
Jour of Adv Research in Dynamical & Control Systems, Vol. 11, 01-Special Issue, 2019

Multivariate Logistic Regression based
Gradient Descent Firefly Optimized Round

Robin Scheduling with Big Data
C.R. Durga Devi*, Ph.D Research Scholar, Department of Computer Science, NGM College, Pollachi, India.

E-mail: deviswe@gmail.com

Dr.R. Manicka Chezian, Associate Professor, Department of Computer Science, NGM College, Pollachi, India.

E-mail: chezian_r@yahoo.co.in

Abstract--- A task scheduling with big data is to process and complete several tasks by managing the data in an
efficient way. While accessing a large volume of data over the network, task scheduling plays a major concern to
minimize the risk level. Various methods are preferred for the job scheduling. But, finding the best scheduling
method is a significant challenge to improve scheduling efficiency and minimizes the traffic level in big data
analytics. Multivariate Logistic Regression based Gradient Descent firefly optimized Round Robin Scheduling
(MLR-GDFORRS) technique is introduced for scheduling the number of task (i.e. user request) to optimal virtual
machine with minimum time. MLR-GDFORRS technique also minimizes the workload across the cloud server
while handling the number of tasks. Initially, the number of tasks arrives at the cloud server from different locations.
After collecting the tasks, cloud manager analyzes the tasks using Multivariate Logistic Regression Analysis.
Multivariate Logistic Regression is the statistical process for analyzing the tasks and to find relationship among
dependent data (i.e., priority level) and one or more independent data of same cloud user request (e.g., request
arrival time, file size, predicted job completion time). After that, the tasks are stored in one or more queue based on
priority level with lesser memory consumption. Followed by, the tasks get scheduled using Gradient Descent firefly
optimized Round Robin Scheduling algorithm. The GDFORRS efficiently finds the resource optimized virtual
machine for allocating the tasks in a circular manner. The MapReduce function assigns the high priority tasks to the
optimal virtual machine. This helps to minimize the workload of the cloud server.

Keywords--- Big Data, Task Scheduling, Multivariate Logistic Regression Analysis, Round Robin Scheduling
Algorithm, MapReduce Function.

I. Introduction
Big data analytics is a procedure of analyzing a large number of data and valuable information. Big Data plays a

very significant role in several applications like healthcare, automobiles, information technology and so on.
Effective utilization of a resource, time becomes a demanding task in big data analytics. Big data analytics is
performed by machine learning or statistical algorithms to process the data and detect significant information out of
it.

In big data analytics, tasks are distributed across several virtual machines to lessen job completion time as well
as traffic level. Therefore, an appropriate task scheduling is exploited for achieving a better service provisioning in
big data analytics.

 The several data mining models has been developed in the recent day to perform task scheduling with big data.
Multivariate Logistic Regression based Gradient Descent firefly optimized Round Robin Scheduling (MLR-
GDFORRS) technique is introduced in this paper.

The main contribution of the MLR-GDFORRS technique is summarized as follows,

• The contributions of MLR-GDFORRS technique are to improve task scheduling efficiency and minimize
the time and memory consumption. This contribution is achieved by applying Multivariate Logistic
Regression. The regression function analysis the incoming tasks with the certain scheduling parameters.
Based on regression analysis, the tasks are prioritized and stored in different queues.

• Gradient Descent firefly optimized Round Robin Scheduling is applied to find the resource optimized virtual
machine among the number of the virtual machines based on light intensity. The virtual machine which
utilizes the minimum resource is chosen for handling high priority task. This helps to minimize the data

ISSN 1943-023X 179
Received: 5 Jan 2019/Accepted: 15 Feb 2019

Jour of Adv Research in Dynamical & Control Systems, Vol. 11, 01-Special Issue, 2019

corruption and probability of data loss. The Map reduce function is applied to schedule the high priority task
to an optimal virtual machine with minimum scheduling time. This assists to improve the scheduling
efficiency.

This paper is ordered as follows. Section 2 provides an outline of related research works. Section 3 provides the
description of MLR-GDFORRS technique with neat diagram. Experimental settings of MLR-GDFORRS technique
and state-of-art methods are described in section 4.

Section 5 affords experimental results and discussion with certain parameters. Finally, the conclusion of the
paper is presented in section 6.

II. Related Work
A new task scheduling framework called Flutter was introduced in [1] for lessen completion time and network

costs of big data processing.

The framework failed to investigate the task scheduling jointly optimized in the context of wide-area big data
processing with optimal virtual machines. In [2], a hybrid evolutionary algorithm was developed for defeat Task
Scheduling and Data Assignment Problem (HEA-TaSDAP). It does not consider the delay related scheduling since
it failed to analyze the tasks for handling the data replication problem.

An Adaptive Cost-based Task Scheduling (ACTS) was introduced in [3] to offer a data access to the virtual
machines (VMs) with lesser time and cost.

The method does not solve the load-balancing issues. A fine-grained resource-aware MapReduce scheduler that
partitions tasks into phases (PRISM) was designed in [4]. The MapReduce considerably minimizes the running time
of data-intensive jobs. The PRISM does not improve the scalability. A new task scheduling algorithm was designed
in [5] for improving the heterogeneous task scheduling. The algorithm consumes more time complexity while
scheduling the heterogeneous task.

An energy-aware fair scheduling framework was introduced in [6] for big data applications. The framework
failed to effectively minimize the workload of data cluster. An Automatic MapReduce Evaluation Tool was
designed in [7] for allocating the Big Data Workloads. The tool does not adopt the MapReduce frameworks to
maintain additional resources.

A Hadoop Distributed File System (HDFS) was introduced in [8] for processing the number of data and job
scheduling to accomplish high performance in big data processing. The performance of job scheduling was not
improved. A reliability-aware task scheduling algorithm was introduced in [9] depends on replication on
heterogeneous computing systems.

The algorithm failed to analysis the incoming tasks for improving the scheduling efficiency. Discrete Particle
Swarm Optimization Algorithm was designed in [10] to defeat multi-level job Scheduling issue in single machine
under execution time uncertainty. The algorithm does not robust for scheduling problem with more uncertainty
factors, such as machine interruption and delays during their operations. Multi-objective algorithm was designed in
[11] to optimize MapReduce job scheduling depends on the completion time as well as the cost of cloud service
models. The algorithm does not prioritize job to improve the scheduling efficiency. Dynamic multitasking workload
scheduling technique [12] was presented for big data analytics in the elastic cloud. The technique does not enhance
the performance of scheduling the workload.

A temporal task scheduling algorithm (TTSA) was designed in [13] for efficiently transmitting the incoming
tasks to private cloud data center and public clouds. The algorithm failed to minimize dispatch time and execution
delays in hybrid clouds. A Modified Best Fit with Capacity Based Scheduling (MBFCBS) technique was
introduced in [14] to offer cloud resources to users through virtual machines. The technique does not consider a
task's deadline to improve the scheduling efficiency.

In [15], a Min-Min and Max-Min algorithms were designed for efficient task scheduling in a cloud environment.
The algorithm failed to lessen the execution time of tasks in cloud computing with dynamic task allocations. An
adaptive scheduling technique was developed in [16] to increase the efficiency of Hadoop systems that process
heterogeneous. MapReduce jobs. The technique does not find the best virtual machine to process the tasks.

A Hybrid Genetic algorithm and particle swarm optimization (GA-PSO) algorithm was designed in [17] to
assign tasks to the resources effectively. The workflow tasks were distributed to the available VMs does not depend
on the tasks size and the speed of VM.

ISSN 1943-023X 180
Received: 5 Jan 2019/Accepted: 15 Feb 2019

Jour of Adv Research in Dynamical & Control Systems, Vol. 11, 01-Special Issue, 2019

A genetic algorithm-based job scheduling approach was designed in [18] for improving the efficiency of big data
analytics. However, an accurate estimation of big data analytics was not performed. In [19], Heuristic algorithms
were designed to schedule the autonomous tasks in cloud computing. The scheduling efficiency of the algorithm was
not improved. Asymptotic scheduling technique was introduced in [20] for several task processing in Big Data
platforms. The technique failed to use MapReduce function for minimizing the scheduling time.

The certain issues are identified from the above-said literature such as lack of task scheduling efficiency, more
scheduling time and memory consumption, failed to find the optimal virtual machine and so on. In order to address
the issues from the existing methods, Multivariate Logistic Regression based Gradient Descent firefly optimized
Round Robin Scheduling (MLR-GDFORRS) technique is introduced in big data analytics.

III. Methodology
Multivariate Logistic Regression based Gradient Descent Firefly Optimized Round Robin Scheduling

With the rapid growth of data, the processing and analyzing a large volume of data is the significant process.
While processing a large volume of data, scheduling is the important process for minimizing computation time of a
job. In general, the various scheduling techniques are employed for processing tasks. In this work, machine learning
technique is developed for improving the task scheduling efficiency with less complexity. Multivariate Logistic
Regression based Gradient Descent firefly optimized Round Robin Scheduling technique is introduced. Scheduling
is the process of assigning the user requested tasks to available resources on the basis of the regression analysis.
This is done by multivariate logistic regression.

After the regression analysis, the tasks are allocated to the available virtual machines. This helps to minimize the
workload and traffic while accessing the large volume of data. The scheduling process is done by applying a
weighted round robin scheduling.

The weighted round-robin scheduling is improved than ordinary round-robin scheduling, when the processing
capacity of virtual machines is different. The MapReduce function is also applied in MLR-GDFORRS technique to
improve the scheduling efficiency. The architecture diagram of MLR-GDFORRS technique is shown in below
Figure 1.

In cloud, the users’ sends a request (i.e. tasks) to a cloud server. The user requested tasks are considered as jobs
(i.e. file). The cloud manager analyzes the incoming tasks from the user to find the priority level for scheduling. The
cloud manager uses the multivariate logistic regression to analyze the incoming user requested tasks. After that, the
priority level of each task is identified and it is stored in a queue.

Then, the gradient descent firefly optimized round robin scheduling is applied to allocate the tasks to the
resource optimized virtual machine.

As a result of task scheduling, the workload of cloud server and the traffic level gets minimized. The
MapReduce function also minimizes the space complexity

Let us consider the number of tasks (i.e. user request) and cloud manager . The CM

analysis the incoming tasks and schedules to different virtual machines . Based on the
above system model, the task scheduling is performed in the following sections.

Multivariate Logistic Regression Analysis
The Multivariate Logistic Regression is a machine learning method for analyzing the incoming tasks to find

relationship among dependent data and one or more independent data. The MLR-GDFORRS technique performs the
analysis with one or more independent data. Hence the name is called Multivariate Logistic Regression. Here the
dependent data is represented as a priority level. The MLR-GDFORRS uses a different queue for storing the user
request with their priority.

The independent data are a certain job request parameters are task size, request arrival time, predicted job
completion time (i.e. ending time).

The regression analysis helps to identify how the dependent variable alters when any one of the independent
variables gets varied. It means that if any changes in the job request parameters value, the priority level gets
changed. Through regression analysis, the cloud manager schedules the tasks to the virtual machine.

ISSN 1943-023X 181
Received: 5 Jan 2019/Accepted: 15 Feb 2019

Jour of Adv Research in Dynamical & Control Systems, Vol. 11, 01-Special Issue, 2019

Figure 1: Architecture of MLR-GDFORRS Technique

The tasks stores in different priority level as output i.e. based on, the user request priority level is
determined. The regression function is mathematically expressed as follows,

 (1)

From (1), represents an output of logistic regression, denotes regression coefficients, denotes a priority

level of the queue, denotes an incoming task.

The regression function identifies the priority level which has different possible outcomes and their predicted
probability. Then the predicted probability is described as follows,

ISSN 1943-023X 182
Received: 5 Jan 2019/Accepted: 15 Feb 2019

Jour of Adv Research in Dynamical & Control Systems, Vol. 11, 01-Special Issue, 2019

 (2)

From the above equation (2), denotes a probability of output class. Based on the exponential value of tasks and
their priority level, the user priority level is identified. After identifying a priority level, the tasks are stored in one or
more queue . is the highest priority with large task and the maximum time consumption.
The low priority tasks are stored in the next level of the priority queue.

Figure 2: Multivariate Logistic Regression based Priority Level Assignments

As shown in figure 2, regression-based priority level assignments are illustrated. Based on the analysis, the
highest priority tasks are assigned in the first queue. Followed by, all the requested tasks are stored in a next priority
queue.

Gradient Descent Firefly Optimized Round Robin Task Scheduling Approach
After storing the number of tasks in a queue, the scheduling is performed using gradient descent firefly

optimized round robin scheduling approach. This approach is the simplest method for distributing the user requests
to optimal virtual machines in a circular order. In MLR-GDFORRS, an optimal virtual machine is chosen based on
predicted job completion time, bandwidth utilization and memory utilization. This helps to minimize the workload
across the server as well as traffic level. The scheduling is performed to handle the number of virtual machines with
different processing capacities. The scheduling process is illustrated in figure 3. It illustrates a gradient descent
firefly optimized round robin task scheduling with MapReduce function. The below figure clearly illustrates an
efficient tasks scheduling to several virtual machines with minimum time. Let us consider the number of tasks in
the different queues . Then the high priority user tasks are scheduled first rather than the low
priority tasks. The Map Reduce function assigns the higher priority tasks to the optimal virtual machine. GDFORRS
approach uses the MapReduce function which is a simple and powerful programming model which has been widely
used for processing the large number of tasks resulting in minimizes the traffic as well as delay.

Figure 3: Gradient Descent Firefly Optimized Round Robin Task Scheduling

ISSN 1943-023X 183
Received: 5 Jan 2019/Accepted: 15 Feb 2019

Jour of Adv Research in Dynamical & Control Systems, Vol. 11, 01-Special Issue, 2019

Mapreduce process divided into two phases namely Map phase and Reduce phase. Map phase executes tasks
scheduling to the optimal virtual machine run on the input tasks in a circular way. Reduce phase executes after Map
phase, and reducing the number of incoming tasks. This also helps for minimizing the workload of the server as well
as traffic level.

The MapReduce takes the high priority tasks first and allocates it to the optimal virtual machine which has a
higher weight. The GDFORRS identifies the virtual machine which has enough resources to process the tasks. The
optimal virtual machine is detected through gradient descent firefly optimization. Let us consider the number of
tasks in the priority queues . The fireflies are considered a number of virtual

machines ‘ ’. Among the several virtual machines, an optimal virtual machine is identified for
assigning the tasks based on the resource utilization. Here, three types of resources are considered namely predicted
job completion time, bandwidth and memory. Based on this resource utilization, an optimal virtual machine is
chosen. The resources for each virtual machine are calculated as follows. The predicted job completion time of the
virtual machine is calculated as follows,

 (3)

From (3), denotes a predicted job completion time of the virtual machine, represents a starting time to

process the task and denotes an ending time of that particular task. Bandwidth utilization of the virtual machine
is defined as the difference between the available bandwidth and unused bandwidth. It is calculated as follows,

 (4)

From (4), denotes a bandwidth utilization of virtual machine, represents an available bandwidth,

 denotes an unused bandwidth. The memory is the other parameter in task scheduling processes. It is defined
as an amount of storage space required by the virtual machine to process the user tasks. The memory utilization is
calculated as follows,

 (5)

From (5), denotes a memory utilization of virtual machine and denotes a total space and denotes
an unused space. Based on the above said parameter calculation, the cloud manager detects an optimal virtual
machine.

In GDFORRS technique, the group of fireflies moves towards the other fireflies by flashing light intensity with
the objective function. In general, the objective function is a function that it is desired to maximize or minimize. The
objective function in GDFORRS technique is to find an optimal virtual machine with minimum resource utilization
for the particular task. To discover minimum of a function, GDFORRS technique uses gradient descent approach.
The objective function with the gradient descent is expressed as follows,

 (6)

From (6), denotes an objective function, represent a gradient descent function to select the
virtual machine with minimum resource utilization for task scheduling. The initial populations of fireflies (i.e.
number of virtual machines) are created as follows,

 (7)

From (7), denotes a virtual machine in the cloud server. The light intensity of all fireflies is formulated
based on the three resources as follows,

 (8)

From (8), denotes a intensity of virtual machine based on predicted job completion time ,

denotes a bandwidth utilization of virtual machine, represents a memory utilization of virtual
machine. Based on the calculated light intensity of each virtual machine, optimal virtual machine is selected. Based
on the objective function, an optimal virtual machine is selected from any pair of fireflies which is expressed as
follows,

ISSN 1943-023X 184
Received: 5 Jan 2019/Accepted: 15 Feb 2019

Jour of Adv Research in Dynamical & Control Systems, Vol. 11, 01-Special Issue, 2019

 (9)

From (9), denotes a cloud manager, denotes a current intensity of virtual machine, denotes a

light absorption coefficient, denotes a current intensity of and represents a current

intensity of . denotes a randomization parameter between 0 and 1, represents a vector drawn from a
Gaussian or other distribution. Based on the light intensity, the weight is assigned to each virtual machine in cloud
server.

 (10)

From (10), denotes a cloud manager, denotes a weight assigned to virtual machine in each round based
on the light intensity. Based on the weight value, the virtual machines are ranked in an ascending order. The high
weighted virtual machine has first rank than the less weighted virtual machine which is expressed as follows,

 (11)

From (11), denotes a rank assigned to each virtual machine . The finds the optimal virtual machine
which has a high rank to process the first priority tasks for each round. The Map phase performs the tasks scheduling
to the optimal virtual machine.

It means that the virtual machine takes minimum job completion time and utilizes the memory as well as
bandwidth for processing the high priority tasks. This helps to minimize the probability of data loss during the
scheduling process.

In this manner, the GDFORRS assigns jobs to the optimal virtual machines in round-robin manner. As shown in
figure 3, there are ‘n’ virtual machines (), the cloud manager allocates a first request go to

, then the second request go to , the third request go to , and the fourth request go to then
repeat in a round-robin manner.

As a result of scheduling, the reduce function lessens the number of incoming tasks in a cloud server which
lessens the workload across the server as well as traffic level.

The algorithmic process of task scheduling is described as follows. As shown in below algorithm 1, Multivariate
Logistic Regression based Gradient descent firefly optimized Round Robin scheduling is described. For each
incoming task, the numbers of job request parameters are defined. Then the Multivariate Logistic Regression
analysis is performed between the tasks and priority level.

Based on the regression analysis, the priority level of the each requested tasks are identified and it stored in the
different priority queue.

Then, the Gradient descent firefly optimized Round Robin scheduling is applied to allocate the tasks to resource
optimized virtual machine in a circular manner. The resource optimized virtual machine is selected using gradient
descent firefly optimization. Initialize the number of virtual machines and define the objective function.

For each virtual machine, formulate the light intensity based on predicted job completion time, bandwidth
utilization, memory utilization of virtual machine. After that, the weight is assigned to each virtual machine based
on light intensity.

Then, the rank is assigned to each firefly based on weight value. As a result, the cloud manager identifies the
optimal virtual machine and map function schedule the task to optimal virtual machine. This process minimizes the
workload across the cloud server and improving load balancing in big data analytics.

ISSN 1943-023X 185
Received: 5 Jan 2019/Accepted: 15 Feb 2019

Jour of Adv Research in Dynamical & Control Systems, Vol. 11, 01-Special Issue, 2019

Algorithm 1 Multivariate Logistic Regression based Gradient Descent Firefly Optimized Round Robin
Scheduling

The above description shows that the proposed technique effectively scheduling the user requests to optimal

virtual machine among the several virtual machines for minimizing the data loss. The above processes are
implemented in the experimental evaluation to show the performance of proposed scheduling algorithm compared
with existing methods.

IV. Experimental Evaluation
Experimental evaluation of proposed MLR-GDFORRS technique and existing methods Flutter framework [1]

and HEA-TaSDAP [2] are implemented using Java language with CloudSim network simulator. The experimental
evaluation is conducted using Personal Cloud Datasets. This dataset is taken from
http://cloudspaces.eu/results/datasets. The dataset includes 17 attributes (i.e. columns) and it includes 66245
instances. The objective of this dataset is to perform load and transfer test. The number of 17 attributes are row id,
account id, file size (i.e. task size), operation_time_start, operation_time_end, time zone, operation_id, operation
type, bandwidth trace, node_ip, node_name, quoto_start, quoto_end, quoto_total (storage capacity), capped, failed
and failure info. Among the 17 columns, two columns are not used such as time zone and capped. The above
columns are considered for efficient task scheduling to the multiple virtual machines in the cloud. Experimental
evaluation of MLR-GDFORRS technique is compared with the existing methods with different factors such as

scheduling efficiency, scheduling time, memory consumption and true positive rate. The results obtained from
the experimental results are described in the next section.

Input: No. of cloud user requests , virtual

machines ()
Output: Improve scheduling efficiency
Begin
 1. For each task

2. Find the certain job request parameters
 3. Perform regression analysis

 4. Find the priority level of

 5. Store the in a different queues

 according to their
\\ Apply optimization technique

 6. Initialize the population of

 7. for each highest priority

 8. for each virtual machine

 9. Define the gradient descent objective function

 10. Formulate light intensity based on predicted

 11. Assign weight based on light intensity

 12. Rank the based on weight

 13. Identifies the with high rank

 14. Schedule to optimal
 15. end for
 16. end for
 17. end for
End

ISSN 1943-023X 186
Received: 5 Jan 2019/Accepted: 15 Feb 2019

Jour of Adv Research in Dynamical & Control Systems, Vol. 11, 01-Special Issue, 2019

V. Results and Discussion
In this section, experimental results and discussion of proposed MLR-GDFORRS technique and existing Flutter

framework [1] and HEA-TaSDAP [2] are described with various performance metrics such as scheduling efficiency,
scheduling time, memory consumption and true positive rate with the number of tasks (i.e. user requests). With the
help of these parameters, the results are compared with the help of table and graphical representations.

Performance Analysis of Scheduling Efficiency
Scheduling Efficiency is defined as the ratio of a number of tasks that are scheduled to the virtual machine to the

total number of tasks. The scheduling efficiency is calculated as follows,

 (12)

From equation (12), denotes a scheduling efficiency and it is measured in terms of percentage (%). Here,

‘ ’ indicates a number of user requested tasks.

Table 1: Tabulation for Scheduling Efficiency

Table 1 clearly describes the performance results of scheduling efficiency versus a number of user-requested

tasks with three different methods namely MLR-GDFORRS technique, Existing Flutter framework [1], and HEA-
TaSDAP [2]. For the experimental consideration, the numbers of user-requested tasks are varied from 25 to 250.
The above table values shows that the performance results of MLR-GDFORRS technique are improved than the
existing methods.

Figure 4: Performance Results of Scheduling Efficiency Versus Number of Tasks

ISSN 1943-023X 187
Received: 5 Jan 2019/Accepted: 15 Feb 2019

Jour of Adv Research in Dynamical & Control Systems, Vol. 11, 01-Special Issue, 2019

Figure 4 depicts the performance results of scheduling efficiency with respect to a number of tasks. The
numbers of user requests are considered as tasks which are taken as input for performing the scheduling in big data
analytics. In the experimental consideration, the user requests are effectively analyzed for improving the
performance of task scheduling. Based on the results observed, task scheduling efficiency is significantly improved
using MLR-GDFORRS technique than the existing methods. This is because, the MLR-GDFORRS technique
analysis the incoming tasks using multivariate logistic regression with the file size, completion time, arrival time.
Based on the analysis, the priority levels of the tasks are identified. Then these tasks are stored in a queue. The high
priority tasks are allocated first to virtual machines. The cloud manager identifies the virtual machine using gradient
descent firefly optimized round robin scheduling approach. The optimal virtual machine is assigned based on the
three scheduling parameters such as job completion time, bandwidth and memory utilization. The virtual machine
with high intensity is selected and the map-reduce function assigns the high priority task to that virtual machine.
This process is performed in a circular manner. As a result of scheduling, the workload and traffic level gets
minimized. From the experimental results, scheduling efficiency of proposed MLR-GDFORRS technique is
improved by 11% and 24% when compared to existing Flutter framework [1] and HEA-TaSDAP [2] respectively.

Performance Analysis of Scheduling Time
Scheduling time is defined as an amount of time required for scheduling the tasks to a virtual machine. The

scheduling time is calculated using following mathematical formula,

 (13)

 From (13), denotes a scheduling time, denotes a total number of user requested tasks. The scheduling time
is measured in terms of milliseconds (ms). The below table 2 clearly describes the task scheduling time with
different methods MLR-GDFORRS technique, Flutter framework [1] and HEA-TaSDAP [2]. The below table
shows that the scheduling time is varied according to the number of tasks taken for the experimental evaluation.
Totally, ten different runs are carried out with three different methods. For each run, Number of tasks is varied from
25 to 250.

Table 2: Tabulation for Scheduling Time

The experimental results of the scheduling time are depicted in the following graphical representations

ISSN 1943-023X 188
Received: 5 Jan 2019/Accepted: 15 Feb 2019

Jour of Adv Research in Dynamical & Control Systems, Vol. 11, 01-Special Issue, 2019

Figure 5: Performance Results of Scheduling Time Versus Number of Tasks

Performance results of scheduling time versus a number of tasks are illustrated in figure 5. The above figure
clearly shows that the two-dimensional representation of scheduling time versus a number of tasks with three
different methods MLR-GDFORRS technique, Flutter framework [1] and HEA-TaSDAP [2]. The performance
results of three different methods are represented in three various colors. From the figure 5, the experimental result
of scheduling time is minimized using MLR-GDFORRS technique when compared to existing methods. This is
because, the cloud manager performs regression analysis for each incoming tasks with the scheduling parameters
such as file size, arrival time and completion time. The multivariate logistic regression calculates the exponential
values of each user requests and their priority level (i.e. 1, 2, 3...). Based on the analysis, the cloud manager
identifies the priority level of incoming tasks. The task with high priority is processed first rather than the low
priority tasks. Then the cloud manager arranges the tasks in the queue according to their priority level. Then the
MapReduce function is applied to handle a large number of tasks. In GDFORRS technique, the map function assigns
the high priority tasks to optimal virtual machines. This process takes minimum time. Based on observation, the
experimental results of scheduling time of MLR-GDFORRS technique is minimized by 19% when compared to
Flutter framework [1]. Similarly, the scheduling time of MLR-GDFORRS technique is also minimized by 28%
when compared to other existing HEA-TaSDAP [2].

Performance Analysis of Memory Consumption
Memory consumption is defined as an amount of storage space required for storing the number of user-requested

tasks. The formula for calculating the memory consumption is expressed as follows,

MC = n * memory (Storing one user request) (14)

From (14), denotes memory consumption, denotes a number of user requested tasks. Memory
consumption is measured in terms of mega bytes (MB).

Table 3: Tabulation for Memory Consumption

ISSN 1943-023X 189
Received: 5 Jan 2019/Accepted: 15 Feb 2019

Jour of Adv Research in Dynamical & Control Systems, Vol. 11, 01-Special Issue, 2019

The experimental results of memory consumption with respect to a number of tasks are described in table 3. The
table value clearly describes the storage capacity of the user requested tasks. From the calculated results, the
memory consumption of MLR-GDFORRS technique is minimized when compared to existing Flutter framework [1]
and HEA-TaSDAP [2]. The performance results of memory consumption with three different methods are shown in
figure 6.

Figure 6: Performance results of memory consumption versus number of tasks

Figure 6 depicts the performance analysis of memory consumption with respect to a number of tasks. The
memory consumption for storing the number of tasks is calculated with three different methods. As shown in the
figure, the proposed MLR-GDFORRS technique consumes less storage space for storing the user tasks in the
priority queue. Initially, the regression analysis is carried out with the number of tasks to identify the priority level.
After that, the tasks are stored in the priority queue for scheduling. This process reduces the memory consumption.
Moreover, by applying the map-reduce function in MLR-GDFORRS technique, the incoming tasks are mapped into
a different virtual machine which utilizes the less memory space for processing user tasks. This process takes
minimum storage space as well as less complexity while handling a large number of user tasks. Let us taken as 25
tasks for conducting experimental, the MLR-GDFORRS technique obtains 23MB of memory consumption whereas
the existing methods namely flutter framework [1] and HEA-TaSDAP [2] consumes 30MB and 35MB respectively.
Followed by, the remaining nine runs are carried out and compare the results of proposed and existing methods. The
comparison results show that the MLR-GDFORRS technique significantly reduces the memory consumption by
16% and 27% than the existing Flutter framework [1] and HEA-TaSDAP [2] respectively.

Performance Analysis of True Positive Rate
The true positive rate is calculated as ratios of number of tasks are correctly scheduled to the optimal virtual

machine to the total number of tasks. It is calculated using following mathematical formula,

 (15)
From (15), denotes a true positive rate, ‘n’ denotes a number of tasks. True positive rate is measured in

terms of percentage (%).

Table 4: Tabulation for True Positive Rate

ISSN 1943-023X 190
Received: 5 Jan 2019/Accepted: 15 Feb 2019

Jour of Adv Research in Dynamical & Control Systems, Vol. 11, 01-Special Issue, 2019

Table 4 describes a true positive rate with respect to a number of tasks. The number of tasks is taken as input for
scheduling processes. From the results, the proposed MLR-GDFORRS correctly schedules the user tasks to the
optimal virtual machine when compared to existing methods. This result of MLR-GDFORRS technique improves
the performance results of true positive rate. Experimental results of the true positive rate with three different
methods are illustrated using following graphical representations.

Figure 7: Performance Results of True Positive Rate Versus Number of Tasks

Figure 7 illustrates experimental results of the true positive rate with respect to a number of tasks. The above
figure illustrates the proposed MLR-GDFORRS technique effectively identifies the best optimal virtual machine for
assigning the incoming tasks. This is because, MLR-GDFORRS technique uses the gradient descent firefly
optimized round robin scheduling approach. In this approach, the numbers of virtual machines are initialized and
define the objective function. Then the light intensity of each virtual machine is calculated based on predicated job
completion time, bandwidth utilization and memory utilization. After that, the light intensity of the entire firefly is
analyzed and assigning the weights. Then the virtual machines are ranked based on weight value. Then the cloud
manager finds an optimal virtual machine which has high rank. This virtual machine is selected as optimal one for
processing the high priority task. The weighted round robin scheduling selects the best optimal virtual machine for
task execution to avoid the delay as well as the probability of data loss in traffic aware of big data analytics. From
the simulation results, the true positive rate of MLR-GDFORRS technique is considerably improved by 14% and
32% when compared to existing Flutter framework [1] and HEA-TaSDAP [2] respectively.

The above discussion clearly shows that the MLR-GDFORRS technique improves the task scheduling efficiency
and minimizes the workload across the cloud server with minimum time as well as less resource utilization in data
analytics.

VI. Conclusion
An efficient technique called, Multivariate Logistic Regression based Gradient descent firefly optimized Round

Robin Scheduling (MLR-GDFORRS) is developed for improving the task scheduling efficiency and minimizing the
workload of the cloud server. The scheduling is carried out based on the regression analysis. The regression is used
for finding the relationship between the job scheduling parameters and the priority level of tasks. From the analysis,
the tasks are prioritized and it stored in different queues. Then the cloud manager finds the resource optimized
virtual machine through the gradient descent firefly optimization to process the high priority tasks first among the
entire virtual machine in a cloud server for improving the scheduling efficiency. Then the MapReduce function
assigns the tasks to the best optimal virtual machine in a circular manner. This helps to minimize the data loss and
delay while handling a large number of tasks. Experimental evaluation of MLR-GDFORRS technique and existing
methods are carried out using Personal Cloud Dataset for scheduling the user requested tasks in big data analytics.
The experimental result shows that the MLR-GDFORRS technique improves the task scheduling efficiency with
minimum time as well as minimizes the memory consumption.

References
[1] Hu, Z., Li, B. and Luo, J. Time-and cost-efficient task scheduling across geo-distributed data centers. IEEE

Transactions on Parallel and Distributed Systems 29 (3) (2018) 705-718.

ISSN 1943-023X 191
Received: 5 Jan 2019/Accepted: 15 Feb 2019

Jour of Adv Research in Dynamical & Control Systems, Vol. 11, 01-Special Issue, 2019

[2] Teylo, L., De Paula, U., Frota, Y., De Oliveira, D. and Drummond, L. M. A hybrid evolutionary algorithm
for task scheduling and data assignment of data-intensive scientific workflows on clouds. Future
Generation Computer Systems 76 (2017) 1-17.

[3] Mosleh, M. A., Radhamani, G., Hazber, M. A. and Hasan, S. H. Adaptive Cost-Based Task Scheduling in
Cloud Environment. Scientific Programming, 2016, 1-9.

[4] Zhang, Q., Zhani, M. F., Yang, Y., Boutaba, R. and Wong, B. PRISM: fine-grained resource-aware
scheduling for MapReduce. IEEE Transactions on Cloud Computing 3 (2) (2015) 182-194.

[5] Guan, W., Yuxin, W., Hui, L. and He, G. HSIP: A Novel Task Scheduling Algorithm for Heterogeneous
Computing. Scientific Programming, Hindawi Publishing Corporation, 2016, 1-11.

[6] Shao, Y., Li, C., Gu, J., Zhang, J. and Luo, Y. Efficient jobs scheduling approach for big data
applications. Computers & Industrial Engineering 117 (2018) 249-261.

[7] Veiga, J., Expósito, R. R., Taboada, G. L. and Tourino, J. MREv: an automatic MapReduce Evaluation tool
for Big Data workloads. Procedia Computer Science 51 (2015) 80-89.

[8] Usama, M., Liu, M. and Chen, M. Job schedulers for big data processing in Hadoop environment: testing
real-life schedulers using benchmark programs. Digital Communications and Networks 3 (4) (2017)
260-273.

[9] Wang, S., Li, K., Mei, J., Xiao, G. and Li, K. A reliability-aware task scheduling algorithm based on
replication on heterogeneous computing systems. Journal of Grid Computing 15 (1) (2017) 23-39.

[10] Joo, B. J., Shim, S. O., Chua, T. J. and Cai, T. X. Multi-level job scheduling under processing time
uncertainty. Computers & Industrial Engineering 120 (2018) 480-487.

[11] Hashem, I. A. T., Anuar, N. B., Marjani, M., Gani, A., Sangaiah, A. K. and Sakariyah, A. K. Multi-
objective scheduling of MapReduce jobs in big data processing. Multimedia Tools and Applications 77 (8)
(2018) 9979-9994.

[12] Zhang, F., Cao, J., Tan, W., Khan, S. U., Li, K. and Zomaya, A. Y. Evolutionary scheduling of dynamic
multitasking workloads for big-data analytics in elastic cloud. IEEE Transactions on Emerging Topics in
Computing 2 (3) (2014) 338-351.

[13] Yuan, H., Bi, J., Tan, W., Zhou, M., Li, B. H. and Li, J. TTSA: An effective scheduling approach for delay
bounded tasks in hybrid clouds. IEEE transactions on cybernetics 47 (11) (2017) 3658-3668.

[14] Loganathan, S. and Mukherjee, S. Job scheduling with efficient resource monitoring in cloud
datacenter. The Scientific World Journal, 2015, 1-11.

[15] Kumar, S. and Mishra, A. Application of Min-Min and Max-Min Algorithm for Task Scheduling in Cloud
Environment Under Time Shared and Space Shared VM Models. International Journal of Computing
Academic Research (IJCAR) 4 (6) (2015) 182-190.

[16] Yao, Y., Tai, J., Sheng, B. and Mi, N. LsPS: A job size-based scheduler for efficient task assignments in
Hadoop. IEEE Transactions on Cloud Computing 3 (4) (2015) 411-424.

[17] Manasrah, A. M. and Ba Ali, H. Workflow scheduling using hybrid GA-PSO algorithm in cloud
computing. Wireless Communications and Mobile Computing, 2018, 1-16.

[18] Lu, Q., Li, S., Zhang, W. and Zhang, L. A genetic algorithm-based job scheduling model for big data
analytics. EURASIP journal on wireless communications and networking 2016 (1) (2016) 1-9.

[19] Madni, S. H. H., Latiff, M. S. A., Abdullahi, M. and Usman, M. J. Performance comparison of heuristic
algorithms for task scheduling in IaaS cloud computing environment. PloS one 12 (5) (2017) 1-26.

[20] Sfrent, A. and Pop, F. Asymptotic scheduling for many task computing in big data platforms. Information
Sciences 319 (2015) 71-91.

ISSN 1943-023X 192
Received: 5 Jan 2019/Accepted: 15 Feb 2019

	Introduction
	Related Work
	Methodology
	Experimental Evaluation
	Results and Discussion
	Conclusion
	References

