concatenation of the scale functions 

and wavelet functions. 

 

C. Modified Ant Colony Routing 

   In order to decrease the whole network transmission load and prolong the network lifetime, 

we provide a modified ant colony routing algorithm, where to speed up the convergence rate 

and avoid local optimal of the algorithm, pheromone impact factor is improved[12]. Here, we 

select the energy consumption model. The traditional ant colony optimization algorithm 

selects the next hop depending on Equation (11) 

 

where  denotes the pheromone information on edge (i, j), while  is the heuristic 

information on edge (i, j). and  are impact factors demonstrating the importance degree of 

the pheromone information and heuristic information. In order to speed up the convergence 

rate and avoid local optimal, impact factor V is modified as in Equation (12): 

 

where m is a small positive constant ;  and  refer to current iterations and 

total iterations, respectively. In Equation (12), V gradually becomes smaller as the number of 



M. Deepika et al, International Journal of Computer Science and Mobile Computing, Vol.7 Issue.11, November- 2018, pg. 216-230 

© 2018, IJCSMC All Rights Reserved                                                                                                        223 

iterations increases. In other words, the proportion of pheromones will diminish when the 

number of iterations rises. 

Furthermore, to yield optimal routing by the ant colony algorithm, in this subsection, a sensor 

node’s residual energy and path length are taken into consideration simultaneously. So, the 

fitness value of each routing is presented as follows: 

 

where  indicates the average residual energy, while  represents the node minimal 

energy of ants passing through the path. denotes the reciprocal of path length for 

given th ant and it siterations. and  are  constants, and . Consequently, the 

path with the largest fitness function value is chosen as the optimal routing, thus balancing 

the network load and prolonging the network lifetime. 

D. Compressive Data Gathering 

     WSNs are utilized for gathering physical signal from the real world in practical 

applications. Without using CS theory, which is the simplest method, a data-gathering 

scheme with the help of the tree topology. In order to dramatically decrease communication 

costs and prolong the network lifetime, the authors of consider that the sink node receives 

only M packets instead of N packets of original data from the whole network. In the end, at 

the sink, CS theory is used to reconstruct the original data. For the CDG algorithm, each node 

in the WSN multiplies its readings using the corresponding j column vector of basis matrix 

. Next, the sensor node adds them to its own readings after receiving all same-size vectors 

from descendent nodes and transmitting the final results to its parent node with M 

packets[13]. Let us illustrate the product of CDG, where F is matrix, and each column 

corresponds to one weight sum. In the plain CS, all nodes in WSNs transmit M packets and 

each has equal transmission costs; therefore, each CS measurement cost remains relatively 

high. An example of the plain CS mechanism. It is obvious that for these approaches (non-CS 

and plain CS), the former transmits fewer packets compared with plain CS from the point of 

view of child nodes. Provides the hybrid CS method, where non-CS is chosen when the 

number of packets is less than or equal to M; alternatively, plain CS is used.  

According to the analysis, the network load in hybrid CS is unbalanced. Specifically, sensor 

nodes near the sink node will consume more energy than those far from the sink node 

because of forwarding data more times. This results in sensor nodes near the sink dying 

earlier. However, the total network costs for each random projection. To avoid the 

drawbacks, one can leverage the advantages of the algorithms; in this section, we present our 

data-gathering strategy combining joint routing and CS. 
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Firstly, randomly choose M projection nodes in the network with probability , which 

follows. In the CS theory, the sink node needs M measurements to reconstruct the original 

data. Therefore, these M projection nodes will be selected as the gathering node, defined as 

, to collect one random measurement , and transmit  to the sink node. Then, 

distribute non-zero elements in each row of measurement matrix  as uniformly as possible 

to guarantee the sparse features of the measurement matrix; the number of non-zero elements 

in each row should equal to  , which is related to Algorithm 3’s step 1. Additionally, each 

column of measurement matrix represents a sensor node, so if a column of the matrix has full 

zero elements, the data from its special sensor node should be thrown away. , the column 

vector of measurement matrix  is required to store each sensor node memory in advance. 

Based on the MST algorithm, access all candidate sensor nodes of a given projection node. In 

the first stage, the projection node is considered one root node tree[14]. In the step 4 

initialization stage in Algorithm 3, is assigned by i, and the temporary variable temp also 

yields i. Then steps 5–12 use the MST algorithm to construct the tree, adding the candidate 

nodes step by step. If temp is not empty, step 6 deletes the top node of the temp queue and 

puts its neighbor node in the Tree and temp. The next step is to delete them from   if they 

belong to  . Note that these candidate nodes must be directly connected to the parent node 

by a single hop[15]. If there are still some candidate nodes not involved in the tree, the 

Dijkstra algorithm is proposed, aiming to find the shortest path from the residual nodes to the 

tree (steps 14–19), and we add the residual candidate nodes. 

Finally, this loop of 13–26 lines will repeat until   is empty. The modified ant colony 

routing technique is utilized to transmit packets of projection nodes to the sink node, namely 

step 27 of Algorithm 3. Consequently, Algorithm 3 terminates by generating the optimal 

routing between the projection nodes and the sink node, and an M routing tree from the 

projection nodes to their own candidate nodes[16]. Our novel algorithm (Algorithm 3) is 

shown in more detail. The modified ant colony algorithm jointly considers the sensor node’s 
residual energy and the path length, which will not only balance the whole network load, 

avoiding nodes near the sink node dying earlier, but will prolong the network lifetime. In this 

way, the transmission costs should be greatly decreased compared to hybrid CS. 

E. Algorithm Implementation 

     Algorithm 1: Modified diffusion wavelets. 

Input: the number of sensor nodes N, communication radius r, decomposition level , 

precision  and MQR function. 
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Output: sparse basis . 

1 generate a graph  

2 compute weight adjacency matrix  according to the vertex degree/Equation (7) 

3 calculate normalized Laplacian matrix L relying on Equation (8)/Equation (9) 

4 generate diffusion operator  

5 recursively raising  to power 2 

5.1 for  

5.2  

5.3  

5.4  

5.5 end for 

6 concatenation of the scale functions and wavelet functions is regarded as the sparse basis Y. 

MQR Function:  

Input: sparse matrix,  

Output: Q, R matrix, possibly sparse, such that  

(1) Q is orthogonal 

(2) R is upper triangular up to a permutation 

(3) The columns of Q -span the space spanned by the columns of B 

Algorithm 2: Modified ant colony algorithm. 

Input: the number of sensor nodes N, the power expended to run the transmitter or receiver 

circuitry of sensor node , energy consumption of multi-path fading amplifier , energy 

consumption of free-space amplifier , distance threshold d0, impact factors of pheromone 

information , impact factors of heuristic information  is a small positive constant , 

pheromone information on edge , heuristic information on edge  and are  

constants[17]. 

Output: optimal routing . 

1 Initialization routing , energy for each node and  
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2 calculate distance  of different nodes,  

3 while maximum iterations have not been reached 

4 for  

5 computes  according to the node communication radius. 

6 generate transition probability based on Equations (11) and (12) 

7 choose the next hop node, relying on , modify routing and  

8 the destination node or not? If not, go back to step 2, or proceed to step 9 

9 update the node residual energy based on Equations (5) and (6), routing depending on 

Equation (13) 

10 end for 

11 end while 

12 return the optimal routing . 

Algorithm 3:Proposed algorithm. 

Input:  

Output:  

1 randomly select M sensor nodes  in the network probability , generate F 

2 for  

3 query candidate nodes of projection nodes  

4 initializations  

5  

6  

7 if  is i’s candidate node 

8  

9  

10  

11 end if 

12 end while 

13  

14 for all residual candidate nodes  
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15   find a shortest path to  using the Dijkstra algorithm 

16 if  

17  

18 end if 

19 end for 

20  

21  

22  

23 while !empty(temp) do 

24 go back to steps 7–11 

25 end while 

26 end while 

27 Optimal routing from i to the sink node using Algorithm 2 

28 return  

29 end for 

Algorithm 4: Sensor signal reconstruction. 

1 Input: received data X, measurement matrix , the number of atom is  

2 Output: reconstruct data  

3 generate sparse basis  using Algorithm 1 

4 collect data  in the network using Algorithm 3 

5  

6 initialization residual error  

7 computes , select the largest la values from ; these values correspond to   

column indexes j, constructing set  

8  

9  

10 updates  

11 go back to step 7, or proceed to step 12 
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12 reconstruct , which is the generation value of the last iteration . 

IV. RESULT AND DISCUSSION 

To evaluate the performance of our scheme by experiments. Ii evaluate our scheme mainly in 

terms of the sparse basis comparison; the reconstruction performance of the novel 

mechanism; the reconstruction error for different schemes; the energy consumption based on 

non-CS, plain CS, hybrid CS and our proposed algorithm (sparse basis is based on distance); 

and network lifetime performance between the different schemes and our algorithms[19]. In 

our simulations, all programs have been run in the NS2 platform. Moreover, , 

, , , initial energy . 

Table 1. Type Styles 

Table 1. Simulation Parameters 

 

 

 

 

 

 

 

 

 

 

NS2: The Network Simulator (ns2) is a discrete event driven simulator developed at UC 

Berkeley. We are using Network Simulator NS2 for simulations of protocols[18]. It provides 

considerable support for simulation of TCP, routing and multicast protocols over wired and 

wireless networks. Ns-2 code is written either in C++ and OTCL and is kept in a separate file 

that is executed by OTCL interpreter, thus generating an output file for NAM (Network 

animator). It then plots the nodes in a position defined by the code script and exhibits the 

output of the nodes communicating with each other. 

 

Fig1. Comparison of no of round vs total energy consumption 

Parameter name Parameter value 

Stimulation tool NS2 

Packet size 512kb 

Channel  Wireless  

Number of Mobile 

nodes 

80 

Communication agent UDP 

MAC type 802-11 
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Fig2. Comparison of no of round vs remaining nodes 

 
Fig3. Comparison of no of round vs network life time 

V. CONCLUSIONS 

  Therefore, in this mechanism, diffusion wavelets based on sensor nodes’ degree and 
different nodes’ distance considering the above factors are proposed. Additionally, to further 
reduce the transport costs in WSNs, a sparse measurement matrix is utilized and MST and 

modified ant colony routing are jointly applied to mitigate energy consumption and balance 

the network load, especially lowering the transmission costs for those nodes nearest the sink 

node. Experimental results have shown that our sparse basis can sparsity the signal well. This 

method can also accurately reconstruct the original signal. Moreover, the reconstruction error 

of our scheme is less than DFT [20]. Compared with existing data-gathering approaches, our 

proposed algorithm not only minimizes the energy consumption of the network, but prolongs 

the network lifetime. 
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