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ABOUT THIS BOOK 

 

Introduction to Artificial Intelligence and Machine Learningstarts by helping you 

understand Artificial Intelligence (AI), especially what AI needs to work and why it has failed in 

the past. You also discover the basis for some of the issues with AI today and how those issues 

might prove to be nearly impossible to solve in some cases. Of course, along with the issues, you 

also discover the fixes for some problems and consider where scientists are taking AI in search 

of answers. For a technology to survive, it must have a group of solid applications that actually 

work. It also must provide a payback to investors with the foresight to invest in the technology. 

In the past, AI failed to achieve critical success because it lacked some of these features. AI also 

suffered from being ahead of its time: true AI needed to wait for the current hardware to actually 

succeed. Today, you can find AI used in various computer applications and to automate 

processes. It’s also relied on heavily in the medical field and to help improve human interaction. 

AI is also related to data analysis, machine learning, and deep learning. Sometimes these terms 

can prove confusing, so one of the reasons to read artificial intelligence is to discover how these 

technologies interconnect. 

 

AI has a truly bright future today because it has become an essential technology. This book 

also shows you the paths that AI is likely to follow in the future. The various trends discussed in 

this book are based on what people are actually trying to do now. The new technology hasn’t 

succeeded yet, but because people are working on it, it does have a good chance of success at 

some point. 
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The Purpose of This Book 

This book is not meant to be a comprehensive textbook on machine learning. Instead, it 
will give you a base of knowledge to continue with your study of machine learning and artificial 
intelligence. In order to continue your studies and master the subject, there is a large degree of 
studying that must be done. Will discuss the general structure and organization of machine 
learning models, the common terms, and the basic statistical concepts necessary to use and 
understand machine learning. 

The basic characteristic of machine learning is the use of artificial inductive reasoning. 
Artificial inductive reasoning means that a specific event gives you cause to generalize a 
characteristic. This apple is green; therefore, all apples must be green. But here you can see why 
inductive reasoning on its own is not always perfect, and why it’s difficult to train computers to 
have the same thought process. One given piece of data is not necessarily representative of 
thousands of other possible pieces of data. Therefore, when we are using statistics and machine 
learning, we must be using enough data to be able to reason with confidence, without making the 
wrong inference based on data that is misinterpreted and becomes misleading.  

There are things we do every day as humans that we think of as ‘common sense.'  These 
types of intuitive decisions cannot be explicitly programmed in a computer, because the variables 
that help us make our decisions are too difficult to measure. We probably don't need to see a 
thousand different combinations of chess pieces on a chessboard to think ahead and plan when 
we are given a situation we haven't seen before. We, as humans, require much fewer data to be 
able to infer and learn. 
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1. INTRODUCTION 

1.1 What s Artificial Intelligence? 

The term artificial intelligence stirs emotions. For one thing there is our fascination with 

intelligence, which seemingly imparts to us humans a special place among life forms. Questions 

arise such as “What is intelligence?”, “How can one measure intelligence?” or “How does the 

brain work?”. All these questions are meaningful when trying to understand artificial 

intelligence. However, the central question for the engineer, especially for the computer scientist, 

is the question of the intelligent machine that behaves like a person, showing intelligent 

behavior. The attribute artificial might awaken much different associations. It brings up fears of 

intelligent cyborgs. It recalls images from science fiction novels. It raises the question of whether 

our highest good, the soul, is something we should try to understand, model, or even reconstruct. 

With such different offhand interpretations, it becomes difficult to define the term artificial 

intelligence or AI simply and robustly. Nevertheless I would like to try, using examples and 

historical definitions, to characterize the field of AI. In 1955, John McCarthy, one of the pioneers 

of AI, was the first to define the term artificial intelligence, roughly as follows: 

The goal of AI is to develop machines that behave as though they were intelligent. 

To test this definition, the reader might imagine the following scenario. Fifteen or so small 

robotic vehicles are moving on an enclosed four by four meter square surface. One can observe 

various behavior patterns. Some vehicles form small groups with relatively little movement. 

Others move peacefully through the space and gracefully avoid any collision. Still others appear 

to follow a leader. Aggressive behaviors are also observable. Is what we are seeing intelligent 

behavior? 

According to McCarthy’s definition the aforementioned robots can be described as intelligent. 

The psychologist Valentin Braitenberg has shown that this seemingly complex behavior can be 

produced by very simple electrical circuits. So-called Braitenberg vehicles have two wheels, 

each of which is driven by anindependent electric motor. The speed of each motor is influenced 

by a light sensoron the front of the vehicle. The more light that hits the sensor,thefaster the motor 

runs, the vehicle 1 itsconfiguration, moves away from a point light source. Vehicle 2 on the other 
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handmoves toward the light source. Further small modifications can create otherbehavior 

patterns, such that with these very simple vehicles we can realize theimpressive behavior 

described above. 

Clearly the above definition is insufficient because AI has the goal of solving difficult 

practical problems which are surely too demanding for the Braitenberg vehicle. In the 

Encyclopedia Britannica one finds a Definition that goes like: 

AI is the ability of digital computers or computer controlled robots to solve problems thatare 

normally associated with the higher intellectual processing capabilities of humans. 

But this definition also has weaknesses. It would admit for example that a computer with large 

memory that can save a long text and retrieve it on demand displays intelligent capabilities, for 

memorization of long texts can certainly be considered a higher intellectual processing capability 

of humans, as can for example the quick multiplication of two 20-digit numbers. According to 

this definition, then, every computer is an AI system. 

Rich, tersely and concisely, characterizes what AI researchers have been doing for the 

last 50 years. Even in the year 2050, this definition will be up to date. Tasks such as the 

execution of many computations in a short amount of time are the strong points of digital 

computers. In this regard they outperform humans by many multiples. In many other areas, 

however, humans are far superior to machines. For instance, a person entering an unfamiliar 

room will recognize thesurroundings within fractions of a second and, if necessary, just as 

swiftly make decisions and plan actions. To date, this task is too demanding for 

autonomousrobots. According to Rich’s definition, this is therefore a task for AI. In fact,research 

on autonomous robots is an important, current theme in AI. Constructionof chess computers, on 

the other hand, has lost relevance because they already playat or above the level of grandmasters. 

It would be dangerous, however, to conclude from Rich’s definition that AI is only concerned 

with the pragmatic implementation of intelligent processes. Intelligent systems, in the sense of 

Rich’s definition, cannot be built without a deep understanding of human reasoning and 

intelligent action in general, because of which neuroscience  is of great importance to AI. This 

also shows that the other cited definitions reflect important aspects of AI. 

A particular strength of human intelligence is adaptivity. We are capable ofadjusting to 

various environmental conditions and change our behavior accordingly through learning. 

Precisely because our learning ability is so vastly superior to that of computers, machine learning 

is, according to Rich’s definition, a central subfield of AI. 
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1.2 Brain Science and Problem Solving 

Through research of intelligent systems we can try to understand how the human brain works 

and then model or simulate it on the computer. Many ideas and principles in the field of neural 

networks stem from brain science with the related field of neuroscience. 

A very different approach results from taking a goal-oriented line of action,starting from a 

problem and trying to find the most optimal solution. How humans solve the problem is treated 

as unimportant here. The method, in this approach, is secondary. First and foremost is the 

optimal intelligent solution to the problem. Rather than employing a fixed method (such as, for 

example, predicate logic) AI has as its constant goal the creation of intelligent agents for as many 

different tasks as possible. Because the tasks may be very different, it is unsurprising that the 

methods currently employed in AI are often also quite different. Similar to medicine, 

which encompasses many different, often life-saving diagnostic and therapy procedures, AI also 

offers a broad palette of effective solutions for widely varying applications. For mental 

inspiration. Just as in medicine, there is no universal method for all application areas of AI, 

rather a great number of possible solutions for the great number of various everyday 

problems,big and small. 

 

Cognitive science is devoted to research into human thinking at a somewhat higher level. 

Similarly to brain science, this field furnishes practical AI with many important ideas. On the 

other hand, algorithms and implementations lead to further important conclusions about how 

human reasoning functions. Thus these three fields benefit from a fruitful interdisciplinary 

exchange. The subject of this book, however, is primarily problem-oriented AI as a sub-

discipline of computer science. There are many interesting philosophical questions surrounding 

intelligence and artificial intelligence. We humans have consciousness; that is, we can think 

aboutourselves and even ponder that we are able to think about ourselves. How 

doesconsciousness come to be? Many philosophers and neurologists now believe thatthe mind 

and consciousness are linked with matter, that is, with the brain. Thequestion of whether 

machines could one day have a mind or consciousness couldat some point in the future become 
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relevant. The mind-body problem in particularconcerns whether or not the mind is bound to the 

body. We will not discussthese questions here. 

 

1.3 The Turing Test and Chatter-bots 

Alan Turing made a name for himself as an early pioneer of AI with his definition of an 

intelligent machine, in which the machine in question must pass the following test. The test 

person Alice sits in a locked room with two computer terminals. One terminal is connected to a 

machine, the other with a non-malicious person Bob. Alice can type questions into both 

terminals. She is given the task of deciding, after five minutes, which terminal belongs to the 

machine. The machine passes the test if it can trick Alice at least 30% of the time [Tur50]. While 

the test is very interesting philosophically, for practical AI, which deals with problem solving, it 

is not a very relevant test. The reasons for this are similar to those mentioned above related to 

Braitenberg vehicles. 

The AI pioneer and social critic Joseph Weizenbaum developed a program named Eliza, 

which is meant to answer a test subject’s questions like a human psychologist. He was in fact 

able to demonstrate success in many cases. Supposedly his secretary often had long discussions 

with the program. Today in the internet there are many so-called chatterbots, some of whose 

initial responses are quite impressive. After a certain amount of time, however, their artificial 

nature becomes apparent. Some of these programs are actually capable of learning, whileothers 

possess extraordinary knowledge of various subjects, for example geography or software 

development. There are already commercial applications for chatterbots in online customer 

support and there may be others in the field of e-learning. It is conceivable that the learner and 

the e-learning system could communicate through a chatterbot. The reader may wish to compare 

several chatterbots and evaluate their intelligence. 

1.4 Logic Solves (Almost) All Problems 

AI as a practical science of thought mechanization could of course only begin once there 

were programmable computers. This was the case in the 1950s. Newell and Simon introduced 

Logic Theorist, the first automatic theorem prover, and thus also showed that with computers, 

which actually only work with numbers, one can also process symbols. At the same time 

McCarthy introduced, with the language LISP, a programming language specially created for the 
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processing of symbolic structures. Both of these systems were introduced in 1956 at the historic 

Dartmouth Conference, which is considered the birthday of AI. In the US, LISP developed into 

the most important tool for the implementation of symbol-processing AI systems. Thereafter the 

logical inference rule known as resolution developed into a complete calculus for predicate logic. 

 In the 1970s the logic programming language PROLOG was introduced as the European 

counterpart to LISP. PROLOG offers the advantage of allowing direct programming using Horn 

clauses, a subset of predicate logic. Like LISP, PROLOG has data types for convenient 

processing of lists. 

Until well into the 1980s, a breakthrough spirit dominated AI, especially among many 

logicians. The reason for this was the string of impressive achievements in symbol processing. 

With the Fifth Generation Computer Systems project in Japan and the ESPRIT program in 

Europe, heavy investment went into the construction of intelligent computers. 

For small problems, automatic provers and other symbol-processing systems sometimes 

worked very well. The combinatorial explosion of the search space, however, defined a very 

narrow window for these successes. This phase of AI was described in [RN10] as the “Look, Ma, 

no hands!” era. Because the economic success of AI systems fell short of expectations, funding  

for logic-based AI research in the United States fell dramatically during the 1980s. 

1.5 The New Connectionism 

During this phase of disillusionment, computer scientists, physicists, and Cognitive 

scientists were able to show, using computers which were now sufficiently powerful, that 

mathematically modeled neural networks are capable of learning using training examples, to 

perform tasks which previously required costly programming. Because of the fault-tolerance of 

such systems and their ability to recognize patterns, considerable successes became possible, 

especially in pattern recognition. Facial recognition in photos and handwriting recognition are 

two exampleapplications. The system Nettalk was able to learn speech from example texts. 

Under the name connectionism, a new subdiscipline of AI was born. 

Connectionism boomed and the subsidies flowed. But soon even here feasibilitylimits 

became obvious. The neural networks could acquire impressive capabilities,but it was usually 

not possible to capture the learned concept in simple formulas orlogical rules. Attempts to 

combine neural nets with logical rules or the knowledgeof human experts met with great 
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difficulties. Additionally, no satisfactory solutionto the structuring and modularization of the 

networks was found. 

 

1.6 Reasoning under Uncertainty 

AI as a practical, goal-driven science searched for a way out of this crisis. One wished to 

unite logic’s ability to explicitly represent knowledge with neural networks’ strength in handling 

uncertainty. Several alternatives were suggested. 

The most promising, probabilistic reasoning, works with conditional probabilities for 

propositional calculus formulas. Since then many diagnostic and expert systems have been built 

for problems of everyday reasoning using Bayesian networks. The success of Bayesian networks 

stems from their intuitive comprehensibility, the clean semantics of conditional probability, and 

from the centuries-old, mathematically grounded probability theory. 

The weaknesses of logic, which can only work with two truth values, can be solved by 

fuzzy logic, which pragmatically introduces infinitely many values between zero and one. 

Though even today its theoretical foundation is not totally firm, it is being successfully utilized, 

especially in control engineering. 

A much different path led to the successful synthesis of logic and neural networks under 

the name hybrid systems. For example, neural networks were employed to learn heuristics for 

reduction of the huge combinatorial search space in proof discovery. 

Methods of decision tree learning from data also work with probabilities. Systems like 

CART, ID3 and C4.5 can quickly and automatically build very accurate decision trees which can 

represent propositional logic concepts and then be used as expert systems. Today they are a 

favorite among machine learning techniques. 

Since about 1990, data mining has developed as a sub-discipline of AI in the area of 

statistical data analysis for extraction of knowledge from large databases. Data mining brings no 

new techniques to AI, rather it introduces the requirement of using large databases to gain 

explicit knowledge. One application with great market potential is steering ad campaigns of big 

businesses based on analysis of many millions of purchases by their customers. Typically, 

machine learning techniques such as decision tree learning come into play here. 
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1.7 Distributed, Autonomous and Learning Agents 

Distributed artificial intelligence, DAI, has been an active area research since about 1985. 

One of its goals is the use of parallel computers to increase the efficiency of problem solvers. It 

turned out, however, that because of the high computational complexity of most problems, the 

use of “intelligent” systems is more beneficial than parallelization itself. 

A very different conceptual approach results from the development of autonomous 

software agents and robots that are meant to cooperate like human teams. As with the 

aforementioned Braitenberg vehicles, there are many cases in which an individual agent is not 

capable of solving a problem, even with unlimited resources. Only the cooperation of many 

agents leads to the intelligent behavior or to the solution of a problem. An ant colony or a termite 

colony is capable of erecting buildings of very high architectural complexity, despite the fact that 

no single ant comprehends how the whole thing fits together. This is similar to the situation of 

provisioning bread for a large city like New York . There is no central planning agency for 

bread, rather there are hundreds of bakers that know their respective areas of the city and bake 

theappropriate amount of bread at those locations. 

Active skill acquisition by robots is an exciting area of current research. There are robots 

today, for example, that independently learn to walk or to perform various motor skills related to 

soccer. Cooperative learning of multiple robots to solve problems together is still in its infancy. 

1.8 AI Grows Up 

The above systems offered by AI today are not a universal recipe, but a workshop with a 

manageable number of tools for very different tasks. Most of these tools are well-developed and 

are available as finished software libraries, often with convenient user interfaces. The selection 

of the right tool and its sensible use in each individual case is left to the AI developer or 

knowledge engineer. Like any other artisanship, this requires a solid education, which this book 

is meant to promote. More than nearly any other science, AI is interdisciplinary, for it draws 

upon interesting discoveries from such diverse fields as logic, operations research, statistics, 

control engineering, image processing, linguistics, philosophy, psychology, and neurobiology. 

On top of that, there is the subject area of the particular application. To successfully develop an 

AI project is therefore not always so simple, but almost always extremely exciting. 
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2. CONCEPT LEARNING AND AI GENERAL TO SPECIFIC ORDERING 

2.1 The AI Revolution 

Around the year 2010 after about 25 years of research on neural networks, scientists could start 

harvesting the fruits of their research. The very powerful deep learning networks can for example 

learn to classify images with very high arruracy. Since image classification is of crucial 

importance for all types of smart robots, this initiated the AI revolution which in turn leads to 

smart self-driving cars and service robots. 

2.2 AI and Society 

 

There have been many scientific books and science fiction novels written on all aspects of this 

subject. Due to great advances in AI research, we have been on the brink of the age of 

autonomous robots and the Internet of Things since roughly 2005. Thus we are increasingly 

confronted with AI in everyday life. The reader, who may soon be working as an AI developer, 

must also deal with the social impact of this work. As an author of a book on AI techniques, I 

have the crucial task of examining this topic. I would like to deal with some particularly 

important aspects of AI which are of great practical relevance for our lives. 

 

2.3 AI and Transportation 

 

In the past 130 years, automotive industry engineers have made great strides. In Germany, one 

out of every two people owns their own car. These cars are highly reliable. This makes us very 

mobile and we use this very convenient mobility in work, everyday life and leisure. Moreover, 

we are dependent on it. Today, we can not get by without a motor vehicle, especially in rural 

areas with weak public transportation infrastructure, as for instance in Upper Swabia, where the 

author and his students live. 

 

The next stage of increased convenience in road transportation is now imminent. In a few years, 

we will be able to buy electric self-driving cars, i.e. robotic cars, which will autonomously bring 

us to almost any destination. All passengers in the robotic car would be able to read, work or 
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sleep during the trip. This is possible on public transit already, but passengers in a robotic car 

would be able to do this at any time and on any route. 

Autonomous vehicles that can operate independently could also travel without passengers. This 

will lead to yet another increase in convenience: robotic taxis. Via a smartphone app, we will be 

able to order the optimal taxi, in terms of size and equipment, for any conceivable transportation 

purpose. We will be able to choose whether wewant to travel alone in the taxi or whetherwe are 

willing to share a ride with other passengers. We will not need our own car anymore. All 

associated responsibilities and expenses, such as refueling, technical service, cleaning, searching 

for parking, buying and selling, garage rent, etc. are void, which saves us money and effort. 

 

Besides the immediate gains in comfort and convenience, robotic cars will offer other significant 

advantages. For example, according to a McKinsey study [GHZ14], we will need far fewer cars 

and, above all, far fewer parking places in the era of self-driving cars, which will lead to an 

immense reduction in resource consumption. According to a Lawrence Berkeley National 

Laboratory study [GS15], electric self-driving cars will cause a 90% reduction in green house 

emissions per passenger mile due to the vehicles’ energy efficiency and the optimized fit 

between the vehicle and its purpose. Due to their optimal resource utilization, robotic taxis will 

be much more environmentally friendly than, for example, heavy buses, which often run at low 

capacity, especially in rural areas. Overall, robot taxis will contribute dramatically to energy 

savings and thus, among other things, to a significant improvement in CO2 and climate 

problems. 

Passenger safety will be much higher than it is today. Experts currently estimate future accident 

rates between zero and ten percent compared to today. Emotional driving (“road rage”), 

distracted driving and driving under the influence of drugs and alcohol will no longer exist. 

 

Taxi drivers losing their jobs is often cited as a disadvantage of robotic cars. It is almost certain 

that there will no longer be taxi drivers from about 2030 onwards, but that is not necessarily a 

problem. As explained in the previous section, our society just needs to deal with the newly 

gained productivity properly. In addition to the many advantages mentioned above, robotic cars 

have two critical problems. Firstly, the so-called rebound effect will nullify at least some of the 

gains in resource, energy and time savings. Shorter driving times as well as more comfortableand 

cheaper driving will tempt us to drive more. We can only deal with this problem by rethinking 
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our attitude towards consumption and quality of life. Do we have to use the entire time saved for 

more activities? Here we are all invited to critical reflection. 

 

Another problem we should take seriously is that the robotic cars will need to be networked. In 

principle, this gives hackers and terrorists the ability to access and manipulate the vehicles’ 

controls through security holes in their network protocols. If a hacker manages to do this once, 

he could repeat the attack on a grand scale, potentially bringing entire vehicle fleets to a halt, 

causing accidents, spying on vehicle occupants, or initiating other criminal actions. Here, as in 

other areas such as home automation and the Internet of Things, IT security experts will be 

needed to ensure the highest possible security guarantees using tools of the trade such as 

cryptographic methods. By the way, improved machine learning algorithms will be useful in 

detecting hacking attacks. 

 

2.4 Service Robotics 

 

In a few years, shortly after self-driving cars, the next bit of consumption bait on the shelves of 

electronics stores will be service robots. Recently the Google subsidiary 
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Figure 3.1. : The assistance robot Marvin, deployed in the AsRoBe research project 

 

Boston Dynamics provided an impressive example in its humanoid robot Atlas. Like the new 

cars, service robots offer a large gain in comfort and convenience which we would probably like 

to enjoy. One need only imagine such a robot dutifully cleaning and scrubbing after a party from 

night until morning without a grumble. Or think of the help that an assistance robot like Marvin, 

shown in Fig., could provide to the elderly8 or to people with disabilities [SPR+16]. In contrast 

to the robotic cars, however, these benefits come with costlier trade-offs. Completely new 

markets would be created, more natural resources and more energy would be consumed, and it is 

not even certain that people’s lives would be simplified by the use of service robots in all areas. 

One of the first applications for robots like Atlas, developed by Boston Dynamics in contract 

with Google, will probably be military combat. 

 

It is therefore all the more important that, before these robots come to market, we engage in 

social discourse on this topic. Science fiction films, such as “Ex Machina” (2015) with its female 

androids, the chilling “I, Robot” (2004) or the humorous “Robot and Frank” (2012), which 
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depicts the pleasant side of a service robot as an old man’s helper, can also contribute to such a 

discussion. 

 

2.5 Agents 

 

Although the term intelligent agents is not new to AI, only in recent years has it gained 

prominence through [RN10], among others. Agent denotes rather generally a system that 

processes information and produces an output from an input. These agents may be classified in 

many different ways. 

 

 
Figure 2.1.: Agent Consists of a Program that Calculates a Result from User Input 

 

In classical computer science, software agents are primarily employed. From (Figure 2.1.) In this 

case the agent consists of a program that calculates a result from user input. 

 

In robotics, on the other hand, hardware agents (also called autonomous robots) are employed, 

which additionally have sensors and actuators at their disposal (Figure 2.1.) The agent can 

perceive its environment with the sensors. With the actuators it carries out actions and changes 

its environment. 
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Figure 2.2.: Distinction between Reflex Agents 

With respect to the intelligence of the agent, there is a distinction between reflex agents, which 

only react to input, and agents with memory, which can also include the past in their decisions. 

For example, a driving robot that through its sensors knows its exact position (and the time) has 

no way, as a reflex agent, of determining its velocity. If, however, it saves the position, at short, 

discrete time steps, it can thus easily calculate its average velocity in the previous time interval. 

 

If a reflex agent is controlled by a deterministic program, it represents a function of the set of all 

inputs to the set of all outputs. An agent with memory, on the other hand, is in general not a 

function. Reflex agents are sufficient in cases where the problem to be solved involves a Markov 

Decision process. This is a process in which only the current state is needed to determine the 

optimal next action 

 

A mobile robot which should move from room 112 to room 179 in a building takes actions 

different from those of a robot that should move to room 105. In other words, the actions depend 

on the goal. Such agents are called goal-based. 

Example 1.1 A spam filter is an agent that puts incoming emails into wanted or unwanted (spam) 

categories, and deletes any unwanted emails. Its goal as a goalbased agent is to put all emails in 

the right category. In the course of this not-so-simple task, the agent can occasionally make 

mistakes. Because its goal is to classify all emails correctly, it will attempt to make as few errors 

as possible. 
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However, that is not always what the user has in mind. Let us compare the following two agents. 

Out of 1,000 emails, Agent 1 makes only 12 errors. Agent 2 on the other hand makes 38 errors 

with the same 1,000 emails. Is it therefore worse than Agent 1? The errors of both agents are 

shown in more detail in the following table, the so-called “confusion matrix”: 

 

 
Figure 2.3. : Comparison the following Two Agents 

 

 

Agent 1 in fact makes fewer errors than Agent 2, but those few errors are severe because the user 

loses 11 potentially important emails. Because there are in this case two types of errors of 

differing severity, each error should be weighted with the appropriate cost factor. 

 

The sum of all weighted errors gives the total cost caused by erroneous decisions.The goal of a 

cost-based agent is to minimize the cost of erroneous decisions in the long term, that is, on 

average. 

Analogously, the goal of a utility-based agent is to maximize the utility derived from correct 

decisions in the long term, that is, on average. The sum of all decisions weighted by their 

respective utility factors gives the total utility. 

Of particular interest in AI are Learning agents, which are capable of changing themselves given 

training examples or through positive or negative feedback, such that the average utility of their 

actions grows over time. 

The design of an agent is oriented, along with its objective, strongly toward its environment, or 

alternately its picture of the environment, which strongly depends on it sensors. The environment 

is observable if the agent always knows the complete state of the world. Otherwise the 

environment is only partially observable. If an action always leads to the same result, then the 

environment is deterministic. Otherwise it is nondeterministic. In a discrete environment only 
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finitely many states and actions occur, whereas a continuous environment boasts infinitely 

manystates or actions. 

2.6 Knowledge-Based Systems 

 

An agent is a program that implements a mapping from perceptions to actions. For simple agents 

this way of looking at the problem is sufficient. For complex applications in which the agent 

must be able to rely on a large amount of information and is meant to do a difficult task, 

programming the agent can be very costly and unclear how to proceed. Here AI provides a clear 

path to follow that will greatly simplify the work. 

First we separate knowledge from the system or program, which uses the knowledge to, for 

example, reach conclusions, answer queries, or come up with a plan. This system is called the 

inference mechanism. The knowledge is stored in a knowledge base (KB). Acquisition of 

knowledge in the knowledge base is denoted Knowledge Engineering and is based on various 

knowledge sources such as human experts, the knowledge engineer, and databases. Active 

learning systems can also acquire knowledge through active exploration of the world. In Figure. 

2.4.  

the general architecture of knowledge-based systems is presented. 

 

 
Figure 2.4. Structure of a Classic Knowledge-Processing System 

 

Moving toward a separation of knowledge and inference has several crucial advantages. The 

separation of knowledge and inference can allow inference systems to be implemented in a 
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largely application-independent way. For example, application of a medical expert system to 

other diseases is much easier by replacing the knowledge base rather than by programming a 

whole new system. 

 

Through the decoupling of the knowledge base from inference, knowledge can be stored 

declaratively. In the knowledge base there is only a description of the knowledge, which is 

independent from the inference system in use. Without this clear separation, knowledge and 

processing of inference steps would be interwoven, and any changes to the knowledge would be 

very costly. 

 

Formal language as a convenient interface between man and machine lends itself to the 

representation of knowledge in the knowledge base. A powerful language that is accessible by 

machines and very important in AI. 

 

As an example for a large scale knowledge based system we want to refer to the software agent 

“Watson”. Developed at IBM together with a number of universities, Watson is a question 

answering program, that can be fed with clues given in natural language. It works on a 

knowledge base comprising four terabytes of hard disk storage, including the full text of 

Wikipedia [FNA+09]. Watson was developed within IBM’s DeepQA project which is 

characterized in [Dee11] as follows: 

 

The DeepQA project at IBM shapes a grand challenge in Computer Science that aims to 

illustrate how the wide and growing accessibility of natural language content and the integration 

and advancement of Natural Language Processing, Information Retrieval, Machine Learning, 

Knowledge Representation and Reasoning, and massively parallel computation can drive open-

domain automatic Question Answering technology to a point where it clearly and consistently 

rivals the best human performance. 

In the U.S. television quiz show “Jeopardy!”, in February 2011, Watson defeated the two human 

champions Brad Rutter and Ken Jennings in a two-game, combined-point match and won the one 

million dollar price. One of Watson’s particular strengths was its very fast reaction to the 

questions with the result that Watson often hit the buzzer (using a solenoid) faster than its human 

competitors and then was able to give the first answer to the question. 
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The high performance and short reaction times of Watson were due to animplementation on 90 

IBM Power 750 servers, each of which contains 32processors, resulting in 2880 parallel 

processors. 

 

3. NEURAL NETWORKS DEALS WITH DATA SOURCE 

3.1 Defining the Role of Data 

There is nothing new about data. Every interesting application ever written for a computer has 

data associated with it. Data comes in many forms — some organized, some not. What has 

changed is the amount of data. Some people find it almost terrifying that we now have access to 

so much data that details nearly every aspect of most people’s lives, sometimes to a level that 

even the person doesn’t realize. In addition, the use of advanced hardware and improvementsin 

algorithms make data the universal resource for AI today. 

 

To work with data, you must first obtain it. Today, applications collect data manually, as done in 

the past, and also automatically, using new methods. However, it’s not a matter of just one to 

two data collection techniques; collection methods take place on a continuum from fully manual 

to fully automatic. 

 

Raw data doesn’t usually work well for analysis purposes. This chapter also helps you 

understand the need for manipulating and shaping the data so that it meets specific requirements. 

You also discover the need to define the truth value of the data to ensure that analysis outcomes 

match the goals set for applications in the first place. 

 

Interestingly, you also have data acquisition limits to deal with. No technology currently exists 

for grabbing thoughts from someone’s mind through telepathic means. Of course, other limits 

exist, too — most of which you probably already know about but may not have considered. 

 

3.2Finding Data Ubiquitous in This Age 
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More than a buzzword used by vendors to propose new ways to store data and analyze it, the big 

data revolution is an everyday reality and a driving force of our times. You may have heard big 

data mentioned in many specialized scientific and business publications and even wondered what 

the term really means. From a technical perspective, big data refers to large and complex 

amounts of computer data, so large and intricate that applications can’t deal with the data by 

using additional storage or increasing computer power. 

 

Typical examples of structured data are database tables, in which information is arranged into 

columns and each column contains a specific type of information. Data is often structured by 

design. You gather it selectively and record it in its correct place. For example, you might want 

to place a count of the number of people buying a certain product in a specific column, in a 

specific table, in a specific database. As with a library, if you know what data you need, you can 

find it immediately. 

 

Unstructured data consists of images, videos, and sound recordings. You may use an 

unstructured form for text so that you can tag it with characteristics, such as size, date, or content 

type. Usually you don’t know exactly where data appears in an unstructured dataset because the 

data appears as sequences of ones and zeros that an application must interpret or visualize. 

 

Transforming unstructured data into a structured form can cost lots of time and effort and can 

involve the work of many people. Most of the data of the big data revolution is unstructured and 

stored as it is, unless someone renders it structured. 

 

3.3Using data everywhere 

Scientists need more powerful computers than the average person because of their scientific 

experiments. They began dealing with impressive amounts of data years before anyone coined 

the term big data. At this point, the Internet didn’t produce the vast sums of data that it does 

today. Remember that big data isn’t a fad created by software and hardware vendors but has a 

basis in many scientific fields, such as astronomy (space missions), satellite (surveillance and 

monitoring), meteorology, physics (particle accelerators) and genomics (DNA sequences). 
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Although AI applications can specialize in a scientific field, such as IBM’s Watson, which boasts 

an impressive medical diagnosis capability because it can learn information from millions of 

scientific papers on diseases and medicine, the actual AI application driver often has more 

mundane facets. Actual AI applications are mostly prized for being able to recognize objects, 

move along paths, or understand what people say and to them. Data contribution to the actual AI 

renaissance that molded it in such a fashion didn’t arrive from the classical sources of scientific 

data. 

The Internet now generates and distributes new data in large amounts. Our current daily data 

production is estimated to amount to about 2.5 quintillion (a number with 18 zeros) bytes, with 

the lion’s share going to unstructured data like videos and audios. All this data is related to 

common human activities, feelings, experiences, and relations. Roaming through this data, an AI 

can easily learn how reasoning and acting more human-like works. Here are some examples of 

the more interesting data you can find: 

a)Large repositories of faces and expressions from photos and videos posted on social media 

websites like Facebook, YouTube, and Google provide information about gender, age, feelings, 

and possibly sexual preferences, political orientations, or IQ (see 

https://www.theguardian.com/technology/2017/sep/12/artificial-intelligence-face-recognition-

michal-kosinski). 

b) Datasets of how people relate to each other and what drives their interest from sources such as 

social media and search engines. For instance, a study from Cambridge University’s 

Psychometrics Centre claims that Facebook interactions contain a lot of data about intimate 

relationships (see https:// www.theguardian.com/technology/2015/jan/13/your-computer-knows-

youresearchers-cambridge-stanford-university). 

 

Every day, users connect even more devices to the Internet that start storing new personal data. 

There are now personal assistants that sit in houses, such as Amazon Echo and other integrated 

smart home devices that offer ways to regulate and facilitate the domestic environment. These 

are just the tip of the iceberg because many other common tools of everyday life are becoming 

interconnected (from the refrigerator to the toothbrush) and able to process, record, and transmit  

data. The Internet of Things (IoT) is becoming a reality. Experts estimate that by 2020, six times 

as many connected things will exist as there will be people, but research teams and think tanks 

are already revisiting those figures (http://www.gartner.com/newsroom/id/3165317). 
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3.4Putting algorithms into action 

 

The human race is now at an incredible intersection of unprecedented volumes of data, generated 

by increasingly smaller and powerful hardware. The data is also increasingly processed and 

analyzed by the same computers that the process helped spread and develop. This statement may 

seem obvious, but data has become so ubiquitous that its value no longer resides only in the 

information it contains (such as the case of data stored in a firm’s database that allows its daily 

operations), butrather in its use as a means to create new values; such data is described as the 

“new oil.” These new values mostly exist in how applications manicure, store, andretrieve data, 

and in how you actually use it by means of smart algorithms. Algorithms and AI changed the 

data game. 

AI algorithms have tried different approaches along the way, passing from simple algorithms to 

symbolic reasoning based on logic and then to expert systems. In recent years, they became 

neural networks and, in their most mature form, deep learning. As this methodological passage 

happened, data turned from being the information processed by predetermined algorithms to 

becoming what molded the algorithm into something useful for the task. Data turned from being 

just the raw material that fueled the solution to the artisan of the solution itself, as shown in 

Figure 4, 

 
Figure 4.1. : With the present AI solutions, more data equates to more intelligence 
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Thus, a photo of some of your kittens has become increasingly useful not simply just because of 

its affective value — depicting your cute little cats — but because it could become part of the 

learning process of an AI discovering more general concepts, such as what characteristics denote 

a cat, or understanding what defines cute. 

 

On a larger scale, a company like Google feeds its algorithms from freely available data, such as 

the content of websites or the text found in publicly available texts and books. Google spider 

software crawls the web, jumping from website to website, retrieving web pages with their 

content of text and images. Even if Google gives back part of the data to users as search results, 

it extracts other kinds of information from the data using its AI algorithms, which learn from it 

how to achieve other objectives. 

 

3.5 Using Data Successfully 

Having plentiful data available isn’t enough to create a successful AI. Presently, an AI algorithm 

can’t extract information directly from raw data. Most algorithms rely on external collection and 

manipulation prior to analysis. When an algorithm collects useful information, it may not 

represent the right information. The following sections help you understand how to collect, 

manipulate, and automate data collection from an overview perspective. 

 

3.6 Considering the data sources 

 

The data you use comes from a number of sources. The most common data source is from 

information entered by humans at some point. Even when a system collects shopping-site data 

automatically, humans initially enter the information. A human clicks various items, adds them 

to a shopping cart, specifies characteristics (such as size) and quantity, and then checks out. 

Later, after the sale, the human gives the shopping experience, product, and delivery method a 

rating and makes comments. In short, every shopping experience becomes a data collection 

exercise as well. 
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Many data sources today rely on input gathered from human sources. Humans also provide 

manual input. You call or go into an office somewhere to make an appointment with a 

professional. A receptionist then gathers information from you that’s needed for the appointment. 

This manually collected data eventually ends up in a dataset somewhere for analysis purposes. 

 

Data is also collected from sensors, and these sensors can take almost any form. For example, 

many organizations base physical data collection, such as the number of people viewing an 

object in a window, on cellphone detection. Facial recognition software could potentially detect 

repeat customers. 

However, sensors can create datasets from almost anything. The weather service relies on 

datasets created by sensors that monitor environmental conditions such as rain, temperature, 

humidity, cloud cover, and so on. Robotic monitoring systems help correct small flaws in robotic 

operation by constantly analyzing data collected by monitoring sensors. A sensor, combined with 

a small AI application, could tell you when your dinner is cooked to perfection tonight. The 

sensor collects data, but the AI application uses rules to help define when the food is properly 

cooked. 

 

3.7 Obtaining reliable data 

The word reliable seems so easy to define, yet so hard to implement. Something is reliable when 

the results it produces are both expected and consistent. A reliable data source produces 

mundane data that contains no surprises; no one is shocked in the least by the outcome. 

Depending on your perspective, it could actually be a good thing that most people aren’t 

yawning and then falling asleep when reviewing data. The surprises make the data worth 

analyzing and reviewing. Consequently, data has an aspect of duality. We want reliable, 

mundane, fully anticipated data that simply confirms what we already know, but the unexpected 

is what makes collecting the data useful in the first place. 

 

3.8 Making human input more reliable 

Humans make mistakes — its part of being human. In fact, expecting that humans won’t make 

mistakes is unreasonable. Yet, many application designs assume that humans somehow won’t 

make mistakes of any sort. The design expects that everyone will simply follow the rules. 

Unfortunately, the vast majority of users are guaranteed to not even read the rules because most 
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humans are also lazy or too pressed for time when it comes to doing things that don’t reallyhelp 

them directly. 

 

Consider the entry of a state into a form. If you provide just a text field, some users might input 

the entire state name, such as Kansas. Of course, some users willmake a typo or capitalization 

error and come up with Kansus or kANSAS. Settingthese errors, people and organizations have 

various approaches to performingtasks. Someone in the publishing industry might use the 

Associated Press (AP)style guide and input Kan. Someone who is older and used to the 

GovernmentPrinting Office (GPO) guidelines might input Kans. instead. Other abbreviationsare 

used as well. The U.S. Post Office (USPS) uses KS, but the U.S. Coast Guard usesKA. 

Meanwhile, the International Standards Organization (ISO) form goes withUS-KS. Mind you, 

this is just a state entry, which is reasonably straightforward —or so you thought before reading 

this section. Clearly, because the state isn’t goingto change names anytime soon, you could 

simply provide a drop-down list box onthe form for choosing the state in the required format, 

thereby eliminating differencesin abbreviation use, typos, and capitalization errors in one fell 

swoop. 

Even with cross-checks and static entries, humans still have plenty of room for making mistakes. 

For example, entering numbers can be problematic. When a user needs to enter 2.00, you might 

see 2, or 2.0, or 2., or any of a variety of other entries. Fortunately, parsing the entry and 

reformatting it will fix the problem, and you can perform this task automatically, without the 

user’s aid. 

 

Unfortunately, reformatting won’t correct an errant numeric input. You can partially mit igate 

such errors by including range checks. A customer can’t buy –5 bars of soap. The legitimate way 

to show the customer returning the bars of soap is to process a return, not a sale. However, the 

user might have simply made an error, and you can provide a message stating the proper input 

range for the value. 

3.9 Using automated data collection 

Some people think that automated data collection solves all the human input issues associated 

with datasets. In fact, automated data collection does provide a number of benefits: 

  Better consistency 

  Improved reliability 
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  Lower probability of missing data 

  Enhanced accuracy 

  Reduced variance for things like timed inputs 

Automated data collection also suffers from both software and hardware errors present in any 

computing system, but with a higher potential for soft issues (which arise when the system is 

apparently working but isn’t providing the desired result) than other kinds of computer-based 

setups. When the system works, the reliability of the input far exceeds human abilities. However, 

when soft issues occur, the system often fails to recognize that a problem exists, as a human 

might, and therefore the dataset could end up containing more mediocre or even bad data 

 

3.10 Manicuring the Data 

Some people use the term manipulation when speaking about data, giving the impression that the 

data is somehow changed in an unscrupulous or devious manner. Perhaps a better term would be 

manicuring, which makes the data well shaped and lovely. No matter what term you use, 

however, raw data seldom meets the requirements for processing and analysis. To get something 

out of the data, you must manicure it to meet specific needs. The following sections discuss data 

Manicuring needs. 

 

3.11 Dealing with missing data 

To answer a given question correctly, you must have all the facts. You can guess the answer to a 

question without all the facts, but then the answer is just as likely to be wrong as correct. Often, 

someone who makes a decision, essentially answering a question, without all the facts is said to 

jump to a conclusion. When analyzing data, you have probably jumped to more conclusions than 

you think because of missing data. A data record, one entry in a dataset (which is all the data), 

consists of fields that contain facts used to answer a question. Each field contains a single kind of 

data that addresses a single fact. If that field is empty, you don’t have the data you need to 

answer the question using that particular data record. 

As part of the process of dealing with missing data, you must know that the data is missing. 

Identifying that your dataset is missing information can actually be quite hard because it requires 

you to look at the data at a low level — something that most people aren’t prepared to do and is 

time consuming even if you do have the required skills. Often, your first clue that data is missing 
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is the preposterous answers that your questions get from the algorithm and associated dataset. 

When the algorithm is the right one to use, the dataset must be at fault. 

 

A problem can occur when the data collection process doesn’t include all the data needed to 

answer a particular question. Sometimes you’re better off to actually drop a fact rather than use a 

considerably damaged fact. If you find that a particular field in a dataset is missing 90 percent or 

more of its data, the field becomes useless, and you need to drop it from the dataset (or find some 

way to obtain all that data). 

 

Less damaged fields can have data missing in one of two ways. Randomly missing data is often 

the result of human or sensor error. It occurs when data records throughout the dataset have 

missing entries. Sometimes a simple glitch will cause the damage. Sequentially missing data 

occurs during some type of generalized failure. An entire segment of the data records in the 

dataset lack the required information, which means that the resulting analysis can become quite 

skewed. 

 

Fixing randomly missing data is easiest. You can use a simple median or average value as a 

replacement. No, the dataset isn’t completely accurate, but it will likely work well enough to 

obtain a reasonable answer. In some cases, data scientists used a special algorithm to compute 

the missing value, which can make the dataset more accurate at the expense of computational 

time. 

Sequentially missing data is significantly harder, if not impossible, to fix because you lack any 

surrounding data on which to base any sort of guess. If you can find the cause of the missing 

data, you can sometimes reconstruct it. However, when reconstruction becomes impossible, you 

can choose to ignore the field. Unfortunately, some answers will require that field, which means 

that you might need to ignore that particular sequence of data records — potentially causing 

incorrect output. 

3.12 Considering data misalignments 

Data might exist for each of the data records in a dataset, but it might not align with other data in 

other datasets you own. For example, the numeric data in a field in one dataset might be a 

floating-point type (with decimal point), but an integer type in another dataset. Before you can 

combine the two datasets, the fields must contain the same type of data. 
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All sorts of other kinds of misalignment can occur. For example, date fields are notorious for 

being formatted in various ways. To compare dates, the data formats must be the same. 

However, dates are also insidious in their propensity for looking the same, but not being the 

same. For example, dates in one dataset might use Greenwich Mean Time (GMT) as a basis, 

while the dates in another dataset might use some other time zone. Before you can compare the 

times, you must align them to the same time zone. It can become even weirder when dates in one 

dataset come from a location that uses Daylight Saving Time (DST), but dates fromanother 

location don’t. 

 

3.13 Separating useful data from other data 

Some organizations are of the opinion that they can never have too much data, but an excess of 

data becomes as much a problem as not enough. To solve problems efficiently, an AI requires 

just enough data. Defining the question that you want to answer concisely and clearly helps, as 

does using the correct algorithm (or algorithm ensemble). Of course, the major problems with 

having too much data are that finding the solution (after wading through all that extra data) takes 

longer, and sometimes you get confusing results because you can’t see the forest for the trees. 

As part of creating the dataset you need for analysis, you make a copy of the original data rather 

than modify it. Always keep the original, raw data pure so that you can use it for other analysis 

later. In addition, creating the right data output for analysis can require a number of tries because 

you may find that the output doesn’t meet your needs. The point is to create a dataset that 

contains only the data needed for analysis, but keeping in mind that the data may need specific 

kinds of pruning to ensure the desired output. 

 

3.13 Considering the Five Mistruths in Data 

Humans are used to seeing data for what it is in many cases: an opinion. In fact, in some cases, 

people skew data to the point where it becomes useless, a mistruth. A computer can’t tell the 

difference between truthful and untruthful data — all it sees is data. One of the issues that make 

it hard, if not impossible, to create an AI that actually thinks like a human is that humans can 

work with mistruths and computers can’t. The best you can hope to achieve is to see the errant 

data as outliers and then filter it out, but that technique doesn’t necessarily solve the problem 

because a human would still use the data and attempt to determine a truth based on the mistruths 

that are there. 
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Consequently, even machine-derived or sensor-derived data is also subject to generating 

mistruths that are quite difficult for an AI to detect and overcome. Unfortunately, sensors and 

other mechanical input methodologies reflect the goals of their human inventors and the limits of 

what the particular technology is able to detect. 

The following sections use a car accident as the main example to illustrate five types of mistruths 

that can appear in data. The concepts that the accident is trying to portray may not always appear 

in data and they may appear in different ways than discussed. The fact remains that you normally 

need to deal with these sorts of things when viewing data. 

 

3.14 Commission 

Mistruths of commission are those that reflect an outright attempt to substitute truthful 

information for untruthful information. For example, when filling out an accident report, 

someone could state that the sun momentarily blinded them, making it impossible to see 

someone they hit. In reality, perhaps the person was distracted by something else or wasn’t 

actually thinking about driving (possibly considering a nice dinner). If no one can disprove this 

theory, the person might get by with a lesser charge. However, the point is that the data would 

also be contaminated. The effect is that now an insurance company would base premiums on 

errant data. 

 

Although it would seem as if mistruths of commission are completely avoidable, often they 

aren’t. Human tell “little white lies” to save others embarrassment or to deal with an issue with 

the least amount of personal effort. Sometimes a mistruth of commission is based on errant input 

or hearsay. In fact, the sources for errors of commission are so many that it really is hard to come 

up with a scenario where someone could avoid them entirely. All this said, mistruths of 

commission are one type of mistruth that someone can avoid more often than not. 

 

3.15 Omission 

Mistruths of omission are those where a person tells the truth in every stated fact, but leaves out 

an important fact that would change the perception of an incident as a whole. Thinking again 

about the accident report, say that someone strikes a deer, causing significant damage to their 

car. He truthfully says that the road was wet; it was near twilight so the light wasn’t as good as it 
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could be; he was a little late in pressing on the brake; and the deer simply ran out from a thicket 

at the side of the road. The conclusion would be that the incident is simply an accident. 

 

However, the person has left out an important fact. He was texting at the time. If law 

enforcement knew about the texting, it would change the reason for the accident to inattentive 

driving. The driver might be fined and the insurance adjuster would use a different reason when 

entering the incident into the database. As with the mistruth of commission, the resulting errant 

data would change how the insurance company adjusts premiums. 

 

Avoiding mistruths of omission is nearly impossible. Yes, someone could purposely leave facts 

out of a report, but it’s just as likely that someone will simply forget to include all the facts. After 

all, most people are quite rattled after an accident, so it’s easy to lose focus and report only those 

truths that left the most significant impression. Even if a person later remembers additional 

details and reports them, the database is unlikely to ever contain a full set of truths. 

 

3.16 Perspective 

Mistruths of perspective occur when multiple parties view an incident from multiple vantage 

points. For example, in considering an accident involving a struck pedestrian, the person driving 

the car, the person getting hit by the car, and a bystander who witnessed the event would all have 

different perspectives. 

An officer taking reports from each person would understandably get different facts from each 

one, even assuming that each person tells the truth as each knows it. In fact, experience shows 

that this is almost always the case and what the officer submits as a report is the middle ground 

of what each of those involved state, augmented by personal experience. In other words, the 

report will be close to the truth, but not close enough for an AI. 

Perspective is perhaps the most dangerous of the mistruths because anyone who tries to derive 

the truth in this scenario will, at best, end up with an average of the various stories, which will 

never be fully correct. A human viewing the information can rely on intuition and instinct to 

potentially obtain a better approximation of the truth, but an AI will always use just the average, 

which means that the AI is always at a significant disadvantage. Unfortunately, avoiding 

mistruths of perspective is impossible because no matter how many witnesses you have to the 

event, the best you can hope to achieve is an approximation of the truth, not the actual truth. 
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3.17 Bias 

Mistruths of bias occur when someone is able to see the truth, but due to personal concerns or 

beliefs is unable to actually see it. For example, when thinking about an accident, a driver might 

focus attention so completely on the middle of the road that the deer at the edge of the road 

becomes invisible. Consequently, the driver has no time to react when the deer suddenly decides 

to bolt out into the middle of the road in an effort to cross. 

 

A problem with bias is that it can be incredibly hard to categorize. For example, a driver who 

fails to see the deer can have a genuine accident, meaning that the deer was hidden from view by 

shrubbery. However, the driver might also be guilty of inattentive driving because of incorrect 

focus. The driver might also experience a momentary distraction. In short, the fact that the driver 

didn’t see the deer isn’t the question; instead, it’s a matter of why the driver didn’t see the deer. 

In many cases, confirming the source of bias becomes important when creating an algorithm 

designed to avoid a biased source. 

 

4. WORKING WITH AI IN HARDWARE APPLICATIONS 

4.1 Developing Robots 

People often mistake robotics for AI, but robotics are different from AI. Artificial intelligence 

aims to find solutions to some difficult problems related to human abilities (such as recognizing 

objects, or understanding speech or text); robotics aims to use machines to perform tasks in the 

physical world in a partially or completely automated way. It helps to think of AI as the software 

used to solve problems and of robotics as the hardware for making these solutions a reality. 

 

Robotic hardware may or may not run using AI software. Humans remotely control some robots, 

as with the da Vinci robot discussed in the “Assisting a surgeon” section of Chapter 7. In many 

cases, AI does provide augmentation, but the human is still in control. Between these extremes 

are robots that take abstract orders by humans (such as going from point A to point B on a map 

or picking up an object) and rely on AI to execute the orders. Other robots autonomously 

perform assigned tasks without any human intervention. Integrating AI into a robot makes the 
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robot smarter and more useful in performing tasks, but robots don’t always need AI to function 

properly. Human imagination has made the two overlap as a result of sci-fi films and novels. 

 

4.2 Defining Robot Roles 

Robots are a relatively recent idea. The word comes from the Czech word robota,which means 

forced labor. The term first appeared in the 1920 play Rossum’sUniversal Robots, written by 

Czech author KarelČapek. However, humanity haslong dreamed of mechanical beings. Ancient 

Greeks developed a myth of a bronzemechanical man, Talus, built by the god of metallurgy, 

Hephaestus, at the requestof Zeus, the father of the gods. The Greek myths also contain 

references toHephaestus building other automata, apart from Talus. Automata are 

selfoperatedmachines that executed specific and predetermined sequences of tasks (as contrasted 

to robots, which have the flexibility to perform a wide range of tasks). The Greeks actually built 

water-hydraulic automata that worked the same as an algorithm executed in the physical world. 

As algorithms, automata incorporate the intelligence of their creator, thus providing the illusion 

of being self-aware, reasoning machines. 

China and Japan have their own versions of automata. Some automata are complex mechanical 

designs, but others are complete hoaxes, such as the Mechanical Turk, an eighteenth-century 

machine that was said to be able to play chess but hid a man inside. 

 

4.3 Overcoming the sci-fi view of robots 

The first commercialized robot, the Unimate (https://www.robotics.org/joseph-

engelberger/unimate.cfm), appeared in 1961. It was simply a robotic arm — a programmable 

mechanical arm made of metal links and joints — with an end that could grip, spin, or weld 

manipulated objects according to instructions set by human operators. It was sold to General 

Motors to use in the production of automobiles. The Unimate had to pick up die-castings from 

the assembly line and weld them together, a physically dangerous task for human workers. To 

get an idea of the capabilities of such a machine, check out this video: https://www.youtube.com/ 

watch?v=hxsWeVtb-JQ. The following sections describe the realities of robots today. 

 

4.4 Considering robotic laws 
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Before the appearance of Unimate, and long before the introduction of many other robot arms 

employed in industry that started working with human workers in assembling lines, people 

already knew how robots should look, act, and even think. Isaac Asimov, an American writer 

renowned for his works in science fiction and popular science, produced a series of novels in the 

1950s that suggested a completely different concept of robots from those used in industrial 

settings. 

 

4.5 Defining actual robot capabilities 

Not only are existing robot capabilities still far from the human-like robots found in Asimov’s 

works, they’re also of different categories. The kind of biped robot imagined by Asimov is 

currently the rarest and least advanced. 

The most frequent category of robots is the robot arm, such as the previously described Unimate. 

Robots in this category are also called manipulators. You can find them in factories, working as 

industrial robots, where they assemble and weld at a speed and precision unmatched by human 

workers. Some manipulators also appear in hospitals to assist in surgical operations. 

Manipulators have a limited range of motion because they integrate into their location (they 

might be able to move a little, but not a lot because they lack powerful motors or require an 

electrical hookup), so they require help from specialized technicians to move to a new location. 

In addition, manipulators used for production tend to be completely automated (in contrast to 

surgical devices, which are remote controlled, relying on the surgeon to make medical operation 

decisions). More than one million manipulators appear throughout the world, half of them 

located in Japan. 

The last kind of robots is the mobile manipulator, which can move (as do mobile robots) and 

manipulate (as do robot arms). The pinnacle of this category doesn’t simply consist of a robot 

that moves and has a mechanical arm but also imitates human shape and behavior. The humanoid 

robot is a biped (has two legs) that has a human torso and communicates with humans through 

voice and expressions. This kind of robot is what sci-fi dreamed of, but it’s not easy to obtain. 

 

4.6 Knowing why it’s hard to be a humanoid 

Human-like robots are hard to develop, and scientists are still at work on them. Not only does a 

humanoid robot require enhanced AI capabilities to make them autonomous, it also needs to 
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move as we humans do. The biggest hurdle, though, is getting humans to accept a machine that 

looks like humans. The following sections look at various aspects of creating a humanoid robot. 

 

Creating a robot that walks 

Consider the problem of having a robot walking on two legs (a bipedal robot). This is something 

that humans learn to do adeptly and without conscious thought, but it’s very problematic for a 

robot. Four-legged robots balance easily and they don’t consume much energy doing so. 

Humans, however, do consume energy simply by standing up, as well as by balancing and 

walking. Humanoid robots, like humans, have to continuously balance themselves, and do it in 

an effective and economic way. Otherwise, the robot needs a large battery pack, which is heavy 

and cumbersome, making the problem of balance even more difficult. 

A robot with wheels can move easily on roads, but in certain situations, you need a human-

shaped robot to meet specific needs. Most of the world’s infrastructures are made for a man or 

woman to navigate. The presence of obstacles, such the passage size, or the presence of doors or 

stairs, makes using differently shaped robots difficult. For instance, during an emergency, a robot 

may need to enter a nuclear power station and close a valve. The human shape enables the robot 

to walk around, descend stairs, and turn the valve wheel. 

 

4.7. Overcoming human reluctance: The uncanny valley 
 

Humans have a problem with humanoid robots that look a little too human. In 1970, a professor 

at the Tokyo Institute of Technology, Masahiro Mori, studied the impact of robots on Japanese 

society. He coined the term Bukimi no TaniGenshō, which translates to uncanny valley. Mori 

realized that the more realistic robots look, the greater affinity humans feel toward them. This 

increase in affinity remains true until the robot reaches a certain degree of realism, at which point  

we start disliking them strongly (even feeling revulsion). The revulsion increases until the robot 

reaches the level of realism that makes them a copy of a human being. You can find this 

progression depicted in Figure 5 and described in Mori’s original paper at: 

https://spectrum.ieee.org/automaton/robotics/humanoids/the-uncanny-valley. 
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Figure 4.1. : The uncanny valley 

 

Various hypotheses have been formulated about the reasons for the revulsion that humans 

experience when dealing with a robot that is almost, but not completely, human. Cues that 

humans use to detect robots are the tone of the robotic voice, the rigidity of movement, and the 

artificial texture of the robot’s skin. The interesting point in the uncanny valley is that if we need 

humanoid robots because we want them to assist humans, we must also consider their level of 

realism and key aesthetic details to achieve a positive emotional response that will allow users to 

accept robot help. Recent observations show that even robots with little human resemblance 

generate attachment and create bonds with their users. For instance, many U.S. soldiers report 

feeling a loss when their small tactical robots for explosive detection and handling are destroyed 

in action. 

 

Working with robots 

Different types of robots have different applications. As humans developed and improved the 

three classes of robots (manipulator, mobile, and humanoid), new fields of application opened to 

robotics. It’s now impossible to enumerate exhaustively all the existing uses for robots, but the 

following sections touch on some of the most promising and revolutionary uses. 

Providing services 



40 
 

Robots provide other care services, both in private and public spaces. The most famous indoor 

robot is the Roomba vacuum cleaner, a robot that will vacuum the floor of your house by itself 

(it’s a robotic bestseller, having exceeded 3 million units sold), but there are other service robots 

to consider as well: 

Lawn mowing: An incredible variety of lawn-mowing robots exist; you can find some in your 

local garden shop. 

Assistive robots for elder people are far from offering general assistance the way a real nurse 

does. Robots focus on critical tasks such as remembering medications, helping patients move 

from a bed to a wheelchair, checking patient physical conditions, raising an alarm when 

something is wrong, or simply acting as a companion. 

 

4.8 Venturing into dangerous environments 

Robots go where people can’t, or would be at great risk if they did. Some robots have been sent 

into space (with the NASA Mars rovers Opportunity and Curiosity being the most notable 

attempts), and more will support future space exploration. (Chapter 16 discusses robots in space.) 

Many other robots stay on earth and are employed in underground tasks, such as transporting ore 

in mines or generating maps of tunnels in caves. Underground robots are even exploring sewer 

systems, as Luigi (a name inspired from the brother of a famous plumber in videogames) does. 

Luigi is a sewer-trawling robot developed by MIT’s Senseable City Lab to investigate public 

health in a place where humans can’t go unharmed because of high concentrations of chemicals, 

bacteria, and viruses. 

Robots are even employed where humans will definitely die, such as in nuclear disasters like 

Three Mile Island, Chernobyl, and Fukushima. These robots remove radioactive materials and 

make the area safer. High-dose radiation even affects robots because radiation causes electronic 

noise and signal spikes that damage circuits over time. Only radiation hardened electronic 

components allow robots to resist the effects of radiation enough to carry out their job, such as 

the Little Sunfish, a underwater robot that operates in one of Fukushima’s flooded reactors where 

the meltdown happened. 

 

4.9 Assembling a Basic Robot 
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An overview of robots isn’t complete without discussing how to build one, given the state of the 

art, and considering how AI can improve its functioning. The following sections discuss robot 

basics. 

 

Considering the components 

A robot’s purpose is to act in the world, so it needs effectors, which are moving legs or wheels 

that provide the locomotion capability. It also needs arms and pincers to grip, rotate, translate 

(modify the orientation outside of rotation), and thus provide manipulating capabilities. When 

talking about the capability of the robot to do something, you may also hear the term actuator 

used interchangeably with effectors. An actuator is one of the mechanisms that compose the 

effectors, allowing a single movement. Thus, a robot leg has different actuators, such as electric 

motors or hydraulic cylinders that perform movements like orienting the feet or bending 

the knee 

Acting in the world requires determining the composition of the world and understanding where 

the robot resides in the world. Sensors provide input that reports what’s happening outside the 

robot. Devices like cameras, lasers, sonars, and pressure sensors measure the environment and 

report to the robot what’s going on as well as hint at the robot’s location. The robot therefore 

consists mainly of an organized bundle of sensors and effectors. Everything is designed to work 

together using an architecture, which is exactly what makes up a robot. (Sensors and effectors 

are actually mechanical and electronic parts that you can use as stand-alone components in 

different applications.). 

The common internal architecture is made of parallel processes gathered into layers that 

specialize in solving one kind of problem. Parallelism is important. As human beings, we 

perceive a single flow of consciousness and attention; we don’t need to think about basic 

functions such as breathing, heartbeat, and food digestion because these processes go on by 

themselves in parallel to conscious thought. Often we can even perform one action, such as 

walking or driving, while talking or doing something else (although it may prove dangerous in 

some situations). The same goes for robots. For instance, in the three-layer architecture, a robot 

has many processes gathered into three layers, each one characterized by a different 

response time and complexity of answer: 
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Reactive: Takes immediate data from the sensors, the channels for the robot’s perception of the 

world, and reacts immediately to sudden problems (for instance, turning immediately after a 

corner because the robot is going to crash on an unknown wall). 

Executive: Processes sensor input data, determines where the robot is in the world (an important 

function called localization), and decides what action to execute given the requirements of the 

previous layer, the reactive one, and the following one, the deliberative. 

Deliberative: Makes plans on how to perform tasks, such as planning how to go from one point 

to another and deciding what sequence of actions to perform to pick up an object. This layer 

translates into a series of requirements for the robot that the executive layer carries out. 

 

Sensing the world 

Sensors in detail and presents practical applications to help explain self-driving cars. Many kinds 

of sensors exist, with some focusing on the external world and others on the robot itself. For 

example, a robotic arm needs to know how much its arm extended or whether it reached its 

extension limit. Furthermore, some sensors are active (they actively look for information based 

on a decision of the robot), while others are passive (they receive the information constantly). 

Each sensor provides an electronic input that the robot can immediately use or process in order to 

gain a perception. 

 

Perception involves building a local map of real-world objects and determining the location of 

the robot in a more general map of the known world. Combining data from all sensors, a process 

called sensor fusion, creates a list of basic facts for the robot to use. Machine learning helps in 

this case by providing vision algorithms using deep learning to recognize objects and segment 

images. It also puts all the data together into a meaningful representation using unsupervised 

machine learning algorithms. This is a task called low-dimensionalembedding, which means 

translating complex data from all sensors into a simple flat map or other representation. 

Determining a robot’s location is called simultaneous localization and mapping (SLAM), and it is 

just like when you look at a map to understand where you are in a city. 

 

Controlling a robot 

After sensing provides all the needed information, planning provides the robot with the list of the 

right actions to take to achieve its objectives. Planning is done programmatically or by using a 



43 
 

machine learning algorithm, such as Bayesian networks. Developers are experimenting with 

using reinforcement learning (machine leaning based on trial and error), but a robot is not a 

toddler (who also relies on trial and error to learn to walk); experimentation may prove time 

inefficient, frustrating, and costly in the automatic creation of a plan because the robot can be 

damaged in the process. 

 

Robots have to operate in environments that are partially unknown, changeable, mostly 

unpredictable, and in a constant flow, meaning that all actions are chained, and the robot has to 

continuously manage the flow of information and actions in real time. Being able to adjust to this 

kind of environment can’t be fully predicted or programmed, and such an adjustment requires 

learning capabilities, which AI algorithms provide more and more to robots. 

 

4.10 Flying with Drones 

Drones are mobile robots that move in the environment by flying around. Initially connected to 

warfare, drones have become a powerful innovation for leisure, exploration, commercial 

delivery, and much more. However, military development still lurks behind developments and 

causes concern from many AI experts and public figures who foresee them as possibly 

unstoppable killing machines. 

Flying technology is advanced, so drones are more mature than other mobile robots because the 

key technology to make them work is well understood. The drones’ frontier is to incorporate AI. 

Moving by flying poses some important limits on what drones can achieve, such as the weight 

they can carry or the actions they can make when arriving at a destination. 

 

Acknowledging the State of the Art 

Drones are mobile robots that fly and have existed for a long time, especially for military uses 

(where the technology originated). The official military name for such flying machines is 

Unmanned Aircraft System (UAS). More commonly, the public better knows such mobile robots 

as “drones” because their sound resembles the male bee, but you won’t find the term in many 

official papers because officials prefer names like UAS; or Unmanned Aerial Combat Vehicles 

(UACV); or Unmanned Aerial Vehicles (UAV); or even RPA (Remotely Piloted Aircraft). 
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Defining Uses for Drones 

Each kind of drone type has current and futuristic applications, and consequently different 

opportunities to employ AI. The large and small military drones already have their parallel 

development in terms of technology, and those drones will likely see more use for surveillance, 

monitoring, and military action in the field. Experts forecast that military uses will likely extend 

to personal and commercial drones, which generally use different technology from the military 

ones. (Some overlap exists, such as Duke University’s TIKAD, which actually started life in the 

hobbyist world.) 

 

Apart from rogue uses of small but cheap and easily customizable drones by insurgentsand 

terrorists groups. Governments are increasingly interested in smaller drones for urban and indoor 

combat. Indoor places, like corridors or rooms, are where intervention capabilities of aircraft-size 

Predator and Reaper military drones are limited (unless you need to take down the entire 

building). The same goes for scout drones, such as Ravens and Pumas, because these drones are 

made for the operations on the open battlefield, not for indoor warfare. 

 

Commercial drones are far from being immediately employed from shop shelves onto the 

battlefield, although they offer the right platform for the military to develop various technologies 

using them. An important reason for the military to use commercial drones is that off-the-shelf 

products are mostly inexpensive compared to standard weaponry, making them both easily 

disposable and employable in swarms comprising large number of them. Easy to hack and 

modify, they require more protection than their already hardened military counterparts do (their 

communications and controls could be jammed electronically), and they need the integration of 

some key software and hardware parts before being effectively deployed in any mission. 

 

Navigating in a closed space requires enhanced abilities to avoid collisions, to get directions 

without needing a GPS (whose signals aren’t easily caught while in a building), and to engage a 

potential enemy. Moreover, drones would need targeting abilities for reconnaissance (spotting 

ambushes and threats) and for taking out targets by themselves. Such advanced characteristics 

aren’t found in present commercial technology, and they would require an AI solution developed 

specifically for the purpose. Military researchers are actively developing the required additions 
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to gain military advantage. Recent developments in nimble deep learning networks installed on a 

standard mobile phone, such as YOLO. 

 

Seeing drones in nonmilitary roles 

Currently, commercial drones don’t have a lot to offer in the way of advanced functionality 

found in military models. A commercial drone could possibly take a snapshot of you and your 

surroundings from an aerial perspective. However, even with commercial drones, a few 

innovative uses will become quite common in the near future: 

 

1)Delivering goods in a timely fashion, no matter the traffic (being developed by 

Google X, Amazon, and many startups) 

2)Performing monitoring for maintenance and project management 

3)Assessing various kinds of damage for insurance 

4)Creating field maps and counting herds for farmers 

5)Assisting search-and-rescue operations 

6)Providing Internet access in remote, unconnected areas (an idea being 

developed by Facebook) 

7)Generating electricity from high-altitude winds 

 

Having goods delivered by a drone is something that hit the public’s attention early, thanks to 

promotion by large companies. One of the earliest and most recognized innovators is Amazon 

(which promises that a service, Amazon Prime Air, will become operative soon: 

https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011). 

 

Google promises a similar service with its Project Wing 

(http://www.businessinsider.com/project-wing-update-future-googledrone-delivery-project-

2017-6?IR=T). However, we may still be years away from having a feasible and scalable air 

delivery system based on drones. 

Even though the idea would be to cut intermediaries in the logistic chain in a profitable way, 

many technical problems and regulatory ambiguities remain to be solved. Behind the media hype 

showing drones successfully delivering small parcel and other items, such as pizza or burritos, at 

target locations in an experimental manner. The truth is that drones can’t fly far or carry much 
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weight. The biggest problem is one of regulating the flights of swarms of drones, all of which 

need to get an item from one point to another. There are obvious issues, such as avoiding 

obstacles like power lines, buildings, and other drones; facing bad weather; and finding a suitable 

spot to land near you. The drones would also need to avoid sensitive air space and meet all 

required regulatory requirements that aircraft meet. 

 

Drones can become your eyes, providing vision in situations that are too costly, dangerous, or 

difficult to see by yourself. Remotely controlled or semiautonomous (using AI solutions for 

image detection or processing sensor data), drones can monitor, maintain, surveil, or search and 

rescue because they can view any infrastructure from above and accompany and support on-

demand human operators in their activities. For instance, drones have successfully inspected 

power lines, pipelines. 

 

Police forces and first-responders around the world have found drones useful for a variety of 

activities, from search-and-rescue operations to forest fire detection and localization, and from 

border patrol missions to crowd monitoring. Police are finding newer ways to use drones. 

 

Agriculture is another important area in which drones are revolutionizing work. Not only can 

they monitor crops, report progress, and spot problems, but they also apply pesticides or fertilizer 

only where and when needed, as described by MIT Technology Review 

(https://www.technologyreview.com/s/526491/agricultural-drones/). Drones offer images that are 

more detailed and less costly than those of an orbital satellite, and they can be employed 

routinely to Precision agriculture uses AI capabilities for movement, localization, vision, 

anddetection. Precision agriculture could increase agriculture productivity (healthier crops and 

more food for everyone) while diminishing costs for intervention (no need to spray pesticides 

everywhere). 

 

Powering up drones using AI 

With respect to all drone applications, whether consumer, business, or military related, AI is both 

a game enabler and a game changer. AI allows many applications to become feasible or better 

executed because of enhanced autonomy and coordination capabilities. RaffaelloD’Andrea, a 
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Canadian/Italian/Swiss engineer, professor of dynamic systems and control at ETH Zurich, and 

drone inventor, demonstrates drone advances in this video: https://www.youtube.com/ 

watch?v=RCXGpEmFbOw. The video shows how drones can become more autonomous by 

using AI algorithms. Autonomy affects how a drone flies, reducing the role of humans issuing 

drone commands by automatically handling obstacle detection and allowing safe navigation in 

complicated areas. Coordination implies the ability of drones to work together without a central 

unit to report to and get instructions from, making drones able to exchange information and 

collaborate in real-time to complete any task. 

 

Taken to its extreme, autonomy may even exclude any human guiding the drone so that the 

flying machine can determinate the route to take and execute specific tasks by itself. (Humans 

issue only high-level orders.) When not driven by a pilot, drones rely on GPS to establish an 

optimal destination path, but that’s possible only outdoors, and it’s not always precise. Indoor 

usage increases the need for precision in flight, which requires increased use of other sensor 

inputs that help the drone understand proximity surrounds (the elements of a building, such as a 

wall protrusion, that could cause it to crash). The cheapest and lightest of these sensors is the 

camera that most commercial drones have installed as a default device. But having a camera 

doesn’t suffice because it requires proficiency in processing images using computer vision and 

deep learning techniques. 

 

 

 

 

 

4.11 Utilizing the AI-Driven Car 
A self-driving car (SD car) is an autonomous vehicle, which is a vehicle thatcan drive by itself 

from a starting point to a destination without humanintervention. Autonomy implies not simply 

having some tasks automated(such as Active Park Assist demonstrated at 

https://www.youtube.com/watch?v=xW-MhoLImqg), but being able to perform the right steps to 

achieveobjectives independently. An SD car performs all required tasks on its own, with a 

human potentially there to observe (and do nothing else). Because SD cars havebeen part of 

history for more than 100 years. 
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For a technology to succeed, it must provide a benefit that people see as necessary and not as 

easily obtained using other methods. That’s why SD cars are so exciting. They offer many things 

of value, other than just driving. This tells you how SD cars will change mobility in significant 

ways and helps you understand why this is such a compelling technology. 

When SD cars become a bit more common and the world comes to accept them as just a part of 

everyday life, they will continue to affect society. The chapter helps you understand these issues 

and why they’re important. It answers the question of what it will be like to get into an SD car 

and assume that the car will get you from one place to another without problems. 

Finally, SD cars require many sensor types to perform their task. Yes, in some respects you 

could group these sensors into those that see, hear, and touch, but that would be an 

oversimplification. The final section of the chapter helps you understand how the various SD car 

sensors function and what they contribute to the SD car as a whole. 

 

4.12 Getting a Short History 

Developing cars that can drive by themselves has long been part of the futuristic vision provided 

by sci-fi narrative and film since early experiments in the 1920s with radio-operated cars. The 

problem with these early vehicles is that they weren’t practical; someone had to follow behind 

them to guide them using a radio controller. Consequently, even though the dream of SD cars has 

been cultivated for so long, the present projects have little to share with the past other than the 

vision of autonomy. 

The military isn’t the only one pushing for autonomous vehicles. For a long time, the automotive 

industry has suffered from overproduction because it can produce more cars than required by 

market demand. Market demand is down as a result of all sorts of pressures, such as car 

longevity. In the 1930s, car longevity averaged 6.75 years, but cars today average 10.8 or more 

years and allow drivers to drive 250,000 or more miles. The decrease in sales has led some 

makers to exit the industry or fuse together and form larger companies. SD cars are the silver 

bullet for the industry, offering a way to favorably reshape market demand and 

convinceconsumers to upgrade. This necessary technology will result in an increase in the 

production of a large number of new vehicles. 

 

4.13 Understanding the Future of Mobility 
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SD cars aren’t a disruptive invention simply because they’ll radically change how people 

perceive cars, but also because their introduction will have a significant impact on society, 

economics, and urbanization. At present, no SD cars are on the road yet — only prototypes. (You 

may think that SD cars are already a commercial reality, but the truth is that they’re all 

prototypes. Look, for example, at the article at https://www.wired.com/story/uber-self-driving-

cars-pittsburgh/ and you see phrases such as pilot projects used, which you should translate to 

mean prototypes that aren’t ready for prime time.) Many people believe that SD car introduction 

will require at least another decade, and replacing all the existing car stock with SD cars will take 

significantly longer. However, even if SD cars are still in the future, you can clearly expect great 

things from them, as described in the following sections. 

 

4.14 Getting into a Self-Driving Car 

Creating a SD car, contrary to what people imagine, doesn’t consist of putting a robot into the 

front seat and letting it drive the car. Humans perform myriad tasks to drive a car that a robot 

wouldn’t know how to perform. To create a human-like intelligence requires many systems 

connecting to each other and working harmoniously together to define a proper and safe driving 

environment. Some efforts are under way to obtain an end-to-end solution, rather than rely on 

separate AI solutions for each need. The problem of developing an SD car requires solving many 

single problems and having the individual solutions work effectively together. For example, 

recognizing traffic signs and changing lanes require separate systems. 

 

End-to-end solution is something you often hear when discussing deep learning’s role in AI. 

Given the power of learning from examples, many problems don’t require separate solutions, 

which are essentially a combination of many minor problems, with each one solved by a 

different AI solution. Deep learning can solve the problem as a whole by solving examples and 

providing a unique solution that encompasses all the problems that required separate AI solutions 

in the past. The problem is that deep learning is limited in its capability to actually perform this 

task today. A single deep learning solution can work for some problems, but others still require 

that you combine lesser AI solutions if you want to get a reliable, complete solution. 

 

4.15 Putting all the tech together 
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Under the hood of an SD car are systems working together according to the robotic paradigm of 

sensing, planning, and acting. Everything starts at the sensing level, with many different sensors 

telling the car different pieces of information: 

 

1)The GPS tells where the car is in the world (with the help of a map system), which translates 

into latitude, longitude, and altitude coordinates. 

2)The radar, ultrasound, and lidar devices spot objects and provide data about their location and 

movements in terms of changing coordinates in space. 

3)The cameras inform the car about its surroundings by providing image snapshots in digital 

format. 

 

Many specialized sensors appear in an SD car. The “Overcoming Uncertainty of Perceptions” 

section, later in this chapter, describes them at length and discloses how the system combines 

their output. The system must combine and process the sensor data before the perceptions 

necessary for a car to operate become useful. Combining sensor data therefore defines different 

perspectives of the world around the car. 

 

Localization is knowing where the car is in the world, a task mainly done by processing the data 

from the GPS device. GPS is a space-based satellite navigation system originally created for 

military purposes. When used for civilian purposes, it has some inaccuracy embedded (so that 

only authorized personal can use it to its full precision). The same inaccuracies also appear in 

other systems, such as GLONASS (the Russian navigation system), GALILEO (or GNSS, the 

European system), or the BeiDou (or BDS, the Chinese system). Consequently, no matter what 

satellite constellation you use, the car can tell that it’s on a certain road, but it can miss the lane 

it’s using (or even end up running on a parallel road). In addition to the rough locationprovided 

by GPS, the system processes the GPS data with lidar sensor data todetermine the exact position 

based on the details of the surroundings. 

 

The detection system determines what is around the car. This system requires many subsystems, 

with each one carrying out a specific purpose by using a unique mix of sensor data and 

processing analysis 
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1)Lane detection is achieved by processing camera images using image data analysis or deep-

learning specialized networks for image segmentation, in which an image is partitioned into 

separated areas labeled by type (that is, road, cars, and pedestrians). 

2)Traffic signs and traffic lights detection and classification are achieved by processing images 

from cameras using deep-learning networks that first spot the image area containing the sign or 

light and then labeling them with the right type (the type of sign or the color of lights). 

3) Combined data from radar, lidar, ultrasound, and cameras help locate external objects and 

track their movements in terms of direction, speed, and acceleration. 

4) Lidar data is mainly used for detecting free space on the road (an unobstructed 

lane or parking space). 

 

Letting AI into the scene 

After the sensing phase, which involves helping the SD car determine where it is and what’s 

going on around it, the planning phase begins. AI fully enters the scene at this point. Planning for 

an SD cars boils down to solving these specific planning tasks: 

Route: Determines the path that the car should take. Because you’re in the car to go somewhere 

specific (well, that’s not always true, but it’s an assumption that holds true most of the time), you 

want to reach your destination in the fastest and safest way. In some cases, you also must 

consider cost. Routing algorithms, which are classic algorithms, are there to help. 

»Environment prediction: Helps the car to project itself into the future because it takes time to 

perceive a situation, decide on a maneuver, and complete it. During the time necessary for the 

maneuver to take place, other cars could decide to change their position or initiate their own 

maneuvers, too. When driving, you also try to determine what other drivers intend to do to avoid 

possible collisions. An SD car does the same thing using machine learning prediction to estimate 

what will happen next and take the future into account. 

Behavior planning: Provides the car’s core intelligence. It incorporates the practices necessary 

to stay on the road successfully: lane keeping; lane changing; merging or entering into a road; 

keeping distance; handling traffic lights, stop signs and yield signs; avoiding obstacles; and much 

more. All these tasks are performed using AI, such as an expert system that incorporates many 

drivers’ expertise, or a probabilistic model, such as a Bayesian network, or even a simpler 

machine learning model.  
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Understanding it is not just AI 

After sensing and planning, it’s time for the SD car to act. Sensing, planning, and acting are all 

part of a cycle that repeats until the car reaches its destination and stops after parking. Acting 

involves the core actions of acceleration, braking, and steering. The instructions are decided 

during the planning phase, and the car simply executes the actions with controller system aid, 

such as the Proportional- Integral-Derivative (PID) controller or Model Predictive Control 

(MPC), which are algorithms that check whether prescribed actions execute correctly and, if 

not,immediately prescribe suitable countermeasures. 

It may sound a bit complicated, but it’s just three systems acting, one after the other, from start to 

end at destination. Each system contains subsystems that solve a single driving problem, as 

depicted in Figure 4.2.Using the fastest and most reliable algorithms. 

 

 
Figure 4.2. : An overall, schematic view of the systems working in an SD car 

 

At the time of writing, this framework is the state of the art. SD cars will likely continue as a 

bundle of software and hardware systems housing different functions and operations. In some 

cases, the systems will provide redundant functionality, such as using multiple sensors to track 

the same external object, or relying on multiple perception processing systems to ensure that 
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you’re in the right lane. Redundancy helps ensure zero errors and therefore reduce fatalities. For 

instance, even when a system like a deep-learning traffic-sign detector fails or is tricked. 

 

4.16 Overcoming Uncertainty of Perceptions 

 

Steven Pinker, professor in the Department of Psychology at Harvard University, says in his 

book The Language Instinct: How the Mind Creates Language that “in robotics, the easy 

problems are hard and the hard problems are easy.” In fact, an AI playing chess against a master 

of the game is incredibly successful; however, more mundane activities, such as picking up an 

object from the table, avoiding a collision with a pedestrian, recognizing a face, or properly 

answering a question over the phone, can prove quite hard for an AI. 

The Moravec paradox says that what is easy for humans is hard for AI (and vice versa), as 

explained in the 1980s by robotics and cognitive scientists Hans Moravec, Rodney Brooks, and 

Marvin Minsk. Humans have had a long time to develop skills such as walking, running, picking 

up an object, talking, and seeing; these skills developed through evolution and natural selection 

over millions of years. To survive in this world, humans do what all the living beings have done 

since life has existed on earth. Conversely, high abstraction and mathematics are a relatively new 

discovery for humans, and we aren’t naturally adapted for them. 

Cars have some advantages over robots, which have to make their way in buildings and on 

outside terrain. Cars operate on roads specifically created for them, usually well-mapped ones, 

and cars already have working mechanical solutions for moving on road surfaces. 

 

Actuators aren’t the greatest problem for SD cars. Planning and sensing are what pose serious 

hurdles. Planning is at a higher level (what AI generally excels in). When it comes to general 

planning, SD cars can already rely on GPS navigators, a type of AI specialized in providing 

directions. Sensing is the real bottleneck for SD cars because without it, no planning and 

actuation are possible. Drivers sense the road all the time to keep the car in its lane, to watch out 

for obstacles, and to respect the required rules. 

Sensing hardware is updated continuously at this stage of the evolution of SD cars to find more 

reliable, accurate, and less costly solutions. On the other hand, both processing sensor data and 

using it effectively rely on robust algorithms, such as the Kalman filter. 
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4.17 Introducing the car’s senses 

Sensors are the key components for perceiving the environment, and an SD carcan sense in two 

directions, internal and external: 

 

Proprioceptive sensors: Responsible for sensing vehicle state, such as systems status (engine, 

transmission, braking, and steering), and the vehicle’s position in the world by using GPS 

localization, rotation of the wheels, the speed of the vehicle, and its acceleration. 

 

Exteroceptive sensors: Responsible for sensing the surrounding environment by using sensors 

such as camera, lidar, radar, and ultrasonic sensor. 

Both proprioceptive and exteroceptive sensors contribute to SD car autonomy. GPS localization, 

in particular, provides a guess (possibly viewed as a rough estimate) as to the SD car’s location, 

which is useful at a high level for planning directions and actions aimed at getting the SD car to 

its destination successfully. The GPS helps an SD car in the way it helps any human driver: 

providing the right directions. 

 

The exteroceptive sensors (shown in Figure 4.3.) help the car specifically in driving. They 

replace or enhance human senses in a given situation. Each of them offers a different perspective 

of the environment; each suffers specific limitations; and each excels at different capabilities. 
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Figure 4.3. : A schematic representation of exteroceptive sensors in an SD car. 

 

Limitations come in a number of forms. As you explore what sensors do for an SD car, you must 

consider cost, sensitivity to light, sensitivity to weather, noisy recording (which means that 

sensitivity of the sensor changes, affecting accuracy), range, and resolution. On the other hand, 

capabilities involve the capability to track the velocity, position, height, and distance of objects 

accurately, as well as the skill to detect what those objects are and how to classify them. 

 

 

Camera 

Cameras are passive, vision-based sensors. They can provide mono or stereo vision. Given their 

low cost, you can place plenty of them on the front windshield, as well as on front grilles, side 

mirrors, the rear door, and the rear windshield. Commonly, stereo vision cameras mimic human 

perception and retrieve information on the road and from nearby vehicles, whereas mono vision 

cameras are usually specialized in detecting traffic signs and traffic lights. The data they capture 

is processed by algorithms for image processing or by deep-learning neural networks to provide 
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detection and classification information (for instance, spotting a red light or a speed-limit traffic 

signal). Cameras can have high resolution (they can spot small details) but are sensitive to light 

and weather conditions (night, fog or snow). 

 

Lidar (LIght Detection and Ranging) 

Lidar uses infrared beams (about 900 nanometer wavelength, invisible to human eyes) that can 

estimate the distance between the sensor and the hit object. They use a rotating swivel to project 

the beam around and then return estimations in the form of a cloud of collision points, which 

helps estimate shapes and distances. Depending on price (with higher generally meaning better), 

lidar can have higher resolution than radar. However, lidar is frailer and easier to get dirty than 

radar because it’s exposed outside the car. 

 

Radar (RAdio Detection and Ranging) 

Based on radio waves that hit a target and bounce back, and whose time of flight defines distance 

and speed, radar can be located in the front and rear bumper, as well as on the sides of the car. 

Vendors have used it for years in cars to provide adaptive cruise control, blind-spot warning, 

collision warning, and avoidance. In contrast to other sensors that need multiple successive 

measurements, radar can detect an object’s speed after a single ping because of the Doppler 

effect. 

Radar comes in short-range and long-range versions, and can both create a blueprint of 

surroundings and be used for localization purposes. Radar is least affected by weather conditions 

when compared to other types of detection, especially rain or fog, and has 150 degrees of sight 

and 30–200 meters of range. Its main weakness is the lack of resolution (radar doesn’t provide 

much detail) and inability to detect static objects properly. 

 

Ultrasonic sensors 

Ultrasonic sensors are similar to radar but use high-frequency sounds (ultrasounds, inaudible by 

humans, but audible by certain animals) instead of microwaves. The main weakness of ultrasonic 

sensors (used by manufacturers instead of the frailer and more costly lidars) is their short range. 

 

Putting together what you perceive 
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When it comes to sensing what is around a SD car, you can rely on a host of different 

measurements, depending on the sensors installed on the car. Yet, each sensor has different 

resolution, range, and noise sensitivity, resulting in different measures for the same situation. In 

other words, none of them is perfect, and their sensory weaknesses sometimes hinder proper 

detection. Sonar and radar signals might be absorbed; lidar’s rays might pass through transparent 

solids. In addition, it’s possible to fool cameras with reflections or bad light 

SD cars are here to improve our mobility, which means preserving our lives and those of others. 

An SD car can’t be permitted to fail to detect a pedestrian who suddenly appears in front of it. 

For safety reasons, vendors focus much effort on sensor fusion, which combines data from 

different sensors to obtain a unified measurement that’s better than any single measurement. 

Sensor fusion is most commonly the result of using Kalman filter variants (such as the Extended 

Kalman Filter or the even more complex Unscented Kalman Filter). 

Rudolf E. Kálmán was a Hungarian electrical engineer and an inventor who immigrated to the 

United States during World War II. Because of his invention, which found so many applications 

in guidance, navigation, and vehicle control, from cars to aircraft to spacecraft, Kálmán received 

the National Medal of Science in 2009 from U.S. President Barack Obama. 

 

A Kalman filter algorithm works by filtering multiple and different measurements taken over 

time into a single sequence of measurements that provide a real estimate (the previous 

measurements were inexact manifestations). It operates by first taking all the measurements of a 

detected object and processing them (the state prediction phase) to estimate the current object 

position. Then, as new measurements flow in, it uses the new results it obtains and updates the 

previous ones to obtain a more reliable estimate of the position and velocity of the object 

(themeasurement update phase), as shown in Figure 4.4.  
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Figure4.4. : A Kalman filter estimates the trajectory of a bike by fusing radar and lidar data 

 

In this way, an SD car can feed the algorithm the sensor measurements and use them to obtain a 

resulting estimate of the surrounding objects. The estimate combines all the strengths of each 

sensor and avoids their weaknesses. This is possible because the filter works using a more 

sophisticated version of probabilities and Bayes’ theorem. 

 

Understanding theNonstarter Application 

AI can also fall into the trap of developing solutions to problems that don’t really exist. Yes, the 

wonders of the solution really do look quite fancy, but unless the solution addresses a real need, 

no one will buy it. Technologies thrive only when they address needs that users are willing to 

spend money to obtain. This chapter finishes with a look at solutions to problems that don’t exist. 
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5. USING AI WHERE IT WON’T WORK  

5.1 Defining the limits of AI 

When talking to Alexa, you might forget that you’re talking with a machine. The machine has no 

idea of what you’re saying, doesn’t understand you as a person, and has no real desire to interact 

with you; it only acts as defined by the algorithms created for it and the data you provide. Even 

so, the results are amazing. It’s easy to anthropomorphize the AI without realizing it and see it as 

an extension of a humanlike entity. 

Creativity 

You can find an endless variety of articles, sites, music, art, writings, and all sorts of supposedly 

creative output from an AI. The problem with AI is that it can’t create anything. When you think 

about creativity, think about patterns of thought. For example, Beethoven had a distinct way of 

thinking about music. You can recognize a classic Beethoven piece even if you aren’t familiar 

with all his works because the music has a specific pattern to it, formed by the manner in which  

Beethoven thought. 

Creativity also implies developing a different perspective, which is essentially defining a 

different sort of dataset (if you insist on the mathematical point of view). An AI is limited to the 

data you provide. It can’t create its own data; it can only create variations of existing data — the 

data from which it learned. The “Understanding teaching orientation” sidebar in Chapter 13 

expounds on this idea of perspective. To teach an AI something new, something different, 

something amazing, a human must decide to provide the appropriate data orientation. 

 

Imagination 

To create is to define something real, whether it’s music, art, writing, or any other activity that 

results in something that others can see, hear, touch, or interact with in other ways. Imagination 

is the abstraction of creation, and is therefore even further outside the range of AI capability. 

Someone can imagine things that aren’t real and can never be real. Imagination is the mind 

wandering across fields of endeavor, playing with what might be if the rules didn’t get in the 

way. True creativity is often the result of a successful imagination. 

Just as an AI can’t create new patterns of thought or develop new data without using existing 

sources, it must also exist within the confines of reality. Consequently, it’s unlikely that anyone 
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will ever develop an AI with imagination. Not only does imagination require creative 

intelligence, it also requires intrapersonal intelligence, and an AI possesses neither form of 

intelligence. 

Imagination, like many human traits, is emotional. AI lacks emotion. In fact, when viewing what 

an AI can do, versus what a human can do, it often pays to ask the simple question of whether 

the task requires emotion. 

 

Data deficiencies 

The “Considering the Five Mistruths in Data” section of Chapter 2 tells you about data issues 

that an AI must overcome to perform the tasks that it’s designed to do. The only problem is that 

an AI typically can’t recognize mistruths in data with any ease unless there is an accompanying 

wealth of example data that lacks these mistruths, which might be harder to come by than you 

think. Humans, on the other hand, can often spot the mistruths with relative ease. Having seen 

more examples than any AI will ever see, a human can spot the mistruths through both 

imagination and creativity. A human can picture the mistruth in a manner that the AI can’t 

because the AI is stuck in reality. 

 

Mistruths are added into data in so many ways that listing them all is not even possible. Humans 

often add these mistruths without thinking about it. In fact, avoiding mistruths can be impossible, 

caused as they are by perspective, bias, and frame-of-reference at times. Because an AI can’t 

identify all the mistruths, the data used to make decisions will always have some level of 

deficiency. Whether that deficiency affects the AI’s capability to produce useful output depends 

on the kind and level of deficiency, along with the capabilities of the algorithms. 

There is also the issue of speaking a hurtful truth that an AI will never be able tohandle because 

an AI lacks emotion. A hurtful truth is one in which the recipientgains nothing useful, but instead 

receives information that causes harm —whether emotional, physical, or intellectual. For 

example, a child may not knowthat one parent was unfaithful to another. Because both parents 

have passed on,the information isn’t pertinent any longer, and it would be best to allow the child 

to remain in a state of bliss. However, someone comes along and ensures that thechild’s 

memories are damaged by discussing the unfaithfulness in detail. The childdoesn’t gain 

anything, but is most definitely hurt. An AI could cause the same sortof hurt by reviewing family 

information in ways that the child would neverconsider.Upon discovering the unfaithfulness 
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through a combination of police reports, hotel records, store receipts, and other sources, the AI 

tells the child about the unfaithfulness, again, causing hurt by using the truth. However, in the 

case of the AI, the truth is presented because of a lack of emotional intelligence 

(empathy); the AI is unable to understand the child’s need to remain in a blissful state about the 

parent’s fidelity. Unfortunately, even when a dataset contains enough correct and truthful 

information for an AI to produce a usable result, the result can prove more hurtful than helpful.  

 

5.2 Applying AI incorrectly 

The limits of AI define the realm of possibility for applying AI correctly. However, even within 

this realm, you can obtain an unexpected or unhelpful output. For example, you could provide an 

AI with various inputs and then ask for a probability of certain events occurring based on those 

inputs. When sufficient data is available, the AI can produce a result that matches the 

mathematical basis of the input data. However, the AI can’t produce new data, create solutions 

based on that data, imagine new ways of working with that day, or provide ideas for 

implementing a solution. All these activities reside within the human realm. All you 

should expect is a probability prediction. 

Another issue is whether the dataset contains any sort of opinion, which is far more prevalent 

than you might think. An opinion differs from a fact in that the fact is completely provable and 

everyone agrees that a fact it truthful (at least, everyone with an open mind). Opinions occur 

when you don’t have enough scientific fact to back up the data. In addition, opinions occur when 

emotion is involved. Even when faced with conclusive proof to the contrary, some humans 

would rather rely on opinion than fact. The opinion makes us feel comfortable; the fact doesn’t. 

AI will nearly always fail when opinion is involved. Even with the best algorithm available 

someone will be dissatisfied with the output. 

 

5.3 Entering a world of unrealistic expectations 

The previous sections of the chapter discuss how expecting an AI to perform certain tasks or 

applying it in less than concrete situations will cause problems. 

Unfortunately, humans don’t seem to get the idea that the sort of tasks that many of us think an 

AI can perform will never come about. These unrealistic expectations have many sources, 

including 
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»»Media: Books, movies, and other forms of media all seek to obtain an emotional response 

from us. However, that emotional response is the very source of unrealistic expectations. We 

imagine that an AI can do something, but it truly can’t do those things in the real world 

»Anthropomorphization: Along with the emotions that media generates, humans also tend to 

form attachments to everything. People often name their cars, talk to them, and wonder if they’re 

feeling bad when they break down. An AI can’t feel, can’t understand, can’t communicate 

(really), can’t do anything other than crunch numbers — lots and lots of numbers. When the 

expectation is that the AI will suddenly develop feelings and act human, the result is doomed to 

failure. 

Deficient technology: In many places in this book, you find that a problem wasn’t solvable at a 

certain time because of a lack of technology. It isn’t realistic to ask an AI to solve a problem 

when the technology is insufficient. For example, the lack of sensors and processing power 

would have made creating a self-driving car in the 1960s impossible, yet advances in technology 

have made such an endeavor possible today. 

 

5.4 Considering the Effects of AI Winters 

AI winters occur when scientists and others make promises about the benefits of AI that don’t 

come to fruition within an expected time frame, causing funding for AI to dry up and research to 

continue at only a glacial pace. Since 1956, the world has seen two AI winters. (Right now, the 

world is in its third AI summer.) The following sections discuss the causes, effects, and results of 

AI winter in more detail. 

Understanding the AI winter 

It’s hard to say precisely when AI began. After all, even the ancient Greeks dreamed of creating 

mechanical men, such as those presented in the Greek myths about Hephaestus and Pygmalion’s 

Galatea, and we can assume that these mechanical men would have some sort of intelligence. 

Consequently, one could argue that the first AI winter actually occurred sometime between the 

fall of the Roman empire and the time in the middle ages when people dreamed of an alchemical 

way of placing the mind into matter, such as JābiribnHayyān’sTakwin, Paracelsus’ homunculus, 

and Rabbi Judah Loew’s Golem. However, these efforts are unfounded 

stories and not of the scientific sort that would appear later in 1956 with the founding of 

government-funded artificial intelligence research at Dartmouth College. An AI winter occurs, 
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then, when funding for AI dwindles. The use of the word winter is appropriate because like a tree 

in winter, AI didn’t stop growing altogether. When you view the rings of a tree, you see that the 

tree does continue to grow in winter — just not very fast. Likewise, during the AI winters from 

1974 to 1980 and again from 1987 to 1993, AI did continue to grow, but at a glacial pace. 

 

Defining the causes of the AI winter 

The cause of an AI winter could easily be summarized as resulting from outlandish promises that 

are impossible to keep. At the outset of the efforts at Dartmouth College in 1956, the soon-to-be 

leaders of AI research predicted that a computer as intelligent as a human would take no more 

than a generation. Sixty-plus years later, computers still aren’t nearly as smart as humans. In fact, 

if you’ve read previous chapters, you know that computers are unlikely to ever be as smart as 

humans, at least not in every kind of intelligence (and by now have exceeded human capability 

only in a very few kinds). 

 

Part of the problem with overpromising capabilities is that early proponents of AI believed that 

all human thought could be formalized as algorithms. In fact, this idea goes back to the Chinese, 

Indian, and Greek philosophers. Only some components of human intelligence be formalized. In 

fact, the best possible outcome is that human mathematical and logical reasoning could be 

mechanized. Even so, in the 1920s and 1930s, David Hilbert challenged mathematicians to prove 

that all mathematical reasoning can be formalized. The answer to this challenge came from 

Gödel’s incompleteness proof, Turing’smachine, and Church’s Lambda calculus. Two outcomes 

emerged: Formalizing allmathematical reasoning isn’t possible; and in the areas in which 

formalization is possible, you can also mechanize the reasoning, which is the basis of AI. 

 

The end came as sort of an economic bubble. The expert systems proved brittle, even when run 

on specialized computer systems. The specialized computer systems ended up as economic 

sinkholes that newer, common computer systems could easily replace at a significantly reduced 

cost. In fact, the Japanese Fifth Generation Computer project was also a fatality of this economic 

bubble. It proved extremely expensive to build and maintain. 

 

5.5 Rebuilding expectations with new goals 
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An AI winter does not necessarily prove devastating. Quite the contrary: Suchtimes can be 

viewed as an opportunity to stand back and think about the variousissues that came up during the 

rush to develop something amazing. Two majorareas of thought benefitted during the first AI 

winter (along with minor benefitsto other areas of thought) 

Logical programming: This area of thought involves presenting a set of sentences in logical 

form (executed as an application) that expresses facts and rules about a particular problem 

domain. Examples of programming languages that use this particular paradigm are Prolog, 

Answer Set Programming (ASP), and Datalog. This is a form of rule-based programming, which 

is the underlying technology used for expert systems. 

Common-sense reasoning: This area of thought uses a method of simulating the human ability 

to predict the outcome of an event sequence based on the properties, purpose, intentions, and 

behavior of a particular object. Commonsense reasoning is an essential component in AI because 

it affects a wide variety of disciplines, including computer vision, robotic manipulation, 

taxonomic reasoning, action and change, temporal reasoning, and qualitative reasoning. 

 

The second AI winter brought additional changes that have served to bring AI intothe focus that 

it has today. These changes included 

 

Using common hardware: At one point, expert systems and other uses of AI relied on 

specialized hardware. The reason is that common hardware didn’t provide the necessary 

computing power or memory. However, these custom systems proved expensive to maintain, 

hard to program, and extremely brittle when faced with unusual situations. Common hardware is 

general purpose in nature and is less prone to issues of having a solution that’s attempting to find 

a problem (see the upcoming “Creating Solutions in Search of a Problem” 

 

Seeing a need to learn: Expert systems and other early forms of AI required special 

programming to meet each need, thereby making them extremely inflexible. It became evident 

that computers would need to be able to learn from the environment, sensors, and data provided. 

Creating a flexible environment: The systems that did perform useful work between the first 

and second AI winters did so in a rigid manner. When the inputs didn’t quite match expectations, 

these systems were apt to produce grotesque errors in the output. It became obvious that any new 
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systems would need to know how to react to real-world data, which is full of errors, incomplete, 

and often formatted incorrectly. 

 

Relying on new strategies: Imagine that you work for the government and   have promised all 

sorts of amazing things based on AI, except that none of them seemed to materialize. That’s the 

problem with the second AI winter: Various governments had tried various ways of making the 

promises of AI a reality. When the current strategies obviously weren’t working, these same 

governments started looking for other ways to advance computing, some of which have produced 

interesting results, such as advances in robotics. 

 

When considering AI winters and the resulting renewal of AI with updated ideas and objectives, 

an adage coined by American scientist and futurist, Roy Charles Amara (also known as Amara’s 

law) is worth remembering: “We tend to overestimate the effect of a technology in the short run 

and underestimate the effect in the long run.” After all the hype and disillusionment, there is 

always a time when people can’t perceive the long-term impact of a new technology clearly 

andunderstand the revolutions it brings about with it. As a technology, AI is here to stay and will 

change our world for better and worse, no matter how many winters it still has to face. 

 

5.6 Creating Solutions in Search of a Problem 

Two people are looking at a mass of wires, wheels, bits of metal, and odd, assorted items that 

appear to be junk. The first person asks the second, “What does it do?” The second answers, 

“What doesn’t it do?” Yet, the invention that apparently does everything ends up doing nothing 

at all. The media is rife with examples of the solution looking for a problem. We laugh because 

everyone has encountered the solution that’s in search of a problem before. These solutions end 

up as so much  junk, even when they do work, because they fail to answer a pressing need. The 

following sections discuss the AI solution in search of a problem in more detail 

 

Defining a gizmo 

When it comes to AI, the world is full of gizmos. Some of those gizmos really are useful, but 

many aren’t, and a few fall between these two extremes. For example, Alexa comes with many 

useful features, but it also comes with a hoard of gizmos that will leave you scratching your head 



66 
 

when you try to use them. This article by John Dvorak may seem overly pessimistic, but it 

provides food for thought about the sorts of features that Alexa provides: 

https://www.pcmag.com/commentary/354629/just-say-no-to-amazons-echo-show. 

An AI gizmo is any application that seems on first glance to do something interesting,but 

ultimately proves unable to perform useful tasks. Here are some of the common aspects to look 

for when determining whether something is a gizmo. 

(The first letter of the each bullet in the list spells the acronym CREEP, meaning,don’t create a 

creepy AI application): 

 

»Cost effective: Before anyone decides to buy into an AI application, it must prove to cost the 

same or less than existing solutions. Everyone is looking for a deal. Paying more for a similar 

benefit will simply not attract attention. 

»»Reproducible: The results of an AI application must be reproducible, even when the 

circumstances of performing the task change. In contrast to procedural solutions to a problem, 

people expect an AI to adapt — to learn from doing, which means that the bar is set higher on 

providing reproducible results. 

»»Efficient: When an AI solution suddenly consumes huge amounts of resources of any sort, 

users look elsewhere. Businesses, especially, have become extremely focused on performing 

tasks with the fewest possible resources. 

»»Effective: Simply providing a practical benefit that’s cost effective and efficient isn’t enough; 

an AI must also provide a solution that fully addresses a need. Effective solutions enable 

someone to allow the automation to perform the task without having to constantly recheck the 

results or prop the automation up. 

»»Practical: A useful application must provide a practical benefit. The benefit must be 

something that the end user requires, such as access to a road map or reminders to take 

medication 

 

5.7 Avoiding the infomercial 

Bedazzling potential users of your AI application is a sure sign that the application will fail. 

Oddly enough, the applications that succeed with the greatest ease are those whose purpose and 

intent are obvious from the outset. A voice recognition application is obvious: You talk, and the 

computer does something useful in exchange. You don’t need to sell anyone on the idea that 
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voice recognition software is useful. This book is filled with a number of these truly useful 

applications, none of which require the infomercial approach of the hard sell. If people 

startasking what something does, it’s time to rethink the project. 

 

Understanding when humans do it better 

It is all about keeping humans in the loop while making use of AI. You’ve seen sections about 

things we do better than AI, when an AI can master them at all. Anything that requires 

imagination, creativity, the discernment of truth, the handling of opinion, or the creation of an 

idea is best left to humans. Oddly enough, the limits of AI leave a lot of places for humans to go, 

many of which aren’t even possible today because humans are overly engaged in repetitive, 

boring tasks that an AI could easily do. 

Look for a future in which AI acts as an assistant to humans. In fact, you’ll see this use of AI 

more and more as time goes on. The best AI applications will be those that look to assist, rather 

than replace, humans. Yes, it’s true that robots will replace humans in hazardous conditions, but 

humans will need to make decisions as to how to avoid making those situations worse, which 

means having a human at a safe location to direct the robot. It’s a hand-in-hand collaboration 

between technology and humans. 

 

5.8 Ten Ways in Which AIHas Failed 

 
Any comprehensive book on AI must consider the ways in which AI has failed to meet 

expectations. The book discusses this issue in part in other chapters, giving the historical view of 

the AI winters. However, even with those discussions, you might not grasp that AI hasn’t just 

failed to meet expectations set by overly enthusiastic proponents; it has failed to meet specific 

needs and basic requirements. This chapter is about the failures that will keep AI from 

excelling and performing the tasks we need it to do to fully achieve the successes described in 

other chapters. AI is currently an evolving technology that is partially successful at best. 

 

Interpreting, not analyzing 

As stated many times throughout the book, an AI uses algorithms to manipulate incoming data 

and produce an output. The emphasis is on performing an analysis of the data. However, a 

human controls the direction of that analysis and must then interpret the results. For example, an 
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AI can perform an analysis of an x-ray showing a potential cancer tumor. The resulting output 

may emphasize a portion of the x-ray containing a tumor so that the doctor can see it. The doctor 

might not be able to see the tumor otherwise, so the AI undoubtedly provides an 

importantservice. Even so, a doctor must still review the result and determine whether the x-ray 

does indeed show cancer. As described in several sections of the book, especially with self-

driving cars in Chapter 14, an AI is easily fooled at times when even a small artifact appears in 

the wrong place. Consequently, even though the AI is incredibly helpful in giving the doctor the 

ability to see something that isn’t apparent to the human eye, the AI also isn’t trustworthy 

enough to make any sort of a decision. 

 

5.9 Considering Human Behavior 

Interpretation also implies the ability to see beyond the data. It’s not the ability create new data, 

but to understand that the data may indicate something other than what is apparent. For example, 

humans can often tell that data is fake or falsified, even though the data itself presents no 

evidence to indicate these problems. An AI accepts the data as both real and true, while a human 

knows that it’s neither real nor true. Formalizing precisely how humans achieve this goal is 

currently impossible because humans don’t actually understand it. 

 

Considering consequences 

An AI can analyze data, but it can’t make moral or ethical judgements. If you ask an AI to make 

a choice, it will always choose the option with the highest probability of success unless you 

provide some sort of randomizing function as well. The AI will make this choice regardless of 

the outcome. The “SD cars and the trolley problem” sidebar in Chapter 14 expresses this 

problem quite clearly. When faced with a choice between allowing either the occupants of a car 

or pedestrians to die when such a choice is necessary, the AI must have human instructions 

available to it to make the decision. The AI isn’t capable of considering consequences and is 

therefore ineligible to be part of the decision-making process. 

 

Discovering 

An AI can interpolate existing knowledge, but it can’t extrapolate existing knowledge to create 

new knowledge. When an AI encounters a new situation, it usually tries to resolve it as an 
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existing piece of knowledge, rather than accept that it’s something new. In fact, an AI has no 

method for creating anything new, or seeing it as something unique. These are human 

expressions that help us discover new things, work with them, devise methods for interacting 

with them, and create new methods for using them to perform new tasks or augment existing 

tasks. The following sections describe how an AI’s inability to make discoveries keeps it 

fromfulfilling the expectations that humans have of it. 

 

Devising new data from old 

One of the more common tasks that people perform is extrapolation of data; for example, given 

A, what is B? Humans use existing knowledge to create new knowledge of a different sort. By 

knowing one piece of knowledge, a human can make a leap to a new piece of knowledge, outside 

the domain of the original knowledge, with a high probability of success. Humans make these 

leaps so often that they become second nature and intuitive in the extreme. Even children can 

make such predictions with a high rate of success. 

The best that an AI will ever do is to interpolate data for example, given A and B, is C 

somewhere in between? The capability to successfully interpolate data means that an AI can 

extend a pattern, but it can’t create new data. However, sometimes developers can mislead 

people into thinking that the data is new by using clever programming techniques. The presence 

of C looks new when it truly isn’t. The lack of new data can produce conditions that make the AI 

seem to solve a problem, but it doesn’t. The problem requires a new solution, not the 

interpolation of existing solutions. 

Empathizing 

Computers don’t feel anything. That’s not necessarily a negative, but this chapter views it as a 

negative. Without the ability to feel, a computer can’t see things from the perspective of a 

human. It doesn’t understand being happy or sad, so it can’t react to these emotions unless a 

program creates a method for it to analyze facial expressions and other indicators, and then act 

appropriately. Even so, such a reaction is a canned response and prone to error. Think about how 

many decisions you make based on emotional need rather than outright fact. The 

followingSections discuss how the lack of empathy on the part of an AI keeps it from 

interactingwith humans appropriately in many cases. 
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Walking in someone’s shoes 

The idea of walking in some else’s shoes means to view things from another person’s perspective 

and feel similar to how the other person feels. No one truly feels precisely the same as someone 

else, but through empathy, people can get close. This form of empathy requires strong 

intrapersonal intelligence as a starting point, which an AI will never have unless it develops a 

sense of self (the singularity as described at https://www.technologyreview.com/s/425733/paul-

allen-thesingularity-isnt-near/). In addition, the AI would need to be able to feel, something that 

is currently not possible, and the AI would need to be open to sharing feelings with some other 

entity (generally a human, today), which is also impossible. The current state of AI technology 

prohibits an AI from feeling or understanding any sort of emotion, which makes empathy 

impossible. 

Of course, the question is why empathy is so important. Without the ability to feel the same as 

someone else, an AI can’t develop the motivation to perform certain tasks. You could order the 

AI to perform the task, but there the AI would have no motivation on its own. Consequently, the 

AI would never perform certain tasks, even though the performance of such tasks is a 

requirement to build skills and knowledge required to achieve human-like intelligence. 

Developing true relationships 

An AI builds a picture of you through the data it collects. It then creates patterns from this data 

and, using specific algorithms, develops output that makes it seem to know you — at least as an 

acquaintance. However, because the AI doesn’t feel, it can’t appreciate you as a person. It can 

serve you, should you order it to do so and assuming that the task is within its list of functions, 

but it can’t have any feeling for you. 

When dealing with a relationship, people have to consider both intellectual attachment and 

feelings. The intellectual attachment often comes from a shared benefit between two entities. 

Unfortunately, no shared benefit exists between an AI and a human (or any other entity, for that 

matter). The AI simply processes data using a particular algorithm. Something can’t claim to 

love something else if an order forces it to make the proclamation. Emotional attachment must 

carry with it the risk of rejection, which implies self-awareness. 
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Changing perspective 

Humans can sometimes change an opinion based on something other than the facts. Even though 

the odds would say that a particular course of action is prudent, an emotional need makes another 

course of action preferable. An AI has no preferences. It therefore can’t choose another course of 

action for any reason other than a change in the probabilities, a constraint (a rule forcing it to 

make the change), or a requirement to provide random output. 

 

Making leaps of faith 

Faith is the belief in something as being true without having proven fact to back up such belief. 

In many cases, faith takes the form of trust, which is the belief in the sincerity of another person 

without any proof that the other person is trustworthy. An AI can’t exhibit either faith or trust, 

which is part of the reason that it can’t extrapolate knowledge. The act of extrapolation often 

relies on a hunch, based on faith, that something is true, despite a lack of any sort of data to 

support the hunch. Because an AI lacks this ability, it can’t exhibit insight — a necessary 

requirement for human-like thought patterns.  
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