
 
 

 

CLUSTER ANALYSIS ON HIGH-DIMENSIONAL NON-LINEAR 

DATA: DENSITY-BASED CLUSTERING ALGORITHMS 

 

R.NANDHAKUMAR
1
 and Dr.ANTONY SELVADOSS THANAMANI 

2
 

1.
Assistant Professor, Department of Computer Science,                                                           

Nallamuthu Gounder Mahalingam College, Pollachi-642001, India 

2.
Associate Professor & Head, Department of Computer Science,                                            

Nallamuthu Gounder Mahalingam College, Pollachi-642001, India 

E-Mail: nkumarram@gmail.com, Mobile:9965551124 

 

Abstract: The effectiveness and efficiency of the existing cluster analysis methods are limited, 

especially when the referred data has high dimensions or when the clusters within the data are not 

well-separated and having different densities, sizes and shapes. Density-based clustering algorithms 

have been proven able to discovered clusters with those characteristics. Previous researchers which 

explored density-based clustering algorithms focused on the analyzing the parameters essential for 

creating meaningful spatial clusters. The aim of this paper is to provide a comparative study of three 

well know density-based clustering algorithms including DBSCAN, DENCLUE and LTKC. The 

merits of them were evaluated of their ability to cluster several high-dimensional artificial data. We 

concluded that each density-based data clustering algorithm has their individual merits for high- 

dimensional data. However, further research is needed in the application of the techniques to analyze 

other high-dimensional non linear data, to permit a comprehensive evaluation of their respective 

strengths and limitations as powerful cluster analysis methods. 

 

Key words: Cluster analysis; high-dimensional non linear data; density-based clustering; DBSCAN; 

DENCLUE; LTKC. 
 

 

INTRODUCTION 

 

Clustering is a powerful exploratory technique for extracting knowledge of given data (Witten, Frank, & Hall, 

2011). Clustering is an unsupervised process, because in the clustering process, there are no predefined classes 

and no examples that would show what kind of desirable relations should be valid among the data (Halkidi, 

Batistakis, & Vazirgiannis, 2001). Thus, clustering process uses the similarity and dissimilarity pair of data 

within the dataset for grouping unlabelled datasets. 

Recently, several clustering techniques have been introduced and proposed, such as k-means (Anderson, 

2009; Golob & Recker, 2004; Shekhar, Lu, Chawla, & Zhang, 2001), hierarchical clustering (Skyving, Berg, & 

Laflamme, 2009) and Support Vector Machine-based approach (SVM) (W. Chang, Zeng, & Chen, 2005). K- 

means technique is probably the most popular and is a simple solution for clustering. However, the weakness 

with this technique is in determining the proper number of clusters and potential to being trapped in local 

optimal (Tan, Steinbach, & Kumar, 2006). Determining the proper number of clusters is an essential issue in 
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clustering task, since it is difficult to choose an appropriate number of clusters, especially when the data has 

high dimensions, or when clusters within the data are not well-separated and having different densities, sizes 

and shapes. 

In addition, the data with high dimensional data normally have a problem with curse of dimensionality. The 

curse of dimensionality refers to the phenomenon in which many types of data analysis become significantly 

harder as the dimensionality of the data increases. For clustering, the definition of density and the distance 

between points, which are critical for clustering would often become meaningless (Tan, et al., 2006). This 

problem indicates that the complexity of clustering the data grows exponentially with the number of dimensions 

(i.e., variables) that it comprises. For example, in similarity searching (finding nearest neighbours), it indicates 

that the number of data points in the dataset that need to be observed in getting the estimate, grow exponentially 

with the underlying dimension. As a result, many clustering algorithms have trouble with high-dimensional non 

linear data since it can be reduce the accuracy rate and produce poor quality clusters (Tan, et al., 2006). 

Therefore, developing clustering algorithms that can handle the complexity of high-dimensional non linear data 

and the heterogenic of the clusters is still a challenging issue in cluster analysis domain. 

Among several clustering algorithm types, density-based clustering algorithm is so far the most efficient in 

detecting the cluster with different densities, since it determines the number of clusters automatically by 

analyzing the density of data points in a region (Martin Ester, Hans-Peter Krigel, Jorg Sander, & Xiaowei Xu, 

1996a). A cluster in these algorithms is a dense region of data point that is surrounded by a region of low 

density. Density-based clustering algorithm uses local cluster criterion in which the clusters are defined as 

region in data space whose data points are dense, and the clusters are separated from one another with low- 

density region (Martin Ester, Hans-Peter Krigel, Jorg Sander, & Xiawei Xu, 1996b). 

Previous researchers, such as (Parimala, Lopez, & Senthilkumar, 2011), which explored clustering 

algorithms focused on the analyzing density-based clustering algorithm in term of the parameters essential for 

creating meaningful spatial clusters. In particular, they tended to concentrate on the variants of DBSCAN 

algorithm in the clustering spatial data. The aim of this paper is to provide a comparative study of several well 

know density-based clustering algorithms. The merits of three density-based clustering algorithms; DBSCAN, 

DENCLUE and LTKC, were evaluated of their ability to cluster high-dimensional non linear data. To evaluate 

the performance of the density-based clustering algorithms, we utilized various benchmarked artificial data. 

The following sections describe each of the density-based clustering algorithms and the experimental results of 

various benchmarked artificial data. 

 

Density based Spatial Clustering of Application with Noise (DBSCAN): 

Introduction: 

DBSCAN proposed by (Ester, et al., 1996a) and used by (Le-Khac, Bue, Whelan, & Kechadi, 2010), (Whelan, 

Le-Khac, & Kechadi, 2011), (Kechadi & Bertolotto, 2007) and (Birant & Kut, 2007), defines density of point 

by counting the number of point in a region of specified radius Eps around the point. Points with density above 

the specified threshold are classified as core points, while noise points are defined as non-core points that do 

not have a core points within specified radius. Noise points are discarded, while clusters are formed around the 

core points. If two core points are alongside each other, then their clusters are joined. Non- noise and non-

border points, which are called boundary points, are assigned to the clusters associated with any core point 

within their radius. Thus, the core points form the skeleton of the clusters, while the border points flesh out this 

skeleton. Figure 1 shows the definition of core, border and noise points in DBSCAN algorithm. 
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Fig. 1: Definition of points in DBSCAN. 

 

Each point in a cluster in the neighborhood of a given radius has to contain at least a minimum number of 

points minpts. It implies that the density in the neighborhood has to exceed the threshold, Eps. The shape of a 

neighborhood is defined by the choice of a distance function for two points p and q, denoted by dist(p,q). For 

example, in two dimensional data, the shape of the neighborhood is circle when Euclidean distance is used or is 

rectangular when Manhattan distance is used. 

 

Description of the Algorithm: 

In this sub section, the DBSCAN algorithm is explained. The steps involved in DBSCAN algorithm are as 

follow: 

1. Labelling all point as core, border, or noise points. 

2. Putting an edge between all core points that are within Eps of each other 

3. Making each group of connected core points into separate cluster 

4. Assigning each border point to one of the clusters of its associated core points 

 

Impact of the Algorithm: 

DBSCAN requires two parameters: minimum number of neighbours minpts and minimum radius Eps (Ester, et 

al., 1996a). This is done by using the concept of determining the density that is based on Eps which makes 

DBSCAN has the capability to find clusters of arbitrary shapes. In addition, DBSCAN holds good for data with 

big size (Parimala, et al., 2011). 

Future Works: 

Otherwise, since its density is based on the definition of core points, DBSCAN cannot identify the core points 

of varying density. As a result, DBSCAN has difficulties to find clusters of differing densities. In addition, two 

parameters that are required for clustering high-dimensional non linear data are also difficult to be determined 

even when using heuristic methods (Ester, et al., 1996a). 

 

DENsity-based CLUstEring (DENCLUE): 

Introduction: 

DENCLUE (DENsity CLUstEring) proposed by (Hinneburg & Keim, 1998) and modified by (Hinneburg & 

Gabriel, 2007) and (Hinneburg & Keim, 2003), improves DBSCAN through the use of kernel function as the 

influence function to express the contribution of each data point to the overall density function, instead of only 

using Eps value. The influence function describes the impact of a data point within its neighborhood. Examples 
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for influence functions are parabolic functions, square wave function, or the Gaussian functions. The influence 

function is applied to each data point. 

The overall density of the data space can be calculated as the sum of the influence function of all data 

points. Clusters can then be determined mathematically by identifying the density-attractors. Density attractors 

are the local maxima of the overall density function. If the overall density function is continuous and 

differentiable at any point, determining the density attractors can be done efficiently by using a hill-climbing 

procedure which is guided by the gradient of the overall density function. In addition, the mathematical form of 

the overall density function allows the clusters of arbitrary shape to be described in a very compact 

mathematical form, namely by using a simple equation of the overall density function. 

 

Summary of Algorithm: 

The DENCLUE algorithm procedure is summarized as follow: 

1. Calculating the density function of each point 

2. Identifying the points that are local maxima, usually called density attractor. 

3. Defining clusters which consist of points associated with a particular density attractor. 

4. Discarding clusters whose density attractor has a density less than a mindens. 

5. Combining clusters that are connected by path of points that all have density of mindens or higher 

 

Impact of Algorithm: 

Similar to DBSCAN, DENCLUE also requires two parameters: minimum density mindens and wide of 

bandwidth h. By using kernel function as the influence function to express the contribution of each data point to 

the overall density function, DENCLUE is relatively stable with respect to outliers and still capable to find 

arbitrarily shaped clusters. 

 

Future Works: 

However, the DENCLUE algorithm is still improvable for more efficiency or for larger datasets. Firstly, 

DENCLUE needs to hold all of the original data to fulfill its clustering procedure. Thus, its behavior depends 

on the memory availability. For a large dataset that cannot fit into the main memory, swap in and swap out of 

the data objects can degrade its behavior sharply. Secondly, for each data object of the dataset, the algorithm 

has to compute its local density value by summing up all the influences of nearby objects with a point wise 

manner, whether those points are crowded together or distributed sparsely. It pays no attention to the statistical 

information of the grids around a data object. This negligence also complicates the algorithm markedly. Third, 

DENCLUE is relatively resistant to noise (Tan, et al., 2006). In addition, DENCLUE is computationally 

expensive than DBSCAN. 

 

Local Triangular Kernel Clustering (LTKC): 

Introduction: 

LTKC algorithm proposed by (Musdholifah & Mohd. Hashim, 2010) is density-based clustering that 

determines the density of data points using combination of two nonparametric density estimation procedures. 

LTKC combines k-nearest neighbour (KNN) and kernel density estimation. KNN density estimation is extended 

and combined with triangular kernel function. LTKC uses Bayesian decision rule in order to assign objects to 

respective clusters. If the kernel nearest-neighbour density function value of object x in cluster  i is maximized, 

and then the target data will belong to the cluster  i . 

Therefore, using triangular kernel function and KNN density estimation approach, the density cluster is 
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determined with respect to the object x; next called triangular kernel density cluster ω of object x , which 

can be defined as: 

  (1) 

where is the k-nearest neighbour of object x and member of cluster ω, nω is the number of objects in cluster ω 

and dist(x,xj) is the distance of object x and xj. In this research, the distance was considered as Euclidean 

distance and defined as 

  (2) 

where L is the dimension of the data. 

 

Summary of Algorithm: 

The clustering algorithms with k number of nearest neighbours, was carried out in the following manner: 

1. For each data point xi in d-dimension, their Euclidean distance to all data points were calculated as 

 

2. Creating similarity matrix (size n x n), then sorting them in descending order. 

3. Finding the k-nearest neighbour data points of each data point xi ; which refers to first data point until k
th
 

data point in the list of the sorted similarity matrix, and then creating k-nn table. 

4. Calculating the triangular kernel function of each k-nearest data point of each data point xi using distance 

value stored in similarity matrix and k-nn table. 

5. Repeat 

Each data point xi was assigned to cluster ω that maximized the triangular kernel density of data point xi, Ktω(xi), 

locally, 

(3) 

where is all cluster indices of the k-nearest neighbours of the data point xi and Ktω(xi) is triangular kernel 

function of data point xi defined as Eq. 3. 

Re-indexing the cluster label 

6. Until the cluster structure was unable to change. 

 

Impact of Algorithm: 

LTKC considers the k nearest data point that the nearest data points refers to the data points within the k-top list 

of data point with smallest kernel density function. Thus, LTKC only requires a parameter input, which is the 

number of nearest neighbours, k. From the LTKC algorithm, it can be stated the number of clusters is not given 

to the algorithm as a parameter. Depending on the nature of the data, the algorithm finds “natural” clusters. In 

addition, all the objects in the data are clustered using out algorithm. 

 

Future Works: 

LTKC algorithm requires an input parameter k number of nearest neighbours. In order to determine the 

“optimal” k, LTKC clustering is executed using different k number of nearest neighbours; by running single 

LTKC once for each k from 2 to n-1. For each of the clustering results, the chosen validation measure is 

calculated; for instance accuracy rate, and finally, the clustering with best validation value (for instance, if the 

silhouette coefficient is used then the best validation value is the maximum accuracy rate). Unfortunately, the 
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run time of this approach is prohibited for large n, because it implies O(n) calls of LTKC. Thus, one of the 

issues in LTKC clustering is how to determine the optimal number of nearest neighbours that produces good 

clusters. 

Experimental Results and Discussions: 

Experimental Data sets: 

The ideal input for clustering algorithm is a dataset which is without noise and has a known number of equal 

size, equal density, and globular. When the data deviates from these properties, it poses different problems for 

different types of algorithms. Nine artificial datasets were utilized to evaluate the performance of the density- 

based clustering algorithms for discovering clusters on high-dimensional non linear data with different shapes, 

sizes and densities. Some datasets contained true clusters with soft boundary, arbitrary shapes and densities. 

Table 1 represents the summary of the characteristic of the true clusters within the datasets. The distribution of 

points within the nine artificial datasets is shown in 

Fig. 2. Different colours and symbols were used to demonstrate the different classes. From 

Fig. 2 shows that all datasets used had different shapes and number of classes or true clusters, in range from 2 to 

31. 

The artificial data 1 utilized in this experiment was an artificial spherical or globular data. In addition, all classes 

within this data were convex objects. An object is convex in Euclidean shape if every pair of points is 

within the object and the considered object on the straight line segment that joins them is also within the object. 

However, most benchmark and real data sets are not spherical data. Therefore, the objective of experiment on 

the artificial data 1 was to evaluate the performance of the proposed algorithm on spherical data, which was 

convex, centred, well separated and compact. 

The artificial data 1 was generated through the use of a random number generator. This data had 200 instances 

with two attributes. The data distribution of each class was generated using various means 

 variance  and 

number of data . The data distribution is shown in 

Fig. 2.a. 

Table 1: Characteristics of the artificial dataset. 

Artificial Data Number of true 

clusters 

Number of points Boundary Shape type 

Soft Hard Convex Non-convex 

1 3 200 - √ √ - 

2 2 240 √ - √ √ 

3 2 373 - √ - √ 

4 3 312 - √ - √ 

5 3 300 √ - √ √ 

6 7 788 √ √ √ √ 

7 6 399 √ √ √ √ 

8 15 600 √ √ √ - 

9 31 3100 √ √ √ - 
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Artificial data 1 

 

 

(b) Artificial data 2 
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Artificial data 3 

 

 

(d) Artificial data 4 
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Artificial data 5 

 

 

(f) Artificial data 6 

 

 

 

 

 

 

 

 

 

 

(g) 

 

 

Artificial data 7 

 

 

(h) Artificial data 8 

 

 

(i) Artificial data 9 

 

Fig. 2: Distribution of data points within the artificial data sets 

 

The eight remaining artificial data sets were provided by Speech and Image Processing Unit ("Clustering 

datasets," 2012). In the artificial data 2 that was originally used by (Fu & Medico, 2007), there were two classes 

which one of them was non-convex shape and visualized by blue circle symbol. The motivation of utilizing the 

artificial data 2 that is shown in 

Fig. 2.b was to analyze the capability LTKC algorithm on the data that contained different shapes and soft 

boundary. 

The artificial data 3, initially used by (Jain & Law, 2005), formed two half-rings and contained 373 two- 

dimensional patterns; upper class had 97 patterns and lower class had 276 patterns. In addition, the classes 

within the artificial data 3 that is shown in 

Fig. 2.c were non-convex shapes. Therefore, it was interesting to evaluate the performance of LTKC on the data 

sets that all the classes within the data set were non-convex. 

The artificial data 4that is shown in 
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Fig. 2.d composed three classes with spiral shapes (Chang and Yeung, 2008). A spiral can be defined as a curve 

which derives from a central point which gets farther away as it resolves around the data point. However, all 

points in the artificial data 4 were not classified based on distance between the centre data points and the 

considered data points. 

The artificial data 5, originally used by(H. Chang & D.-Y., 2008), had two circle classes inside a circular 

class. Each class shown in 

Fig. 2.e contained 100 data points. In addition, the points in both circles were generated by using Gaussian 

distribution. This sample could be observed by utilizing two Gaussian classes with addition of some Gaussian 

noises which tended to connect the classes together. However, it was interesting to analyze whether LTKC 

discovered three clusters in a way similar to natural classes or LTKC would firstly consider the circular class as 

noise data. 

The rest of the artificial data sets were more complex than previous artificial data sets because of the number 

of classes and shapes of classes contained in the data sets. For instance, artificial data 6 was a two-dimensional 

synthetic data that consisted of seven perceptually distinct classes. 

Fig. 2.f shows a link between two globular classes that belonged to one of the two globular classes. 

In the artificial data 7, introduced by (Zahn, 1971), and shown in 

Fig. 2.g, there were five classes of different shapes and sizes with additional noise data points. The artificial data 

8, shown in 

Fig. 2.h was a ring data and contained 3100 random patterns generated by 15 similar 2D Gaussian distributions. 

Meanwhile, the artificial data 9 was the largest data among all data sets used in this research; it consisted of 31 

randomly placed 2D Gaussian classes of 100 patterns each. 

Comparison of Clustering Accuracy: 

The proposed LTKC algorithm was conducted and applied on nine artificial data. The proposed LTKC 

algorithm only required one parameter; k, number of neighbours. LTKC was executed once for each k from 2 to 

n-1 where n is the number of data points. For each of the clustering results, the F-measure (Gullo, Ponti, & 

Tagarelli, 2008) was calculated and the clustering with maximum F-measure value was chosen as the true 

clusters. Meanwhile, applying DBSCAN algorithm required two parameters, minimum number of neighbour 

points, MinPts and maximum distance value or radius, Pts. However, according to (Ester, et al., 1996a), we 

should eliminated the parameter MinPts to 4 for all data sets. DENCLUE algorithm also required two 

parameters: the threshold of attractor merge, mindens and the width, h. 

Table 2 describes the value of parameter used for all algorithms to discover the true clusters hidden in the 

artificial data sets. 

From the experimental results of the artificial data 1, LTKC produced clusters which were equal to true 

clusters (classes) and were 100% accurate. The clustering result is shown in Figure 3(a). It was observed that 

each cluster was well-separated while the distance between points within a cluster to points within another 

cluster was large. Therefore, all clusters were discovered as having compact shapes since the distance of each 

pair of points within the same cluster was very close. Based on the experimental results, it has been proven that 

LTKC has ability to discover true clusters from spherical data sets. 

For the artificial data 2, LTKC achieved the highest accuracy with 99.17%. In addition, from Figure 3(b), 

only two points were assigned to incorrect cluster due to their Euclidean distance values. Both points had 

relatively lower similarity values to other points within the upper cluster than those points closer to the lower 

cluster. The result of experiment on artificial data 2 demonstrated the ability of the LTKC approach to solve the 
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two clusters touching at a neck problem (Jain & Law, 2005) with a medium-sized neighbourhood (k equals to 10 

as shown in 

Table 2). There was no distinct point pair distance inconsistency at the neck, so that triangular kernel density 

function would be unable to break the data at the neck point. 

Again, the performance of LTKC was evaluated for non-convex shape class. In the artificial dataset 3, 

LTKC was proven capable to achieve two non-convex clusters as well as true class with 100% accuracy. 

However, the visual and quantitative analysis of experimental results on the artificial data 2 and 3 indicated that 

LTKC outperformed DBSCAN and DENCLUE for clustering non-convex shape classes. 

Next, the artificial data 4 with three spiral classes was considered. The privileged clustering result was 

achieved by using LTKC, and DBSCAN. Two density-based clustering algorithms discovered correctly three 

spiral clusters, as shown in Figure 3(d) by using the neighbouring concepts and inter-point Euclidean distance 

between points within a cluster. The experiment results on the artificial data 4 showed the effects of variation of 

neighbourhood size quite clearly with respect to the continuity concept. 

This research also included experiments on the artificial data 5 that contained three classes; a circular class 

with an opening near the bottom and two Gaussian distributed classes inside. All algorithms could not find the 

three clusters correctly as shown in Figure 3(e). 

 

Table 2: Parameters of all algorithms used to discover true clusters of the nine artificial data sets. 

Artificial Dataset LTKC DBSCAN DENCLUE 

k MinPts Pts Mindens h 

1 10 4 0.985 12 1 

2 10 4 0.985 12 1 

3 22 7 2.446 23 2.5 

4 7 4 1.843 20 1.85 

5 20 4 1.839 20 1.85 

6 16 4 1.208 12 1.2 

7 15 4 1.393 10 1.4 

8 38 4 0.635 1 0.6 

9 71 4 0.535 4 0.9 
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Artificial data 8 

 

 

(i) Artificial data 9 

 

Fig. 3: Clusters of the artificial data sets produced by LTKC. 

 

Table 3: Percentage of F-measure for the experiment results of all algorithms on the artificial data sets. 

Artificial Data LTKC DBSCAN DENCLUE 

1 100 100 100 

2 99.17 64.58 80.83 

3 100 73.99 81.77 

4 100 100 34.29 

5 87.00 80.67 53.67 

6 78.43 82.23 58.5 

7 87.22 96.99 66.42 

8 99.67 53.33 99.50 

9 97.55 62.54 76.03 

 

Again, the proposed LTKC algorithm gave more satisfactory result, as shown in Table 3. However, some 

inter-cluster points were misclustered. Our proposed method was successful in assigning the points that were 

closer to these points and hence essentially detecting them as outliers. As a result, they had relatively lower 

similarity values to other points within a cluster than those points closer to the Gaussian centres or on the 

incomplete circle. 

The clustering result for the artificial data 6 produced by LTKC algorithm was imperfect as shown in 

Figure 3(f). In fact, this data contained seven classes but LTKC discovered five clusters only. Some points 

formed narrow bridge between of two classes as these two classes were assigned into one cluster. 

In the artificial data 8, the proposed LTKC algorithm produced 15 circle clusters with 99.67% accuracy. It 

indicates only two points were not clustered correctly because the points were closer to the clusters than to the 
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true class. Remarkably, the DBSCAN algorithm was not able to discover the originating cluster structure. 

Moreover, the accuracy of clustering result produced by DBSCAN was less than 55%. 

Again, LTKC algorithm outperformed than DBSCAN and DENCLUE in the largest data. 31 clusters were 

found by LTKC with 97.55 % accuracy. 76 points were misclustered since the Euclidean distance values 

between the points intra-cluster were lower those of inter-cluster. 

From the experimental results on the artificial data sets, it can be stated that the density based clustering 

algorithm such as LTKC and DBSCAN are suitable for discovering true clusters as well as natural clusters with 

arbitrary shapes on datasets that contain points that are close within one class or well separated. In addition, 

LTKC algorithms that utilized Euclidean distance measure had an accuracy close to 100% on data which 

contained classes with circle shapes, because Euclidean distance is suitable for objects with circle shape. 

In conclusion, the promising performance of LTKC algorithms had been demonstrated well in dealing some 

difficult data with arbitrary shapes but there existed some other situations when these algorithms did not 

perform well. One such condition was when there were many noise points within the dataset, such as in artificial 

data 6 and 7, where LTKC still assigned them as a group or a cluster. 

 

Comparison of Time Complexity: 

In density-based clustering algorithms, the problem of finding neighbours is somewhat similar to the point 

location query. In particular, in many algorithms, the first step is to locate the query object q. The second step 

consists of the actual search. Most of the classical methods employed a depth-first strategy. An alternative, they 

employed a best-first search strategy. The difference between these two strategies is that, in the best-first 

strategy, the elements of the structure where the objects are stored are explored in an ascending order of their 

distance from q. In contrast, the dept-first strategy, the order in which the elements of the structure where the 

objects are stored are explored is a result of performing a depth-first traversal of the structure using the distance 

to the currently nearest objects to prune the search. However, in this research, a best-first search strategy was 

chosen for searching the nearest neighbours of object. 

Another issue that can influence the performance of the clustering algorithm is calculating of the distance a 

pair of objects. The commonly distance function between two objects used is Euclidean distance. Although the 

Euclidean metric was mentioned in first step of LTKC algorithm, the method was with no mean restricted to this 

measure and any suitable measure could be used. In addition, all k-nearest neighbours could be found with 

relatively little computational expense over that finding of the nearest neighbour by using the previously 

described scheme. For each neighbourhood list row generation, only n distance measures are needed to be 

calculated; if d is large, this represents the largest computational expense algorithm. Therefore, the 

computational complexity of calculating the neighbour table is of the order (n
2
)d + C(k) operations where C is 

relatively a small factor to allow for the extra overhead of testing for all k-near neighbours for each data point. 

Only n(n+1)/2 distance measure are necessary, but in the algorithm implemented redundant distance 

calculations were tolerated to enhance programming simplicity and converse storage. The computing 

complexity for one pass of the neighbourhood table of explore clusters for neighbourhood size k is of the order 

of (at most) (n(n-1)/2)(k+1)
2
 integer comparisons, plus the data order and threshold dependent cost of the link 

listing procedure that is evoked only when the matches of sufficient vote are detected. The distance calculation 

process requires  memory. 

However, for huge dataset (over 10,000 objects), it is suggested that there is a need to separate the distance 

calculation process and store the distance matrix in another file or variables. Thus, the computational complexity 
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of LTKC will depend mainly on the calculation of the k-nearest neighbour list through the kernel density 

estimation stage that requires the search for the data points failing in the neighbourhood. In the results, their 

complexity will be relative to very expensive. The proposed LTKC has the simplest way to solve this problem. 

LTKC orders all the  distances  from  the  considered  point  to  other  objects,  which  leads  to  a  complexity 

of . 

Next, the computational complexity of two other clustering algorithms was described. DBSCAN and 

DENCLUE visited each point within the dataset, possibly multiple times. For practical considerations, however, 

the time complexity was mostly governed by the number of region Query invocations. DBSCAN executed 

exactly one such query for each point, and if an indexing structure was used to execute such a neighbourhood 

in , an overall runtime complexity of  would be obtained. 

Conclusions: 

In this paper, we reviewed and compared three well-known density-based clustering algorithms which are 

DBSCAN, DENCLUE and LTKC based on the essential requirement needed for any clustering algorithms in 

high-dimensional non linear data. Each algorithm is unique with its own characteristics. A comparative study 

in term of input parameters, shapes of the cluster, density and the type of the data is given in Error! Reference 

source not found.. Furthermore, the result of investigation can be used to other researchers to study, apply and 

enhance the density-based clustering algorithm. 

From Error! Reference source not found., it can be stated that LTKC algorithm is able to tackle the 

difficulties of high dimensional data and cluster with different densities, shapes and sizes. The experiments 

showed that the LTKC algorithm could achieve more accurate clustering result and use lesser processing time 

compared to DBSCAN and DENCLUE. Furthermore, the result of investigating can be used by other 

researchers to study, apply and enhance the density-based clustering algorithm. 

 

Table 4: Comparison of three density-based clustering algorithms. 

Algorithm Different shapes Different sizes Different densities High-dimensional 

DBSCAN √ √ - √ 

DENCLUE √ √ - √ 

LTKC √ √ √ √ 
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