On Weakly ̈**Closed Mappings and Weakly** ̈ **Homomorphism in Intuitionistic Fuzzy Topological Spaces**

A. Gnanasoundari*

Assistant Professor, Department of Mathematics, Nallamuthu Gounder Mahalingam College, Pollachi – 642 001, Tamil Nadu, INDIA. email: gnana12483@gmail.com

(Received on: October 3, 2018)

ABSTRACT

In this paper, we introduce and study the notions of intuitionistic fuzzy weakly \ddot{q} closed mappings, intuitionistic fuzzy weakly \ddot{q} open mappings, intuitionistic fuzzy weakly \ddot{g} homomorphism and some of its properties.

2010 Mathematics Subject Classification: 54A40, 03F55.

Keywords: Intuitionistic fuzzy topology, intuitionistic fuzzy weakly \ddot{g} closed sets, intuitionistic fuzzy weakly \ddot{g} open sets, intuitionistic fuzzy weakly $\ddot{g}T_{1/2}$ space, intuitionistic fuzzy weakly \ddot{g} continuous, intuitionistic fuzzy weakly \ddot{g} closed mapping, intuitionistic fuzzy weakly \ddot{g} open mapping, intuitionistic fuzzy weakly \ddot{g} homomorphism.

1. INTRODUCTION

In 1965, Zadeh¹⁰ introduced fuzzy sets and in 1968, Chang² introduced fuzzy topology. The notion of intuitionistic fuzzy sets was introduced by Atanassov¹ as a generalization of fuzzy sets. In 1997, Coker³ introduced the concept of intuitionistic fuzzy topological spaces. In this paper, we introduce the notions of intuitionistic fuzzy weakly \ddot{g} closed mappings, intuitionistic fuzzy weakly \ddot{g} open mappings, intuitionistic fuzzy weakly \ddot{g} homomorphism and some of its properties.

2. PRELIMINARIES

Throughout this paper, (X, τ) or X denotes the intuitionistic fuzzy topological spaces (IFTS in short). For a subset A of X, the closure, the interior and the complement of A are

denoted by $cl(A)$, int(A) and A^c respectively. We recall some basic definitions that are used in the sequel.

Definition 2.1: [1] Let X be a non-empty set. An intuitionistic fuzzy set (IFS in short) A in X is an object having the form $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}$ where the functions $\mu_A: X \to [0,1]$ and $v_A: X \rightarrow [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $v_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \leq \mu_A(x)$ $+ v_A(x) \le 1$ for each $x \in X$. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X.

Definition 2.2: [1] Let A and B be IFSs of the form $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / \chi \in X \}$ and $B =$ $\{ \langle x, \mu_B(x), \nu_B(x) \rangle \}$ $x \in X$. Then

(i) A \subseteq B if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for all $x \in X$,

(ii) $A = B$ if and only if $A \subseteq B$ and $B \subseteq A$,

 $(iii) A^c = \{ \langle x, v_A(x), \mu_A(x) \rangle / x \in X \},$

 (iv) A \cap B = { $\langle x, \mu_A(x) \leq \mu_B(x), \nu_A(x) \geq \nu_B(x) \rangle / x \in X$ },

(v) A $\bigcup B = \{ \langle x, \mu_A(x) \leq \mu_B(x), \nu_A(x) \geq \nu_B(x) \rangle / x \in X \}.$

For the sake of simplicity, we shall use the notation A = <x, µA, νA> instead of A = {<x, µA(x), $v_A(x)$ \times \times \times $\}$.

The intuitionistic fuzzy sets $0 = \{ \langle x, 0, 1 \rangle : x \in X \}$ and $1 = \{ \langle x, 1, 0 \rangle : x \in X \}$ are respectively the empty and whole set of X.

Definition 2.3: [3] An intuitionistic fuzzy topology(IFT in short) on X is a family τ of IFSs in X satisfying the following axioms:

(i) $0, 1, \in \tau$,

(ii) $G_1 \cap G_2 \in \tau$, for any $G_1, G_2 \in \tau$,

(iii) $\cup G_i \in \tau$ for any family $\{G_i / i \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space(IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.4: [3] Let (X, τ) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then 1. int(A) = \bigcup { G / G is an IFOS in X and G \subseteq A },

- 2. cl(A) = \cap { K / K is an IFCS in X and A \subseteq K },
- 3. $cl(A^c) = (int(A))^c$,
- 4. int(A^c)=(cl(A))^c.

Definition 2.5: [4] An IFS $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / \chi \in X \}$ in an IFTS (X, τ) is said to be an 1. intuitionistic fuzzy semi-open set (IFSOS in short) if $A\subseteq cl(int(A))$,

2. intuitionistic fuzzy α -open set (IF α OS in short) if A⊆int(cl(int(A))),

3. intuitionistic fuzzy pre open set (IFPOS in short) if $A\subseteq int(cl(A))$.

An IFS A is said to be an intuitionistic fuzzy semi-closed set(IFSCS in short), intuitionistic fuzzy α -closed set (IF α CS in short), intuitionistic fuzzy regular closed set (IFRCS in short) and intuitionistic fuzzy pre closed set (IFPCS in short) if the complement of A is an IFSOS, IF α OS, IFROS, IFPOS respectively.

Definition 2.6: [7] An IFS $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / \overline{x} \in X \}$ in an IFTS (X, τ) is said to be an intuitionistic fuzzy semi-generalized closed set (IFSGCS in short) if $\text{scl}(A) \subseteq U$ whenever A \subseteq U and U is an IFSOS in X.

An IFS A is said to be an intuitionistic fuzzy semi generalized open set (IFSGOS in short) if the complement of A is an IFSGCS.

Definition 2.7:[9]An IFS A of an IFTS (X, τ) is said to be an intuitionistic fuzzy weakly \ddot{g} closed set (IFW \ddot{g} CS in short) if cl(int(A)) ⊆U whenever A⊆ U and U is an IFSGOS in X. The set of all IFW \ddot{g} CSs in X is denoted by IFW \ddot{g} CS(X).

Definition 2.8: Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an

- 1. intuitionistic fuzzy continuous mapping (IF continuous mapping in short)⁴ if $f^{-1}(B) \in$ IFO(X) for every $B \in \sigma$,
- 2. intuitionistic fuzzy α continuous mapping (IF α continuous mapping in short)⁴ if $f^{-1}(B)$ \in IF α O(X) for every B $\in \sigma$,
- 3. intuitionistic fuzzy pre continuous mapping (IFP continuous mapping in short)⁴ if $f^{-1}(B)$ \in IFPO(X) for every $B \in \sigma$,
- 4. intuitionistic fuzzy closed mapping (IF closed mapping in short)⁵ if $f(A)$ is an IFCS in Y for each IFCS A in X ,
- 5. intuitionistic fuzzy α closed mapping (IF α closed mapping in short)⁸ if f(A) is an IF α CS in Y for each IFCS A in X ,
- 6. intuitionistic fuzzy pre closed mapping (IFP closed mapping in short)⁸ if $f(A)$ is an IFPCS in Y for each IFCS A in X .

Definition 2.9:[6]Let f be a bijection mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an

- 1. intuitionistic fuzzy homeomorphism (IF homeomorphism in short) if f and f-1 are IF continuous mappings,
- 2. intuitionistic fuzzy α homeomorphism (IF α homeomorphism in short) if f and f⁻¹ are IF α continuous mappings.

Definition 2.10: [9] Let (X, τ) be an IFTS A be an IFS in X. Then intuitionistic fuzzy weakly \ddot{g} interior and intuitionistic fuzzy weakly \ddot{g} closure of A are defined as

1. \ddot{g} int(A) = ∪{ G / G is an IFW \ddot{g} OS in X and G \subseteq A },

2. \ddot{g} cl(A) = ∩{ K / K is an IFW \ddot{g} CS in X and A \subseteq K }.

3. INTUITIONISTIC FUZZY WEAKLY \ddot{q} **CONTINUOUS MAPPING**

In this section, we study the notion of intuitionistic fuzzy weakly \ddot{q} continuous mappings and investigate some of their properties.

Definition 3.1: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called an intuitionistic fuzzy weakly \ddot{g} continuous (IFW \ddot{g} continuous in short) mapping if $f^{-1}(V)$ is an IFW \ddot{g} CS in (X, τ) for every IFCS V of (Y, σ) .

Theorem 3.2: Every IF continuous mapping is an IF \ddot{g} continuous mapping, but not conversely.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IF continuous mapping and A be an IFCS in Y. Then $f^{-1}(A)$ is an IFCS in X. Since every IFCS is an IFW \ddot{g} CS, $f^{-1}(A)$ is an IFW \ddot{g} CS in X. Hence f is an IFW \ddot{g} continuous mapping.

Example 3.3: Let $X = \{a,b\}$, $Y = \{u,v\}$ and $A = \langle x,(0.5,0.6),(0.5,0.4) \rangle$, $B = \langle x,(0.6,0.6),$ $(0.4,0.4)$. Then $\tau = \{0, A, 1, \}$ and $\sigma = \{0, B, 1, \}$ are IFTs on X and Y respectively. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=u and f(b)=v. Then IFS S=<x,(0.4,0.4),(0.6,0.6)> is an IFCS in Y and $f^{-1}(S)$ is an IFW \ddot{g} CS but not an IFCS in X. Therefore f is an IFW \ddot{g} continuous mapping but not an IF continuous mapping.

Theorem 3.4: Every IF pre continuous mapping is an IFW \ddot{g} continuous mapping, but not conversely.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IF pre continuous mapping and A be an IFCS in Y. Then $f^{-1}(A)$ is an IFPCS in X. Since every IFPCS is an IFW \ddot{g} CS, $f^{-1}(A)$ is an IFW \ddot{g} CS in X. Hence f is an IFW \ddot{q} continuous mapping.

Example 3.5: Let $X = \{a,b\}$, $Y = \{u,v\}$ and $A = \langle x,(0.5,0.3),(0.5,0.7)\rangle$, $B = \langle x,(0.1,0.6),$ $(0.9,0.3)$. Then $\tau = \{0, A, 1\}$ and $\sigma = \{0, B, 1\}$ are IFTs on X and Y respectively. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=u and f(b)=v. Then IFS S=<x,(0.9,0.3),(0.1,0.6)> is an IFCS in Y and $f^{-1}(S)$ is an IFW \ddot{g} CS but not an IFPCS in X. Therefore f is an IFW \ddot{g} continuous mapping but not an IF pre continuous mapping.

Theorem 3.6: Every IF α continuous mapping is an IFW $\ddot{\alpha}$ continuous mapping, but not conversely.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IF α continuous mapping and A be an IFCS in Y. Then $f^{-1}(A)$ is an IF α CS in X. Since every IF α CS is an IFW \ddot{g} CS, $f^{-1}(A)$ is an IFW \ddot{g} CS in X. Hence f is an IFW \ddot{q} continuous mapping.

Example 3.7: Let $X = \{a,b\}$, $Y = \{u,v\}$ and $A = \langle x,(0.5,0.3),(0.5,0.7)\rangle$, $B = \langle x,(0.6,0.8),$ $(0.4, 0.2)$. Then $\tau = \{0, A, 1\}$ and $\sigma = \{0, B, 1\}$ are IFTs on X and Y respectively. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=u and f(b)=v. Then IFS S=<x,(0.4,0.2),(0.6,0.8)> is an IFCS in Y and $f^{-1}(S)$ is an IFW \ddot{g} CS but not an IF α CS in X. Therefore f is an IFW \ddot{g} continuous mapping but not an IF α continuous mapping.

Theorem 3.8: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IFW g continuous mapping if and only if the inverse image of every IFOS in Y is an IFW \ddot{q} OS in X.

Proof: Let A be an IFOS in Y. Then A^c is an IFCS in Y. Since f is an IFW g continuous mapping, $f^{-1}(A^c)$ is an IFW \ddot{g} CS in X. Since $f^{-1}(A^c) = (f^{-1}(A))^c$, $f^{-1}(A)$ is an IFW \ddot{g} OS in X.

Theorem 3.9: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IFW \ddot{g} continuous mapping and g: $(Y, \sigma) \rightarrow (Z, \delta)$ is IF continuous, then gof: $(X, \tau) \rightarrow (Z, \delta)$ is IFW \ddot{g} continuous.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IFW g continuous and g: $(Y, \sigma) \rightarrow (Z, \delta)$ is IF continuous. Let A be an IFCS in Z. Then $g^{-1}(A)$ is an IFCS in Y because g is IF continuous. Also $f^{-1}(g^{-1}(A))$ is an IFW \ddot{g} CS in X because f is IFW \ddot{g} continuous. Therefore $(gof)^{-1}(A)$ = $f^{-1}(g^{-1}(A))$ is an IFW \ddot{g} CS in X. Hence gof is an IFW \ddot{g} continuous mapping.

Theorem 3.10: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFW \ddot{g} continuous mapping. Then the following conditions are hold:

1. f(W \ddot{g} cl(A))⊆ cl(f(A)), for every IFS A in X, 2. W \ddot{g} cl $(f^{-1}(B)) \subseteq f^{-1}(cl(B))$, for every IFS B in Y.

Proof: 1. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be IFW gcontinuous. Let A be an intuitionistic fuzzy set in X. Then cl(f(A)) is an IFCS in Y. Since f is an IFW \ddot{g} continuous, $f^{-1}(cl(f(A)))$ is an IFCS in X. Also $A \subseteq f^{-1}(cl(A))$. Thus $W\ddot{g}cl(A) \subseteq W\ddot{g}cl(f^{-1}(cl(f(A)))) = f^{-1}(cl(f(A)))$ because $f^{-1}(cl(f(A)))$ is intuitionistic fuzzy weakly \ddot{g} closed. Hence $f(W\ddot{g}cl(A)) \subseteq cl(f(A))$ for every IFS A in X.

2. Replacing A by $f^{-1}(B)$ in 1, we have $f(W\ddot{g}cl(f^{-1}(B))) \subseteq cl(f(f^{-1}(B))) \subseteq cl(B)$. Hence $W\ddot{g}cl(f^{-1}(B)) \subseteq f^{-1}(cl(B)),$ for every IFS B in Y.

4. INTUITIONISTIC FUZZY WEAKLY ̈**CLOSED MAPPING AND INTUITIONISTIC FUZZY WEAKLY** \ddot{q} **OPEN MAPPING**

In this section, we study the notion of intuitionistic fuzzy weakly \ddot{q} closed mappings, intuitionistic fuzzy weakly \ddot{q} open mappings and investigate some of their properties.

Definition 4.1: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called an intuitionistic fuzzy weakly \ddot{g} closed (IFW \ddot{g} closed in short) mapping if f(V) is an IFW \ddot{g} CS in (Y, σ) for every IFCS V of (X, τ).

Example 4.2: Let $X = \{a,b\}$, $Y = \{u,v\}$ and $G_1 = \langle x,(0.6,0.6),(0.4,0.4) \rangle$, $G_2 = \langle x,(0.5,0.6),$ $(0.5,0.4)$. Then $\tau = \{0_0, G_1, 1_0\}$ and $\sigma = \{0_0, G_2, 1_0\}$ are IFTs on X and Y respectively. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=u and f(b)=v. Then f is an IFW \ddot{g} closed mapping.

Definition 4.3: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called an intuitionistic fuzzy weakly \ddot{g} open (IFW \ddot{g} open in short) mapping if f(V) is an IFW \ddot{g} OS in (Y, σ) for every IFOS V of (X, τ).

Definition 4.4: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called an intuitionistic fuzzy i weakly \ddot{g} closed (IFiW \ddot{g} closed in short) mapping if f(V) is an IFW \ddot{g} CS in (Y, σ) for every IF W \ddot{g} CS V of (X, τ) .

Example 4.5: Let $X = \{a,b\}$, $Y = \{u,v\}$ and $G_1 = \langle x,(0.5,0.6),(0.5,0.4) \rangle$, $G_2 = \langle x,(0.6,0.6),$ $(0.4,0.4)$. Then $\tau = \{0_0, G_1, 1_0\}$ and $\sigma = \{0_0, G_2, 1_0\}$ are IFTs on X and Y respectively. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=u and f(b)=v. Then f is an IFiW \ddot{g} closed mapping.

Definition 4.6: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called an intuitionistic fuzzy i weakly \ddot{g} open (IFiW \ddot{g} open in short) mapping if f(V) is an IFW \ddot{g} OS in (Y, σ) for every IF W \ddot{g} OS V of (X, τ).

Theorem 4.7: Every IF closed mapping is an IFW \ddot{q} closed mapping, but not conversely.

Proof: Assume that f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IF closed mapping. Let A be an IFCS in X. Then $f(A)$ is an IFCS in Y. This implies that $f(A)$ is an IFW \ddot{g} CS in Y. Hence f is an IFW \ddot{g} closed mapping.

Example 4.8: In example 4.2, f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IFW \ddot{q} closed mapping but not an IFCM.

Theorem 4.9: Every IF α closed mapping is an IFW \ddot{g} closed mapping, but not conversely.

Proof: Assume that f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IF α closed mapping. Let A be an IFCS in X. Then $f(A)$ is an IF α CS in Y. This implies that $f(A)$ is an IFW \ddot{g} CS in Y. Hence f is an IFW \ddot{g} closed mapping.

Example 4.10: Let $X = \{a,b\}$, $Y = \{u,v\}$ and $G_1 = \langle x,(0.6,0.8),(0.4,0.2) \rangle$, $G_2 = \langle x,(0.5,0.3),$ $(0.5,0.7)$. Then $\tau = \{0_0, G_1, 1_0\}$ and $\sigma = \{0_0, G_2, 1_0\}$ are IFTs on X and Y respectively. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=u and f(b)=v. Then f is an IFW \ddot{g} closed mapping.

Theorem 4.11: Every IF pre closed mapping is an IFW \ddot{q} closed mapping, but not conversely.

Proof: Assume that f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IF α closed mapping. Let A be an IFCS in X. Then $f(A)$ is an IFPCS in Y. This implies that $f(A)$ is an IFW \ddot{g} CS in Y. Hence f is an IFW \ddot{g} closed mapping.

Example 4.12: Let X={a,b}, Y={u,v} and $G_1 = \langle x, (0.1, 0.6), (0.9, 0.3) \rangle$, $G_2 = \langle x, (0.5, 0.3),$ $(0.5,0.7)$. Then $\tau = \{0, G_1, 1\}$ and $\sigma = \{0, G_2, 1\}$ are IFTs on X and Y respectively. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=u and f(b)=v. Then f is an IFW \ddot{g} closed mapping.

Theorem 4.13: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IFW g closed mapping and A is an IFCS of X, then $f|A:A \rightarrow Y$ is an IFW \ddot{g} closed mapping.

Proof: Let $B \subseteq A$ be an IFCS in A, then B is an IFCS in X, since A is an IFCS in X. $f(B)$ is an IFW \ddot{g} closed set in Y as f is an IF W \ddot{g} CM. But f(B)=(f|A)(B). So (f|A)(B) is an IFW \ddot{g} closed set in Y. Therefore f|A is an IF \ddot{g} closed mapping.

Theorem 4.14: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IF closed mapping and g: $(Y, \sigma) \rightarrow (Z, \delta)$ is an IFW \ddot{g} closed mapping, then gof: $(X, \tau) \rightarrow (Z, \delta)$ is an IFW \ddot{g} closed mapping.

Proof: Let H be an IFCS in X. Then $f(H)$ is an IFCS. But (g o $f(H) = g(f(H))$ is an IFW \ddot{g} CS as g is an IFW \ddot{q} closed mapping. Thus g o f is an IFW \ddot{q} closed mapping.

Theorem 4.15: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a bijective mapping, then the following statements are equivalent

- 1. f is an IFW \ddot{q} OM
- 2. f is an IFW \ddot{g} CM
- 3. f^{-1} : $(Y, \sigma) \rightarrow (X, \tau)$ is an IFW \ddot{g} continuous.

Proof: (1) \Rightarrow (2): Let U be an IFCS in X and f be an IFW \ddot{g} OM. Then X – U is an IFOS in X. By assumption, we get $f(X-U)$ is an IFW \ddot{g} OS in Y. That is Y-f(X-U) = f (U) is IFW \ddot{g} CS in Y. (2)⇒(3): Let U be an IFCS in X. By assumption, f(U) is an IFW \ddot{q} CS in Y. As f(U) = $(f^{-1})^{-1}(U)$, f^{-1} is an IFW \ddot{g} continuous.

(3)⇒(1): Let U be an IFOS in X. By assumption f (U) = $(f^{-1})^{-1}$ (U). That is, f(U) is an IFW \ddot{q} OS in Y. Hence f is an IFW \ddot{q} OM.

Theorem 4.16: If f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \delta)$ are IFiW \ddot{g} closed mappings, then gof: $(X, \tau) \rightarrow (Z, \delta)$ is an IFiW \ddot{g} CM.

Proof: Let V be an IFW \ddot{q} CS in X. Since f is an IFiW \ddot{q} closed mapping, $f(V)$ is an IFW \ddot{q} CS in Y. Then $g(f(V))$ is an IFW $\ddot{g}CS$ in Z. Hence gof is an IFiW $\ddot{g}CM$.

Theorem 4.17: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IF Wgclosed mapping and g: $(Y, \sigma) \rightarrow (Z, \delta)$ is an IFiW \ddot{g} closed mapping, then gof: $(X, \tau) \rightarrow (Z, \delta)$ is an IFW \ddot{g} closed mapping.

Proof: Let V be an IFCS in X. Since f is an IFW \ddot{q} closed mapping, $f(V)$ is an IFW \ddot{q} CS in Y. Then $g(f(V))$ is an IFW \ddot{g} CS in Z. Hence gof is an IFW \ddot{g} CM.

5. INTUITIONISTIC FUZZY WEAKLY \ddot{g} **HOMEOMORPHISM**

In this section, we study the notion of intuitionistic fuzzy weakly \ddot{g} homeomorphism and investigate some of their properties.

Definition 5.1: A bijection mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called intuitionistic fuzzy weakly \ddot{g} homeomorphism (IFW \ddot{g} homeomorphism in short) if f is both an IFW \ddot{g} continuous mapping and IFW \ddot{g} closed mapping.

Theorem 5.2: Every IF homeomorphism is an IFW \ddot{g} homeomorphism, but not conversely.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be an IF homeomorphism. Then f is IF continuous and IF closed. Since every IF continuous function is IF W \ddot{g} continuous and every IF closed mapping is IFW \ddot{g} closed, f is IF W \ddot{g} continuous and IFW \ddot{g} closed. Hence f is an IFW \ddot{g} homeomorphism.

Example 5.3: Let $X=\{a,b\}$, $Y=\{u,v\}$ and $A=\langle x,(0.5,0.6),(0.5,0.4)\rangle$, $B=\langle x,(0.4,0.4),(0.6,0.6)\rangle$. Then $\tau = \{0, \dots, A, 1\}$ and $\sigma = \{0, B, 1\}$ are IFTs on X and Y respectively. Define f: $(X, \tau) \rightarrow$ (Y, σ) by f(a)=u and f(b)=v. Then f is an IFW \ddot{g} closed homeomorphism but not an IF homeomorphism.

Theorem 5.4: Every IF α homeomorphism is an IFW \ddot{g} homeomorphism, but not conversely.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be an IF α homeomorphism. Then f is IF α continuous and IF α closed. Since every IF α continuous function is IF W *g* continuous and every IF α closed mapping is IFW \ddot{q} closed, f is IFW \ddot{q} continuous and IFW \ddot{q} closed. Hence f is an IFW \ddot{q} homeomorphism.

Example 5.5: Let $X = \{a,b\}$, $Y = \{u,v\}$ and $A = \langle x,(0.5,0.3),(0.5,0.7)\rangle$, $B = \langle x,(0.4,0.2),$ $(0.6,0.8)$. Then $\tau = \{0, A, 1\}$ and $\sigma = \{0, B, 1\}$ are IFTs on X and Y respectively. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=u and f(b)=v. Then f is an IFW \ddot{g} closed homeomorphism but not an IF homeomorphism.

Theorem 5.6: For any bijection mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ the following statements are equivalent

(i) The inverse map f^{-1} : $(Y, \sigma) \rightarrow (X, \tau)$ is IFW \ddot{g} continuous,

(ii) f is an IFW \ddot{g} open mapping,

(iii) f is an IFW \ddot{q} closed mapping.

Proof: (i) \Rightarrow (ii). Let V be an IFOS in X. Since f^{-1} is IFW *g* continuous, the inverse image of V under f^{-1} , namely $f(V)$ is an IFW \ddot{g} OS in Y and so f is an IFW \ddot{g} open mapping.

(ii) ⇒ (iii). Let V be any IFCS in X. Then V^c is an IFOS in X. Since f is IFW *g* open, $f(V^c)$ is an IFW \ddot{g} OS in Y. But $f(V^c) = Y - f(V)$ and so $f(V)$ is an IFW \ddot{g} CS in Y. Therefore f is an IFW \ddot{g} closed mapping.

(iii) \Rightarrow (i). Let V be any IFCS in X. Then the inverse image of V under f^{-1} , namely f(V) is IFW \ddot{g} CS in Y, since f is an IFW \ddot{g} closed mapping. Therefore f^{-1} is an IFW \ddot{g} continuous mapping.

Theorem 5.7: Let f : (X, τ) \rightarrow (Y, σ) be bijective mapping and IFW \ddot{g} continuous. Then the following statements are equivalent

(i) f is an IFW \ddot{g} open mapping,

(ii) f is an IFW \ddot{g} homeomorphism,

(iii) f is an IFW \ddot{q} closed mapping.

Proof: (i) \Rightarrow (ii). Given f : (X, τ) \rightarrow (Y, σ) is bijective, IFW \ddot{g} continuous and IFW \ddot{g} open. Then by definition, f is and IFW \ddot{g} homeomorphism.

(ii) \Rightarrow (iii). Given f : (X, τ) \rightarrow (Y, σ) is bijective and an IFW \ddot{g} homeomorphism. By above theorem f ia an IFW \ddot{g} closed mapping.

(iii) \Rightarrow (i). Given f : (X, τ) \rightarrow (Y, σ) is bijective and an IFW \ddot{q} closed. By above theorem, f is an IFW \ddot{q} open mapping.

Theorem 5.8: Let f : $(X, \tau) \rightarrow (Y, \sigma)$ be an IFW \ddot{g} homeomorphism, then f is an IF homeomorphism if X and Y are IFW $\ddot{g} T_{1/2}$ space.

Proof: Let B be an IFCS in Y. Then $f^{-1}(B)$ is an IFW \ddot{g} CS in X, by hypothesis. Since X is an IFW $\ddot{g}T_{1/2}$ space, $f^{-1}(B)$ is an IFCS in X. Hence f is an IF continuous mapping. By

hypothesis f^{-1} : $(Y, \sigma) \rightarrow (X, \tau)$ is IFW \ddot{g} continuous mapping. Let A be an IFCS in X. Then $(f^{-1})^{-1}(A) = f(A)$ is an IFW \ddot{g} CS in Y, by hypothesis. Since Y is an IFW $\ddot{g}T_{1/2}$ space, $f(A)$ is an IFCS in Y. Therefore f^{-1} is an IF continuous mapping. Hence the mapping f is an IF homeomorphism.

REFERENCES

- 1. K.T. Atanassov, *Intuitionistic Fuzzy Sets and Systems*, 20, 87-96 (1986).
- 2. C.L. Chang, Fuzzy Topological Spaces, *J. Math. Anal. Appl*., 24, 182-190 (1986).
- 3. D. Coker, An Introduction to Intuitionistic Fuzzy Topological Spaces, *Fuzzy Sets and Systems*, 88, 81-89 (1997).
- 4. H. Gurcay, D. Coker and Es. A. Haydar, On Fuzzy Continuity in Intuitionistic Fuzzy Topological Spaces, *The Journal of Fuzzy Mathematics*, 5, 365-378 (1997).
- 5. Joung Kon Jeon, Young Bac Jun and Jin Han Park, Intuitionistic Fuzzy Alpha Continuity and Intuitionistic Fuzzy Pre Continuity, *International Journal of Mathematics and Mathematical Sciences*, 19, 3091-3101 (2005).
- 6. K. Sakthivel, Alpha Generalized Homeomorphism in Intuitionistic Fuzzy Topological Space, Notes IFS 17(2011),30-36.
- 7. R. Santhi and K. Arun Prakash, On Intuitionistic Fuzzy Semi-generalized Closed Sets and its Applications, *Int. J. Contemp. Math. Sciences*, 5, 1677-1688 (2010).
- 8. R. Santhi and K.Sakthivel, Alpha Generalized Closed Mappings in Intuitionistic Fuzzy Topological Spaces, *Far East Journal of Mathematical Sciences*, (43), 265-275 (2010).
- 9. M. Thirumalaiswamy, M. Amsaveni, On Weakly \ddot{g} Closed Set in Intuitionistic Fuzzy Topological Space, National Seminar on Modern Techniques and Application in Mathematics (NSMTAM 2015).
- 10. L. A. Zadeh, Fuzzy Sets , *Information and Control*, 8, 338-353 (1965).