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Abstract

In this paper , we introduce and study the notions of nano o*-1-set, nano semi-l-regular, nano semi-
pre-l-regular, nano A*B-I-sets, weak nano A*B-I-sets and investigate some of their basic properties.
Also, we obtain the decompositions of hano R-I-continuity of nano ideal topological spaces.
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1. Introduction and Preliminaries

An ldeal | [6] on a topological space (X, ) is a non-empty collection of subsets of X which
satisfies the following conditions : (1) A €land B SAimply B €land (2) A €land B €1 imply A
UB € 1. Given a topological space (X, z) with ideal I on X. If P(X) is the family of all subsets of X, a
set operator (.)*: P(X) — P(X), called a local function [3] of A with respect to z and | is defined as
follows : For A © X, A*1, t) ={x e X:UNA4 £ | for all U €7(x)} where z(X)={ U €7 :x €U}. The
closure operator defined by CI*(A) = A U A*(I, 7) [6] is a Kuratowski closure operator which
generates a topology z* called *-topology finer than z. Let U be a non-empty, finite universe of
objects and R be an equivalence relation on U, X € U and w=(X) = {U, ¢, Ur(X), Lr(X), Br(X)}. Then
wr(X) is a topology on U, called as the nano topology with respect to X. Elements of the nano
topology are called as the nano open sets in U and the nano topological space is denoted by (U, zr(X))
[4]. A nano topological space (U, wr(X)) with an ideal |1 on U is called a nano ideal topological
space [5] or nano ideal space and is denoted by (U, w=(X), I). Let (U, w(X), 1) be a nano
topological space. A set operator A*" : P(U) — P(U), is called the nano local function of 1 on U
with respect to | on tr(X), is defined as A*N ={x €: U N4 £1 for allU € ¢(X)} and is denoted by
A*N where nano closure operator is defined as NCI*(A)=Au A*N. A subset A of a nano ideal
topological space (U, z=(X), 1) is said to be nano semi-l-open [5], (resp. nano a-I-open[5], nano
regular-1-open(nano R-I-open)[5], nano t-l-open[1]), if A <& NCI*(NInt(A)), (resp. A <
NInt(NCI*(NInt(A))), A = NInt(NCI*(A), NInt(NCI*(A)) = NInt(A)). A subset A of a nano ideal
topological space (U, zr(X), 1) is said to be a nano A*g-I-set(briefly NA*g-1-set) [2], if A=S NV,
where S is a nano closed set and V is a nano regular-1-open set. Throughout this paper U represents a
nano topological space (U, tr(X)) and U represents a nano ideal topological space (U, w=(X), 1).

2. Nano A*B-I-sets and weak nano A*B-I-sets.

Definition 2.1: Let A be a subset of a nano ideal topological space Uy. Then Aissaidto be a:
nano pre-l-open, if A < NInt(NCI*(A)).

nano B-l-open, if A € NCI(NInt(NCI*(A))).

nano a*-I-set , if NInt(A) = NInt(NCI*(NInt(A))).

nano semi-I-regular, if it is both nano semi-1-open and nano t-I-set.

nano semi-pre-1-regular, if it is both nano B—I-open and nano o*-1-set.
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6. nano A*B-I-set. (briefly NA*B-I-set) if A=S N ¥, where S is nano closed
and V is nano semi-I-regular.

7. weak nano A*B-I-set. (briefly weak NA*B-I-set) if A=S N ¥, where Sis
nano closed and V is nano semi-pre-I-regular.

Proposition 2.1. For the nano ideal topological space Uy, the following hold :

1. Every nano regular-1-open set is nano semi-I-regular.
2. Every nano semi-I-regular set is a NA*B-I-set.
3. Every NA*g-I-set is a NA*B-I-set.

Proof. (1). Let A be a nano regular-l-open set in Uy. Then A = NInt(NCI*(A)) and so
NInt(A)=NInt(NCI*(A)). Therefore A is a nano t-I-set in U,. Since every nano regular-1-open set is a
nano semi-l-open in Uy, A is both nano semi-I-open and nano t-1-set in Uy, which implies A is a nano
semi-I-regular set in Uy .

(2). Let A be a nano semi-I-regular set in Uy. Then A= A N U, where U is nano closed in Uy Thus
Ais a NA*B-I-set in Uy .

(3). Let A beaNA*g-I-setin Uy. Then A= S N ¥, where S is nano closed and V is nano regular-I-
open in Uy. By above proof (1), V is nano semi-I-regular in Uy. Thus, A is a NA*B-I-set in Uy.

Remark 2.1. The following examples shows that the converses of the above Proposition need not be
true.

Example 2.1. Let U ={a, b, c, d}, U/R = {{a, b}, {c}, {d}}, X = {b, d}, w=(X) ={¢, U,{a,b,d},{d},{a,
b}}and | = {¢p, {a}}. Then the set {c,d} is a nano semi-I-regular set but not a nano regular-I-open
set in Uy and the set {c} is a NA*B-I-set but not a nano semi-I-regular set in Uy.

Example 2.2. Let U = {a, b, c, d, e}, U/R = {{a}, {b, c}, {d, e}}, X = {a, d}, w=r(X) = {0, U,{a},
{a,d,e},{d,e}} and | = (¢, {a}}. Then the set {c,d, e} is a NA*B-I-set but not a NA*r-I-set in
Ur.

Proposition 2.2. The intersection of two nano a*-1-sets in Uy is a nano a*-I-set in Uy.

Proof. Let A and B be two nano a*-l-sets in Uy. Then, NInt(A) = NInt(NCI*(NInt(A))) and
NInt(B) = NInt(NCI*(NInt(B)). Now, NInt(A N B) = NiInt(A) N NInt(B) = NInt(NCI*(NInt(A))) N
NInt(NCI*(NInt(B))) = NInt(NCI*(NInt(A)) N NCI*(NInt(B))) = NInt(NCI*(NInt(A) N NInt(B) = Nint
(NCI* (NInt(ANB))) 2 NInt(ANB). Thus, NInt(A N B) 2 NInt(NCI*(NInt((A N B))) 2 NInt(A N B),
which implies NInt(A N B)=NInt(NCI*(NInt(A N B))). Hence A N B is a nano a*-1-set in Uy .

Remark 2.2. The following example shows that the union of two nano a*-I-set in Uy need not be a
nano o*-1-set in Uy.

Example 2.3. Let U ={a, b, c, d, e}, U/R = {{a}, {b, c}, {d, e}}, X = {a, d}, w=(X) = {p, U,{a},

{a,d,e},{d,e}} and | = {¢p, {a}). Then the sets A = {a,c,d} and B = {a,c, e} are nano a*-l-set in
Uy but the set A UB = {a,c,d,e} is not a nano a*-I-set in Uy.

Proposition 2.3. In a nano ideal topological space U, the following hold :

1. Every nano semi-I-regular set is a nano semi-pre-I-regular set.
2. Every NA*B-I-set is a weak N A*B-I-set.
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Proof. (1). Let A be a nano semi-I-regular setin U;. Then A is both nano semi-I- open and nano t-I-
set in Uy. Since every nano semi-l1-open set is a nano [B-1-open set in Uy. A is nano B-1-open set in
Uy . Further since every nano t- I-set is a nano ax-l-set in Uy, A is a nano ax-1-set in Uy . Thus, Ais a
nano semi-pre-1-regular set in Uy .

(2). Let A be a NA*B-l-set in Uy. Then A = SNV, where S is nano closed and V is nano
semi-I-regular in U,. By above proof, every nano semi-lI-regular set is a nano semi-pre-I-regular
set in Uy. Thus V is a nano semi-pre-1-regular set in Uy. Therefore A is a weak NA*B-I-set in
Ur.
Remark 2.3 The converses of the above Proposition need not be true as shown in the following
example.
Example 2.4. LetU ={a, b, c, d}, U/R = {{a, b}, {c}, {d}}, X = {b, d}, =r(X) ={o, U, {a, b, d}, {d}, {a,
b}}and I = {¢, {a}}. Then,

1. Theset{a, c, d} is a nano semi-pre-I-regular set but not a nano semi-I-regular set in Uy.

2. The set {a,c,d} is a weak NA*B-I-set but not a NA*B-I-set in Uy.

Theorem 2.1. Let Uy be a nano ideal topological space. Then a subset A of U, is a nano regular-I-
open setin U, if and only if A is nano open and a NA*g-I-set in Uy.

Proof. Necessity : Let A be a nano regular-1-open set in Uy. By proposition 2.6 [2], A is a nano open
set in Uy, Further by Proposition 2.1 [2], A is a NA*g-I-set in Uy. Thus A is both nano open and a
NA*g-1-set in Uy.

Sufficiency : Assume that A is nano open and a NA*g-1-set in Uy. Since A is nano open and A <
NCI*(A), A < NInt(NCI*(A)). Since A is a NA*g-lI-set, A=S N V, where S is nano closed and V is
nano regular-1-open in Uy. Since S is nano closed, NInt(NCI*(S)) < S. Since V is nano regular-1-open
in Ur, we have NInt(NCI*(V)) = V. Thus, NInt(NCI*(A)) = NInt(NCI*(S N V)) < Int(NCI*(S) N
NCI*(V)) €S NV = A. Therefore, A € NInt(NCI*(A)) €A and so A is a nano regular-l-open set in U;.

Theorem 2.2. For a subset A of a nano ideal topological space Uy, the following are equivalent :
1. Aisnano regular-1-open.
2. Aisnano open and a NA*B-I-set.
3. Ais nano a-l-open and a NA*B-1-set.
4. A is nano pre-l-open and a NA*B-1-set.

Proof. (1) — (2) Let A be a nano regular-1-open in Uy. By Proposition 2.6 [2], A is nano open in
Ui. By Proposition 2.1 (1) and (2), A is NA*B-I-set in U, . Thus A is both nano open and a NA*B-
I-setin Uy .

The proof of (2) — (3) and (3) — (4) are obvious by Proposition 3.1 [2].

(4) — (1) Let A be a nano pre-1-open set and a NA*B-I-set in U;. Since A isa NA*B-I-set in Uy, A =
S NV, where S is nano closed and V is nano semi-I-regular in U,. Since S is nano closed in Uy,
NInt(NCI*(S)) <S. Further, Since V is nano semi-I-regular in Uy, V is a nano t-1-set in Uy . Therefore
NInt(NCI*(V)) = NInt(V) V. Now, NInt(NCI*(A)) = NInt(NCI*(SN¥) < NInt(NCI*(S) N NCI*(V)) =
NInt (NCI*(S)) N NInt(NCI*(V)) < (S N V) =A. Moreover, Since A is a nano pre-l-openin Uy , A ©
NInt (NCI* (A)). Therefore A = NInt(NCI*(A)). Hence A is a nano regular-1-open in Uy .

Theorem 2.3. Let A be a subset in Uy. Then A is a nano semi-I-regular set in Uy if and only if A is
nano semi-l-open and a NA*B-I-set in Uy .

Proof . Necessity : Let A be a nano semi-I-regular set in Uy. Then A is a nano semi-I1-open set in Uy.
By Proposition 2.1 (2), A is a NA*B-I-set in Uy. Therefore A is both nano semi-l-open set and a
NA*B-I-setin Uy .

Sufficiency: Let A be a nano semi-I-open set and a NA*B-I-set in Uy. Since A is a NA*B-I-set, A =
S NV, where S is nano closed and V is nano semi-I-regular in Uy. Thus, we have NInt(NCI*(A)) =
NINt(NCI*(S N ) < NInt(NCI*(S) N NCI*(V)) = NInt(NCI*(S)) N NInt(NCI*(V)) € (SN V) =A
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Therefore, NInt(NCI*(A)) < A, which implies NInt(NCI*(A)) < Nint(A). Moreover, NInt(A) <
NInt(NCI*(A)). Therefore, NInt(A) = NInt(NCI*(A)) and this implies that A is a nano t-1-set in Uy.
Hence A is a nano semi-I-regular set in Uy .

Theorem 2.4. Let A be a subset of Uy. Then A is a nano semi-pre-I-regular set in Uy if and only if A
is a nano B-1-open set and a weak NA*B-1-set in Uy.

Proof. Necessity : Let A be a nano semi-pre-I-regular set in U,. Then A is a nano -1-open set in Uy .
Since A is nano semi-pre-l-regular, we have A = A N U, where U is nano closed. Thus A is a weak
NA*B-I-set in Uy . Therefore, A is both nano B-1-open set and a weak NA*B-I-set in Uj.

Sufficiency : Let A be a nano B-1-open set and a weak NA*B-I-set in Uy. Then A =S N 7, where S is
a nano closed set and V is a nano semi-pre-I-regular set in U, . Since each nano closed set in Uy is a
nano a*-I-set in Uy. S is a nano a*-1-set in Uy. Also since every nano semi-pre-1-regular set in Uy is
a nano o*-l-set in Uy , V is a nano a*-I-set in Uy . Thus A = S N Vis a nano a*-1-set in Uy. By
Proposition 2.2, A is both nano B-1-open set and a nano a*-1-set in Uy. Hence A is a nano semi-pre-I-
regular set in Uy.

3. Decomposition of nano R-1-Continuity

Definition 3.1. A mapping f: Uy — U; is said to be nano B-I-continuous (resp. nano a-I-
continuous, nano pre-lI-continuous, nano semi-I-continuous, nano R-I- continuous, nano semi-pre -
I-regular continuous, NA*g -I-continuous,, NA*B-1- continuous, weak NA*B -I-continuous ) if for
every V € 1, (X1), f (V) is a nano B-I-open set (resp. nano o-l-open set, nano pre-I-open set, nano
semi-1-open set, nano regular-1-open set, nano semi-pre-1-regular, NA*z -1 -set, NA*B -I-set, weak
NA*B-I-set ) in Uy.

Remark 3.1. The following examples shows that the

1. Notion of NA*B-I-continuity is independent of notions of nano a-I-continuity, nano pre-I-
continuity and nano semi-I-continuity.

2. Notion of weak N A*B-l-continuity is independent of notion of nano [-I-continuity.
Example 3.1. LetU ={a, b, c, d}, U/R = {{a, c}, {b}, {d}}, X = {a, d}, r(X) ={¢, U, {a,c,d},{d},
{a,c}h I = {p.{a}.{c}.{a,c}}, Uy = {xy,z,w}, Us/Re ={{x, ¥}, {z}, {w}}, X2 = {X, y, 7} and z&,
(Xy) ={p, Uy, {X, v, 2}}. Now,

1. Define f: Uy — U; as f(a) = x, f(b) = w, f(c)=vy, f(d) = z. Then f is nano a-I-
continuous, nano pre-l-continuous, nano semi-l-continuous but not NA*B-I-
continuous.

2. Define f: Uy — Uy as f(a) = x, f(b)=w, f(c) =y, f(d)= z. Then fis nano B-I -
continuous but not weak NA*B-I-continuous.

Example 3.2. LetU ={a, b, ¢, d}, U/R = {{a, c}, {b}, {d}}, X = {a, d}, =(X) ={¢, U,{a,c,d},{d},
{a! C}} ) 1 = {§0, {a},{C},{a, C}}v Ul = {vaisz}’ U1/R1 :{{Xv y}’ {Z}! {W}}! X1 = {Z}v and TRy (Xl) =
{o, Uy, {z}}. Now,

1. Define f: Uy — U; as f(a) = x, f(b) =z, f(c)=vy, f(d) = w. Then f is NA*B-I-
continuous, but it is neither nano a-I-continuous nor nano pre-l-continuous and nano
semi-l-continuous.

2. Definef: Uy — U;asf(a) =x, f(b) =z, f(c)=1vy, f(d) = w. Then fis weak NA*B-
I-continuous but not nano B-1-continuous.

Theorem 3.1. A mapping f: Ui — U; is nano R-l-continuous if and only if it is nano
continuous and NA* -I-continuous.

Theorem 3.2. For a mapping f: Uy — U, , the following are equivalent :
1. nano R-l-continuous.
2. nano continuous and NA*B-I-continuous.
3. nano a-l-continuous and NA*B-I-continuous.
4. nano pre-1-continuous and NA*B-I-continuous.
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Theorem 3.3. A mapping f: Uy — U; is nano semi-l-regular continuous if and only if it is
nano semi-I-continuous and NA*B-I-continuous.

Theorem 3.4. A mapping f: Uy — U; is nano semi-pre-I-regular continuous if and only if it is
nano B-l-continuous and weak NA*B-I-continuous.
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