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ABSTRACT 
 

Missing value or data is a major issue in all fields. Many models and methods are supported to substitute the 

missing values. In this paper, we promote the use of statistical methods for treating missing data that employ 

single- or multiple- imputation of missing values. Proposed a method, called factored regression model to 

multiply impute missing values in such data sets by modelling the joint distribution of the variables in the data 

through a sequence of generalised linear models. Apply our model to protect confidentiality of the current 

population survey data by generating multiply imputed, partially synthetic data sets.  
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I. INTRODUCTION 

 
The problem of missing values, also often referred to 

as incomplete data, is the central one for this thesis. 

As an example, the Siemens data set is very 

incomplete. It contains missing values for most of the 

features, with up to over 90% of the values missing 

for some of them. One of the standard techniques 

used for treating missing values, filling in the mean 

or median, does not seem appropriate any more, 

when more of the data is missing than is being 

present. 

 

Methods to deal with missing values have been 

widely used since the seventies. One of the most 

important reviews of these methods is Little and 

Rubin (1987), who give an overview of historical 

approaches. The main part of that book then covers 

state of the art methods, which are described from a 

statistical viewpoint. These are mainly based on 

maximum likelihood theory and on the Expectation-

Maximization (EM) algorithm. 

 

The book is mainly directed to practitioners and 

provides many examples of application of these 

methods to missing value problems. Little and Rubin 

try to systematize missing values approaches to 

provide the grounds for further research. 

 

One systematic is their distinction of methods in (1) 

complete case methods, (2) imputation methods, (3) 

weighting procedures, and (4) model-based 

procedures. Methods covered in the book include 

different imputation methods, where missing values 

are filled in by computed or sampled values, namely 

filling in least squares estimates, unconditional or 

conditional means of the respective feature, and 

multiple imputation. Furthermore, it covers 

complete case analysis, (pairwise) available case 

analysis, weighting methods, and, most importantly, 

a host of maximum likelihood approaches. 

 

1.1. Missingness Characteristics 

Model/Density Estimation Missing value mechanisms 

can be classified into three subgroups, following the 

terminology from Rubin (1976): 
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 Missing Completely At Random (MCAR) 

The probability for a value to be missing is 

independent of that feature value, and 

independent of the values of all other features, 

as well. 

 Missing At Random (MAR) 

The probability of a value missing is 

independent of the value itself, but may 

depend on the values of other features. 

 Non-ignorable 

In this case, the probability that a feature is 

missing may also depend on the actual value. 

An example could be a question for the income 

in a survey, where people with very little or 

high income may not want to admit this and 

leave questions unanswered. 

 

Prediction For the focus of this thesis, prediction of 

target values instead of statistical model estimation, 

this distinction is not as important; instead, 

missingness mechanisms can also be divided into 

 Informative 

The fact, that a value is missing, provides 

information about a classification or regression 

target. 

 Non-Informative 

The distribution of missing values is the same 

for all classes / regression values. 

 

These two classification systems, MCAR/MAR/non-

ignorable and (non-) informatively missing, overlap 

somehow. MCAR, MAR and non-ignitability are 

targeted on density And/or model estimation, where 

there is not necessarily a dedicated target feature for 

later prediction. MCAR values are always non-

informative. A MAR missingness mechanism might 

be either informative or not, depending on whether 

the set of features it depends on includes the target or 

not. The same holds for non-ignorable missingness 

mechanisms, where a missing value is (potentially) 

informative, if the actual value is statistically 

dependent on the target. 

 

 

II. LITERATURE REVIEW 

 

Multiple imputation (see e.g. Little and Schenker 

(1991)) completes the missing values in the data set 

more often than once. The use of some or several 

completed data sets allows determining the 

sensitivity of parameters or predicted values with 

respect to the missing values. 

 

The sampling of the missing values has to be 

performed according to a probability distribution, 

not by deterministic regression. This can be done 

using the model to be learned itself, if it is 

probabilistic. Another possibility is to let an 

additional probability model, e.g. a mixture of 

Gaussians, learn the input distribution. Or Gibbs 

Sampling (Geman and Geman (1984), Thomas et al. 

(1992)) is performed. 

 

A problem of multiple imputations is the scaling for 

large numbers of missing values; the combinatorial 

number of possibilities for completion makes it 

harder (and time consuming) to obtain reliable 

estimates of mean values and variances for 

parameters and/or predictions. Furthermore, 

depending on the estimation or prediction task, it 

may not be trivial to combine the results obtained 

from the different completed data sets into one. 

 

With respect to prediction algorithms, Kalousis and 

Hilario (2000) evaluate the performance of eight 

machine learning algorithms (rule and decision tree 

inducers, naïve Bayes, nearest neighbor and linear 

discriminant) for different levels2 and distributions 

of missing values (among the features). They note, 

that not only the level, but potentially even more the 

distribution of missing values (do all features have 

missing values, or only some?) can have a heavy 

influence on performance. Sarle (1998) also compares 

several standard learning algorithms (linear and 

polynomial regression methods, artificial neural 

networks) concerning their ability to cope with 

missing values, on linear and quadratic regression 

data sets. As discussed before, he stresses the 
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importance of differentiating between estimation and 

prediction problems. Preprocessing appropriate for 

estimation of statistical models may be inadequate for 

use with prediction algorithms and vice versa. 

 

Ramoni and Sebastiani (1996) and Ramoni and 

Sebastiani (2001) describe the Robust Bayesian 

Estimator (RBE) method, which replaces exact 

conditional probabilities in reasoning by intervals 

resulting from filling in the possible values for 

missing values. The main application of the approach 

is with Bayesian networks, but the idea may also be 

applied to other learning algorithms. It also allows to 

do sensitivity analysis and to infer, whether the 

missing values mechanism is informative or not. The 

RBE is compared to the EM algorithm and Gibbs 

sampling. For MCAR and MAR mechanisms, some 

advantages in accuracy are reported, although the 

precision of latter methods often is not reached. But 

for non-ignorable missingness mechanisms, the RBE 

method is more robust than the other two. 

 

Using association rules for imputation, Ragel (2000) 

proposes his method “Missing Values Completion” 

(MVC) to fill in missing values. Results are published 

with C4.5 as classifier, and compared to the built in 

missing values handling of C4.5. For many missing 

values, he reports an improves performance. 

 

A further approach, very similar to the EM algorithm 

in its idea, is presented in Satten and Datta (2000). 

Their S-U algorithm iterates two steps. First, it uses 

an importance sampling procedure to simulate the 

missing data (S-step), and then updates the 

parameters (U-step); the sequence of parameter 

estimates converges toward the complete data 

likelihood solution. Contrary to the EM algorithm, 

the update step is no maximization, but a closed-form 

expression designed to let the approximations 

converge to the true estimate. This allows to use the 

algorithm in cases, where EM is problematic, because 

of intractable maximization during the M-step. 

Consistency and asymptotic normality of the 

approximation sequence are proven, and the 

relations to Monte-Carlo Maximum Likelihood and 

Monte-Carlo EM algorithms are discussed, with 

arguments usually in favor of the S-U algorithm. 

 

Kamakura and Wedel (1998) develop a framework 

for latent variable, and also missing value, estimation, 

in the context of exponential distributions for factor 

models, using simulated likelihood for the estimation. 

In this model, the distribution parameters of the 

observations Y depend bilinearly on the values of 

latent variables X. Exponential families are used as 

distributions for X and Y, because only for them it is 

possible to compute sufficient statistics for this 

dependence from the observed data. They allow to 

model discrete as well as continuous distributions, 

enabling its use for mixed feature spaces (cf. next 

section). Kamakura and Wedel apply this approach to 

artificial and marketing data. An advantage of the 

simulated annealing latent variable method is, that 

estimation of missing values is unbiased, even if the 

missingness pattern depends on the unobserved 

latent variables. Disadvantages are the computational 

complexity of the simulated likelihood procedure 

used, cf. Gourieroux and Montfort (1994) and Lee 

(1997), and that the distribution of the latent 

variables must be specified and cannot be verified. 

 

III. PROPOSED METHODOLOGY 

 

Under MAR, the multiple imputation approach seeks 

to retain the advantages of ML estimates while also 

allowing the uncertainty caused by imputation, 

which is ignored in single imputation, to be 

incorporated into the completed-data analysis. It 

involves creating more than 1 set of replacements for 

the missing values based on plausible models for data, 

therefore generating multiple completed datasets for 

analysis. The statistical reasoning behind multiple 

imputations is that the observed-data likelihood can 

be approximated by the average of the completed-

data likelihood over unknown missing values 

(Appendix). That is, multiple imputation analysis 

that combines the likelihood-based analysis from 

each completed dataset is approximately equivalent 
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to the analysis based on the observed-data likelihood, 

whereas the imputation uncertainty is reflected by 

the variation across the multiple completed datasets. 

 

Analysis Procedure 

The analysis of multiply imputed data proceeds as 

follows:  

1. Analyze each completed dataset separately 

using a suitable software package designed for 

complete data (eg, SAS, STATA, or R).  

2. Extract the point estimate and standard error 

from each analysis. 

3. Combine the multiple sets of point estimates 

and standard errors to obtain a single point 

estimate, standard error, and the associated 

confidence interval or probability value.  

The combining rules in step 3 contain some formulas 

for calculating the average of the estimates across 

multiple imputations and the variances of the 

estimates, both within and between imputations.  

 

Imputation Models 

Plausible imputation should give reasonable 

predictions for the missing data, and the variability 

among them must reflect an appropriate degree of 

uncertainty. Rubin recommends that imputations be 

created through Bayesian arguments: Specify a 

parametric model for the complete data under MAR, 

assume a prior distribution for the unknown model 

parameters, and simulate multiple independent 

draws from the conditional distribution of missing 

values given observed data by Bayes theorem. A 

simple example for univariate missing outcome is 

given in the Appendix.  

 

Various imputation models have been developed 

within more general and complicated contexts. See 

Buuren for a summary and references. In general, the 

strategy of building imputation models falls into 2 

categories:  

 

1. Joint modelling 

The joint modelling approach partitions the 

observations into groups of identical missing data 

patterns and imputes the missing entries with each 

pattern according to a joint model for the variables 

that is common to all observations. Some classic 

examples include multivariate normal models for 

continuous variables, log-linear models for 

categorical variables, general location models for a 

mixture of continuous and categorical variables, and 

mixed-effects models for repeated measurements or 

multilevel data. These methods start by specifying a 

parametric multivariate density for the data given 

model parameters. Under an appropriate prior 

distribution for the parameters, it is possible to derive 

the appropriate sub model for each missing data 

pattern, from which imputations are drawn. The 

joint modelling approach is theoretically sound but 

may lack the flexibility needed to represent complex 

data structures arising in many studies. 

 

2. Sequential regression multiple imputation (SRMI)  

(also referred to as the multiple imputation by 

chained equations). In SRMI, multivariate data are 

characterized by separate conditional models for 

each incomplete variable. That is, the imputation 

model is specified separately for each variable, with 

other variables as predictors. At each step of the 

SRMI algorithm, imputations are generated for the 

missing values of 1 variable; these imputed values are 

then used in the imputation of the next variable, and 

this process repeats until it reaches convergence. 

Compared with the joint modelling approach, an 

appealing feature of SRMI is that it is relatively easy 

to accommodate complex data features in univariate 

regression models. Constructing these regression 

models can follow common guidelines of regression 

modelling applied to the data at hand. For 

continuous variables, the model may involve a linear 

regression model or its robust extensions. 

 

3.1 Classification with Missing Data 

The classification setting is particularly affected by 

the presence of missing feature values since most 

discriminative learning approaches including logistic 

regression, support vector machines, and neural 

networks have no natural ability to deal with missing 
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input features. Our main interest is in classification 

methods that can both learn from data cases with 

missing features, and make predictions for data cases 

with missing features. 

 

Imputation is a strategy for dealing with missing data 

that is widely used in the statistical community. In 

unconditional mean imputation, the mean of feature 

d is computed using the data cases where feature d is 

observed. The mean value for feature d is then used 

as the value for feature d in data cases where feature 

d is not observed. In regression imputation, a set of 

regression models of missing features given observed 

features is learned. Missing features are filled in using 

predicted values from the learned regression model. 

 

Regression and mean imputation belong to the class 

of single imputation methods. In both cases a single 

completion of the data set is formed by imputing 

exactly one value for each unobserved variable. 

Multiple imputations is an alternative to single 

imputation procedures. As the name implies, 

multiple completions of a data set are formed by 

imputing several values for each missing variable.  

 

In its most basic form, the imputed values are 

sampled from a simplified imputation model and 

standard methods are used on each complete data set. 

The principal advantage of multiple imputations over 

single imputation is that multiple imputation better 

reacts the variability due to missing values. 

Sophisticated forms of multiple imputations are 

closely related to approximate. 

 

The key to imputation techniques is selecting an 

appropriate model of the input space to sample from.  

More flexible imputation models for real valued data 

are often based on mixtures of Gaussians. In high 

dimensions, learning a mixture of probabilistic 

principal components analysis or factor analysis 

models may be more appropriate. The advantage of 

imputation methods is that they can be used in 

conjunction with any complete data classifier. The 

main disadvantage is that learning one or more 

imputation models can be a costly operation. In 

addition, using multiple imputations leads to 

maintaining an ensemble of classifiers at test time. 

Combining multiple imputations with cross 

validation requires training and evaluating many 

individual classifiers. 

 
Figure 1. Performance evaluation of FRM 

 

MI Mortality proportions were within 95% 

confidence intervals of observed proportions for the 

whole range of FRM values Imputed RR led to an 

underestimation in mortality risk from 30<RR< 60 

but remained within 95% confidence intervals for all 

other values. The functional relationship between 

SBP and mortality risk remained practically 

unchanged following MI 

 
Figure 2. Performance evaluation of FRM 

 

MI offers many advantages. The use of multiple 

imputes addresses the uncertainty surrounding the 

missing value; if information in the prediction model 
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is limited, resulting imputations will be 

heterogeneous, which will result in robust variance 

estimates in ensuing analyses. MI uses information 

on any number of auxiliary variables whether they 

have missing values or not; it simultaneously imputes 

data for all variables with missing values. Finally, MI 

generates imputed values that can be added to the 

trauma registry database and used in future analyses 

as long as covariance structures are respected. 

 

IV. CONCLUSION 

 

Learning, inference, and prediction in the presence 

of missing data are pervasive problems in machine 

learning and statistical data analysis. This thesis 

focuses on the problems of collaborative prediction 

with non-random missing data and classification 

with missing features. We have presented new 

experimental protocols, new data sets, and new 

models and algorithms for learning, inference, and 

prediction. In this paper we present concluding 

remarks and indicate directions for future research.  

 

Our results show that incorporating a model of the 

missing data process results in substantial 

improvements in predictive performance on 

randomly selected items compared to models that 

ignore the missing data process. Our results show 

that training and testing only on ratings for user 

selected items can vastly overestimate prediction 

performance on randomly selected items. Our 

analysis also shows that the availability of even a 

small sample of ratings for randomly selected items 

can have a large impact on rating prediction 

performance. 
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