Decompositions Of Nano R-I-Continuity

V. Inthumathi^{*}, S. Narmatha^{*}, S. Krishnaprakash^{*}

 ¹Associate Professor, Department of Mathematics, Nallamuthu Gounder Mahalingam College, Pollachi.
²Assistant Professor, Department of Mathematics, Sri Krishna Arts and Science College, Coimbatore.
³Associate Professor, Department of Science and Humanities, Karpagam College of Engineering, Coimbatore.

Abstract

In this paper, we introduce and study the notions of nano α^* -I-set, nano semi-I-regular, nano semi-pre-I-regular, nano A*B-I-sets, weak nano A*B-I-sets and investigate some of their basic properties. Also, we obtain the decompositions of nano R-I-continuity of nano ideal topological spaces.

Keywords: nano α^* -I-set, nano semi-I-regular, nano semi-pre-I-regular, nano A*B-I-sets, weak nano A*B-I-sets and nano R-I-continuity.

1. Introduction and Preliminaries

An Ideal I [6] on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following conditions : (1) $A \in I$ and $B \subseteq A$ imply $B \in I$ and (2) $A \in I$ and $B \in I$ imply A $\cup B \in I$. Given a topological space (X, τ) with ideal I on X. If P(X) is the family of all subsets of X, a set operator $(.)^*: P(X) \to P(X)$, called a *local function* [3] of A with respect to τ and I is defined as follows: For $A \subseteq X$, $A^*(I, \tau) = \{x \in X : U \cap A \not\in I \text{ for all } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau : x \in U\}$. The closure operator defined by $Cl^*(A) = A \cup A^*(I, \tau)$ [6] is a Kuratowski closure operator which generates a topology τ^* called *-topology finer than τ . Let U be a non-empty, finite universe of objects and R be an equivalence relation on U, $X \subseteq U$ and $\tau_R(X) = \{U, \varphi, U_R(X), L_R(X), B_R(X)\}$. Then $\tau_R(X)$ is a topology on U, called as the *nano topology* with respect to X. Elements of the nano topology are called as the *nano open sets* in U and the nano topological space is denoted by $(U, \tau_R(X))$ [4]. A nano topological space $(U, \tau_R(X))$ with an ideal I on U is called a nano ideal topological space [5] or nano ideal space and is denoted by $(U, \tau_R(X), I)$. Let $(U, \tau_R(X), I)$ be a nano topological space. A set operator $A^{*N} : P(U) \to P(U)$, is called the *nano local function* of *I* on *U* with respect to *I* on $\tau_{\mathbb{R}}(X)$, is defined as $A^{*N} = \{x \in U \cap A \not\in I \text{ for all } U \in \tau(X)\}$ and is denoted by A^{*N} , where nano closure operator is defined as $NCl^*(A) = A \cup A^{*N}$. A subset A of a nano ideal topological space (U, $\tau_R(X)$, I) is said to be nano semi-I-open [5], (resp. nano α -I-open [5], nano regular-I-open(nano R-I-open)[5], nano t-I-open[1]), if $A \subseteq NCl^*(NInt(A))$, (resp. $A \subseteq$ $NInt(NCl^*(NInt(A))), A = NInt(NCl^*(A), NInt(NCl^*(A)) = NInt(A)).$ A subset A of a nano ideal topological space (U, $\tau_R(X)$, I) is said to be a nano A*_R-*I*-set(briefly NA*_R-I-set) [2], if $A = S \cap V$, where S is a nano closed set and V is a nano regular-I-open set. Throughout this paper U represents a nano topological space $(U, \tau_R(X))$ and U_I represents a nano ideal topological space $(U, \tau_R(X), I)$.

2. Nano A*B-*I*-sets and weak nano A*B-*I*-sets.

Definition 2.1: Let A be a subset of a nano ideal topological space U_{I} . Then A is said to be a :

- 1. nano pre-*I*-open, if $A \subseteq NInt(NCl^*(A))$.
 - 2. nano β -*I*-open, if $A \subseteq NCl(NInt(NCl^*(A)))$.
- 3. nano α^* -*I*-set , if *NInt*(*A*) = *NInt*(*NCl**(*NInt*(*A*))).
- 4. nano semi-*I*-regular, if it is both nano semi-*I*-open and nano t-*I*-set.
- 5. nano semi-pre-*I*-regular, if it is both nano β -*I*-open and nano α^* -*I*-set.

- 6. nano A*B-*I*-set. (briefly NA*B-*I*-set) if $A = S \cap V$, where S is nano closed and V is nano semi-*I*-regular.
- 7. weak nano A*B-*I*-set. (briefly weak NA*B-*I*-set) if $A = S \cap V$, where S is nano closed and V is nano semi-pre-I-regular.

Proposition 2.1. For the nano ideal topological space U_I , the following hold :

- 1. Every nano regular-*I*-open set is nano semi-*I*-regular.
- 2. Every nano semi-*I*-regular set is a NA*B-*I*-set.
- 3. Every NA*_R-*I*-set is a NA*B-*I*-set.

Proof. (1). Let A be a nano regular-*I*-open set in U_I . Then $A = NInt(NCl^*(A))$ and so $NInt(A) = NInt(NCl^*(A))$. Therefore A is a nano t-*I*-set in U_I . Since every nano regular-*I*-open set is a nano semi-*I*-open in U_I , A is both nano semi-*I*-open and nano t-*I*-set in U_I , which implies A is a nano semi-*I*-regular set in U_I .

(2). Let A be a nano semi-*I*-regular set in U_I . Then $A = A \cap U$, where U is nano closed in U_I . Thus A is a NA*B-*I*-set in U_I .

(3). Let A be a NA*_R-I-set in U_I . Then $A = S \cap V$, where S is nano closed and V is nano regular-I-open in U_I . By above proof (1), V is nano semi-*I*-regular in U_I . Thus, A is a NA*B-*I*-set in U_I .

Remark 2.1. The following examples shows that the converses of the above Proposition need not be true.

Example 2.1. Let $U = \{a, b, c, d\}$, $U/R = \{\{a, b\}, \{c\}, \{d\}\}, X = \{b, d\}, \tau_R(X) = \{\varphi, U, \{a, b, d\}, \{d\}, \{a, b\}\}$ and $I = \{\varphi, \{a\}\}$. Then the set $\{c, d\}$ is a nano semi-*I*-regular set but not a nano regular-*I*-open set in U_I and the set $\{c\}$ is a NA*B-*I*-set but not a nano semi-*I*-regular set in U_I .

Example 2.2. Let $U = \{a, b, c, d, e\}$, $U/R = \{\{a\}, \{b, c\}, \{d, e\}\}$, $X = \{a, d\}, \tau_R(X) = \{\varphi, U, \{a\}, \{a, d, e\}, \{d, e\}\}$ and $I = \{\varphi, \{a\}\}$. Then the set $\{c, d, e\}$ is a NA*B-I-set but not a NA*_R-I-set in U_I .

Proposition 2.2. The intersection of two nano α^* -*I*-sets in U_I is a nano α^* -*I*-set in U_I .

Proof. Let *A* and *B* be two nano α^* -*I*-sets in U_I . Then, $NInt(A) = NInt(NCl^*(NInt(A)))$ and $NInt(B) = NInt(NCl^*(NInt(B)))$. Now, $NInt(A \cap B) = NInt(A) \cap NInt(B) = NInt(NCl^*(NInt(A))) \cap NInt(NCl^*(NInt(B))) = NInt(NCl^*(NInt(A))) \cap NCl^*(NInt(B))) \supseteq NInt(NCl^*(NInt(A) \cap NInt(B) = NInt(NCl^*(NInt(A)))) \supseteq NInt(A \cap B)$. Thus, $NInt(A \cap B) \supseteq NInt(NCl^*(NInt(A \cap B))) \supseteq NInt(A \cap B)$, which implies $NInt(A \cap B) = NInt(NCl^*(NInt(A \cap B)))$. Hence $A \cap B$ is a nano α^* -*I*-set in U_I .

Remark 2.2. The following example shows that the union of two nano α^* -*I*-set in U_I need not be a nano α^* -*I*-set in U_I .

Example 2.3. Let $U = \{a, b, c, d, e\}$, $U/R = \{\{a\}, \{b, c\}, \{d, e\}\}$, $X = \{a, d\}, \tau_R(X) = \{\varphi, U, \{a\}, \{a, d, e\}, \{d, e\}\}$ and $I = \{\varphi, \{a\}\}$. Then the sets $A = \{a, c, d\}$ and $B = \{a, c, e\}$ are nano α^* -*I*-set in U_I but the set $A \cup B = \{a, c, d, e\}$ is not a nano α^* -*I*-set in U_I .

Proposition 2.3. In a nano ideal topological space U_I the following hold :

- 1. Every nano semi-*I*-regular set is a nano semi-pre-*I*-regular set.
- 2. Every NA*B-I-set is a weak NA*B-I-set.

Proof. (1). Let A be a nano semi-*I*-regular set in U_I . Then A is both nano semi-*I*- open and nano t-*I*-set in U_I . Since every nano semi-*I*-open set is a nano β -*I*-open set in U_I . A is nano β -*I*-open set in U_I . Further since every nano t- *I*-set is a nano α *-*I*-set in U_I , A is a nano α *-*I*-set in U_I . Thus, A is a nano semi-pre-*I*-regular set in U_I .

(2). Let A be a NA*B-I-set in U_I . Then $A = S \cap V$, where S is nano closed and V is nano semi-I-regular in U_I . By above proof, every nano semi-I-regular set is a nano semi-pre-I-regular set in U_I . Thus V is a nano semi-pre-I-regular set in U_I . Therefore A is a weak NA*B-I-set in U_I .

Remark 2.3 The converses of the above Proposition need not be true as shown in the following example.

Example 2.4. Let $U = \{a, b, c, d\}$, $U/R = \{\{a, b\}, \{c\}, \{d\}\}, X = \{b, d\}, \tau_R(X) = \{\varphi, U, \{a, b, d\}, \{d\}, \{a, b\}\}$ and $I = \{\varphi, \{a\}\}$. Then,

- 1. The set $\{a, c, d\}$ is a nano semi-pre-*I*-regular set but not a nano semi-*I*-regular set in U_I .
- 2. The set $\{a, c, d\}$ is a weak NA*B-*I*-set but not a NA*B-*I*-set in U_I .

Theorem 2.1. Let U_I be a nano ideal topological space. Then a subset A of U_I is a nano regular-*I*-open set in U_I if and only if A is nano open and a NA*_R-*I*-set in U_I .

Proof. Necessity: Let A be a nano regular-*I*-open set in U_I . By proposition 2.6 [2], A is a nano open set in U_I , Further by Proposition 2.1 [2], A is a NA*_R-*I*-set in U_I . Thus A is both nano open and a NA*_R-*I*-set in U_I .

Sufficiency : Assume that A is nano open and a NA*_R-*I*-set in U_I . Since A is nano open and $A \subseteq NCl^*(A)$, $A \subseteq NInt(NCl^*(A))$. Since A is a NA*_R-*I*-set, $A = S \cap V$, where S is nano closed and V is nano regular-*I*-open in U_I . Since S is nano closed, $NInt(NCl^*(S)) \subseteq S$. Since V is nano regular-*I*-open in U_I , we have $NInt(NCl^*(V)) = V$. Thus, $NInt(NCl^*(A)) = NInt(NCl^*(S \cap V)) \subseteq Int(NCl^*(S) \cap NCl^*(V)) \subseteq S \cap V = A$. Therefore, $A \subseteq NInt(NCl^*(A)) \subseteq A$ and so A is a nano regular-*I*-open set in U_I .

Theorem 2.2. For a subset A of a nano ideal topological space U_I , the following are equivalent :

- 1. A is nano regular-I-open.
- 2. A is nano open and a NA*B-I-set.
- 3. A is nano α -I-open and a NA*B-I-set.
- 4. A is nano pre-I-open and a NA*B-I-set.

Proof. (1) \rightarrow (2) Let A be a nano regular-*I*-open in U_I . By Proposition 2.6 [2], A is nano open in U_I . By Proposition 2.1 (1) and (2), A is NA*B-*I*-set in U_I . Thus A is both nano open and a NA*B-*I*-set in U_I .

The proof of $(2) \rightarrow (3)$ and $(3) \rightarrow (4)$ are obvious by Proposition 3.1 [2].

 $(4) \rightarrow (1)$ Let *A* be a nano pre-*I*-open set and a NA*B-*I*-set in U_I . Since *A* is a NA*B-*I*-set in U_I , $A = S \cap V$, where *S* is nano closed and *V* is nano semi-*I*-regular in U_I . Since *S* is nano closed in U_I , *NInt*(*NCl**(*S*)) \subseteq *S*. Further, Since *V* is nano semi-*I*-regular in U_I , *V* is a nano t-*I*-set in U_I . Therefore $NInt(NCl^*(V)) = NInt(V) \subseteq V$. Now, $NInt(NCl^*(A)) = NInt(NCl^*(S \cap V) \subseteq NInt(NCl^*(S)) \cap NCl^*(V)) = NInt(NCl^*(S)) \cap NInt(NCl^*(V)) \subseteq (S \cap V) = A$. Moreover, Since *A* is a nano pre-*I*-open in U_I , *A* \subseteq *NInt*(*NCl**(*A*)). Therefore $A = NInt(NCl^*(A))$. Hence *A* is a nano regular-*I*-open in U_I .

Theorem 2.3. Let A be a subset in U_I . Then A is a nano semi-*I*-regular set in U_I if and only if A is nano semi-*I*-open and a NA*B-*I*-set in U_I .

Proof. Necessity: Let A be a nano semi-*I*-regular set in U_I . Then A is a nano semi-*I*-open set in U_I . By Proposition 2.1 (2), A is a NA*B-*I*-set in U_I . Therefore A is both nano semi-*I*-open set and a NA*B-*I*-set in U_I .

Sufficiency: Let *A* be a nano semi-*I*-open set and a NA*B-*I*-set in U_I . Since *A* is a NA*B-*I*-set, $A = S \cap V$, where *S* is nano closed and *V* is nano semi-*I*-regular in U_I . Thus, we have $NInt(NCl^*(A)) = NInt(NCl^*(S) \cap NCl^*(S) \cap NCl^*(V)) \subseteq (S \cap V) = A$.

Therefore, $NInt(NCl^*(A)) \subseteq A$, which implies $NInt(NCl^*(A)) \subseteq NInt(A)$. Moreover, $NInt(A) \subseteq NInt(NCl^*(A))$. Therefore, $NInt(A) = NInt(NCl^*(A))$ and this implies that A is a nano t-*I*-set in U_I . Hence A is a nano semi-*I*-regular set in U_I .

Theorem 2.4. Let A be a subset of U_I . Then A is a nano semi-pre-*I*-regular set in U_I if and only if A is a nano β -*I*-open set and a weak NA*B-*I*-set in U_I .

Proof. Necessity : Let A be a nano semi-pre-*I*-regular set in U_I . Then A is a nano β -*I*-open set in U_I . Since A is nano semi-pre-I-regular, we have $A = A \cap U$, where U is nano closed. Thus A is a weak NA*B-*I*-set in U_I . Therefore, A is both nano β -*I*-open set and a weak NA*B-*I*-set in U_I .

Sufficiency : Let *A* be a nano β -*I*-open set and a weak NA*B-*I*-set in U_I . Then $A = S \cap V$, where *S* is a nano closed set and *V* is a nano semi-pre-*I*-regular set in U_I . Since each nano closed set in U_I is a nano α^* -*I*-set in U_I . S is a nano α^* -*I*-set in U_I . Also since every nano semi-pre-*I*-regular set in U_I is a nano α^* -*I*-set in U_I , *V* is a nano α^* -*I*-set in U_I . Thus $A = S \cap V$ is a nano α^* -*I*-set in U_I . By Proposition 2.2, *A* is both nano β -*I*-open set and a nano α^* -*I*-set in U_I . Hence *A* is a nano semi-pre-*I*-regular set in U_I .

3. Decomposition of nano R-I-Continuity

Definition 3.1. A mapping f: $U_{I} \rightarrow U_{1}$ is said to be nano β -*I*-continuous (resp. nano α -*I*-continuous, nano pre-*I*-continuous, nano semi-*I*-continuous, nano semi-*I*-continuous, nano semi-pre -*I*-regular continuous, NA*_R -*I*-continuous, NA*B-*I*- continuous, weak NA*B -*I*-continuous) if for every $V \in \tau_{R_{1}}(X_{1})$, f⁻¹(V) is a nano β -*I*-open set (resp. nano α -*I*-open set, nano pre-*I*-open set, nano semi-*I*-open set, nano regular-*I*-open set, nano semi-pre-*I*-regular, NA*_R -*I* -set, NA*B -*I*-set, weak NA*B-*I*-set) in U_{I} .

Remark 3.1. The following examples shows that the

1. Notion of NA*B-*I*-continuity is independent of notions of nano α -*I*-continuity, nano pre-*I*-continuity and nano semi-*I*-continuity.

2. Notion of weak N A*B-*I*-continuity is independent of notion of nano β -*I*-continuity.

Example 3.1. Let $U = \{a, b, c, d\}$, $U/R = \{\{a, c\}, \{b\}, \{d\}\}, X = \{a, d\}, \tau_R(X) = \{\varphi, U, \{a, c, d\}, \{d\}, \{a, c\}\}, I = \{\varphi, \{a\}, \{c\}, \{a, c\}\}, U_1 = \{x, y, z, w\}, U_1/R_1 = \{\{x, y\}, \{z\}, \{w\}\}, X_1 = \{x, y, z\} \text{ and } \tau_{R_1}$ $(X_1) = \{\varphi, U_1, \{x, y, z\}\}$. Now,

- 1. Define $f: U_I \to U_1$ as f(a) = x, f(b) = w, f(c) = y, f(d) = z. Then f is nano α -*I*-continuous, nano pre-*I*-continuous, nano semi-*I*-continuous but not NA*B-*I*-continuous.
- 2. Define f: $U_I \rightarrow U_1$ as f(a) = x, f(b) = w, f(c) = y, f(d) = z. Then f is nano β -*I*-continuous but not weak NA*B-*I*-continuous.

Example 3.2. Let $U = \{a, b, c, d\}$, $U/R = \{\{a, c\}, \{b\}, \{d\}\}, X = \{a, d\}, \tau_R(X) = \{\varphi, U, \{a, c, d\}, \{d\}, \{a, c\}\}$, $I = \{\varphi, \{a\}, \{c\}, \{a, c\}\}, U_1 = \{x, y, z, w\}, U_1/R_1 = \{\{x, y\}, \{z\}, \{w\}\}, X_1 = \{z\}, \text{ and } \tau_{R_1}(X_1) = \{\varphi, U_1, \{z\}\}$. Now,

- 1. Define $f: U_I \to U_1$ as f(a) = x, f(b) = z, f(c) = y, f(d) = w. Then f is NA*B-*I*-continuous, but it is neither nano α -*I*-continuous nor nano pre-*I*-continuous and nano semi-*I*-continuous.
- 2. Define $f: U_I \to U_1$ as f(a) = x, f(b) = z, f(c) = y, f(d) = w. Then f is weak NA*B-*I*-continuous but not nano β -*I*-continuous.

Theorem 3.1. A mapping $f: U_I \to U_1$ is nano R-*I*-continuous if and only if it is nano continuous and NA*_R-*I*-continuous.

Theorem 3.2. For a mapping $f: U_I \to U_1$, the following are equivalent :

- 1. nano R-I-continuous.
- 2. nano continuous and NA*B-I-continuous.
- 3. nano α -*I*-continuous and NA*B-*I*-continuous.
- 4. nano pre-I-continuous and NA*B-I-continuous.

Theorem 3.3. A mapping $f: U_I \rightarrow U_1$ is nano semi-*I*-regular continuous if and only if it is nano semi-*I*-continuous and NA*B-*I*-continuous.

Theorem 3.4. A mapping $f: U_I \rightarrow U_1$ is nano semi-pre-*I*-regular continuous if and only if it is nano β -*I*-continuous and weak NA*B-*I*-continuous.

References:

- Illangovan Rajasekaran, Ochanan Nethaji and Rajendran Prem Kumar, "Perceptions of several sets in Ideal Nano Topological Spaces", Journal of New Theory, (23), (2018), pp. 78–84.
- [2] V. Inthumathi, S. Narmatha and S. Krishnaprakash, "A decomposition of nano semi-I- continuity", communicated.
- [3] K. Kuratowski, "Topology", Academic Press, New York, vol.1, (1966).
- [4] M. Lellis Thivagar and Carmel Richard, "On nano forms of weakly open sets", International Journal of Mathematics and Statistics Invention, 1(1) (2013), pp.31–37.
- [5] M. Lellis Thivagar and V.Sutha devi, "New sort of operators in nano ideal topology", Ultra Scientist, 28 (1)(1), (**2016**), pp.51–64.
- [6] R.Vaidyanathaswamy, "The localization in set topology", Proc. Indian Acad. Sci. 20, (1945), pp.51–61.