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FUZZY rpsI-CLOSED SETS AND FUZZY gprI-CLOSED

SETS IN FUZZY IDEAL TOPOLOGICAL SPACES

Dr. V. Chitra1, R.Kalaivani2,

Abstract - The aim of this paper is to investigate the concept of fuzzy rpsI-closed sets, fuzzy gprI-closed sets and discuss

their properties and obtain relations with existing fuzzy closed sets in fuzzy ideal topological spaces.

Keywords fuzzy rpsI-closed sets, fuzzy pgprI-closed sets, fuzzy gprI-closed sets, fuzzy semi pre-I-closed sets, fuzzy pre-I-

closed sets.

2010 Subject classification: 54A20

1 Introduction

The concept of ideal topological spaces was introduced by R.Vaidyanathaswamy [14] in 1945. Kuratowski[7]
has introduced local function of a set with respect to a topology τ and an ideal.
The notion of fuzzy set theory and fuzzy set operation was formalized by Lofti A.Zadeh[18] and since
then many eminent researches used this notion of fuzzy topology. The concepts of fuzzy semi pre-I-closed
sets, fuzzy pre-I-closed sets, fuzzy Irg-closed sets, fuzzy Ig-closed sets have been introduced and studied in
fuzzy ideal topological spaces.Authors [3], [8] introduced weakly fuzzy pre I-open and fuzzy α I-open sets
obtained a new decomposition of fuzzy continuity via ideals. In this paper we introduced fuzzy rpsI-closed
set and fuzzy gprI-closed sets and investigate their properties in fuzzy ideal topological spaces.

2 Preliminaries

Let X be a nonempty set. A family τ of fuzzy sets of X is called a fuzzy topology[2] on X if the null
fuzzy set 0 and the whole fuzzy set 1 belongs to τ and τ is closed with respect to any union and finite
intersection. If τ is a fuzzy topology on X, then the pair (X, τ) is called a fuzzy topological space[18].
The members of τ are called fuzzy open sets of X and their complements are called fuzzy closed sets. The
closure of a fuzzy set A of X denoted by Cl(A), is the intersection of all fuzzy closed sets which contains
A. The interior[2] of a fuzzy set A of X denoted by Int(A) is the union of all fuzzy subsets contained in
A. A fuzzy set A in (X, τ)is said to be quasi-coincident[11] with a fuzzy set B, denoted by AqB, if there
exists a point x ∈ X such that A(x)+B(x) > 1[5]. A fuzzy set V in (X, τ)is called a Q-neighbourhood[11]
of fuzzy point xβ if there exists a fuzzy open set U of X such that xβqU ≤ V [5].

1Assistant Professor, Department of Mathematics,Nallamuthu Gounder Mahalingam College, Pollachi-642001,
Coimbatore, Tamilnadu, India. E.mail: chitrangmc@gmail.com@gmail.com

2Research scholar, Department of Mathematics,Nallamuthu Gounder Mahalingam College, Pollachi-642001,
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A nonempty collection of fuzzy sets I of a set X satisfying the conditions
(i) if A ∈ I and B ≤ A, then B ∈ I,
(ii) if A ∈ I and B ∈ I then A ∪B ∈ I is called a fuzzy ideal on X.
The triple (X, τ, I) denotes a fuzzy ideal topological space with a fuzzy ideal I and fuzzy topology τ [7, 10].
The local function for a fuzzy set A in X with respect to τ and I denoted by A∗(τ, I) (briefly A∗) in a fuzzy
ideal topological space (X, τ, I) is the union of all fuzzy points xβ such that if U is a Q-neighbourhood
of xβ and E ∈ I then for at least one point y ∈ X for which U(y) + A(y) − 1 > E(y)[12].The ∗-closure
operator of a fuzzy set A denoted by Cl∗(A) in (X, τ, I) defined as Cl∗(A) = A ∪ A∗[13]. In (X, τ, I) the
collection τ ∗(I) is an extension of fuzzy topological space than τ via fuzzy ideal which is constructed by
considering the class β = {U − E : U ∈ τ, E ∈ I} as a base[12].

Definition 2.1. A fuzzy set A of a fuzzy topological space (X, τ) is called:
(a) fuzzy regular open [1] if A = Int(cl(A)).
(b) fuzzy regular closed [1] if 1− A is fuzzy regular open.

Definition 2.2. A subset A of a fuzzy ideal topological space (X, τ, I) is called
i. fuzzy I-open [9]if A ≤ int(A∗)
ii. fuzzy pre-I-open [10] if A ≤ int(cl∗(A))
iii. fuzzy semi-I-open [6] if A ≤ cl∗(int(A))
iv. fuzzy α-I-open [17] if A ≤ int(cl∗(int(A)))
v. fuzzy semi pre-I-open [17] if A ≤ cl(int(cl∗(A))
The complement of the above mentioned open sets are their respective fuzzy closed sets.
The fuzzy semi pre-I-closure (resp. fuzzy semi-I-closure, fuzzy pre-I-closure,fuzzy α- I-closure, fuzzy I-
closure) of a subset A of(X, τ, I) is the intersection of all fuzzy semi pre-I-closed(resp. fuzzy semi-I-closed,
fuzzy pre- I-closed,fuzzyα-I-closed, fuzzy I-closed) sets containing A and is denoted by fuzzy spIcl(A)(resp.
fuzzy sIcl(A), fuzzy pIcl(A),fuzzy αIcl(A),fuzzy Icl(A)). The following is useful in sequel.

Definition 2.3. [1] A fuzzy set A of a fuzzy ideal topological spaces (X, τ, I) is called
(a) fuzzy Ig closed if A∗ ⊆U whenever A⊆U and U is fuzzy open.
(b) fuzzy Ig open if its complement 1-A is fuzzy Ig closed.
(c) fuzzy Irg closed if A∗ ⊆U whenever A⊆U and U is fuzzy regular open.
(d) fuzzy Irg open if its complement 1-A is fuzzy Irg closed.

Corollary 2.4. For any subset A of a fuzzy ideal topological space (X, τ, I) ,the following results hold:
fuzzy sIcl(A) = A ∪ int(cl∗(A))
fuzzy pIcl(A) = A ∪ cl∗(int(A))
fuzzy spIcl(A) = A ∪ int(cl∗(int(A)))

Remark 2.5. A is open if and only if int(A) = A and A is ∗-open if and only if A = int∗(A).

Definition 2.6. [15] A space X is called extremally disconnected if the closure of each open subset of X is
open.

Definition 2.7. [4] A subset A of (X, τ) is called generalized pre regular closed (briefly gpr-closed) if
pcl(A) ⊂ U whenever A ⊂ U and U is regular open in (X, τ).

Corollary 2.8. Let (X, τ, I) be an fuzzy ideal topological space and A ≤ X. If A ≤ A∗, then A∗ = cl(A) =
cl∗(A)[6].
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FUZZY rpsI-CLOSED SETS AND FUZZY gprI-CLOSED SETS IN FUZZY IDEAL TOPOLOGICAL
SPACES

3 Fuzzy rpsI-closed sets

In this section, we introduce new class of sets namely fuzzy rpsI-closed set, fuzzy gprI-closed set and discuss
some of their properties in fuzzy ideal topological spaces.

Definition 3.1. A subset A of a fuzzy ideal topological space (X, τ, I) is called fuzzy regular pre semi-
I-closed(fuzzy rpsI-closed)if fuzzy spIcl(A) ≤ U whenever A ≤ U and U is fuzzy Irg-open.
The complement of the above mentioned fuzzy closed set is their respective fuzzy open set.

Theorem 3.2. Every fuzzy semi pre- I-closed set is fuzzy rpsI-closed.
Proof: Let A be a fuzzy semi pre-I-closed set in X. Let A ≤ U and U be fuzzy Irg-open. Since A is
fuzzy semi pre-I-closed, we have fuzzy spIcl(A) = A ≤ U and U is fuzzy Irg-open. Therefore A is fuzzy
rpsI-closed.
The following example shows that the converse of the above theorem is not true.

Example 3.3. Let X={a,b,c} and the fuzzy sets α1,α2,α3 and α4 of X are defined as follows:
α1(a) = 0.4,α1(b) = 0.5,α1(c) = 0.3
α2(a) = 0.6,α2(b) = 0.4,α2(c) = 0.5
α3(a) = 0.6,α3(b) = 0.5,α3(c) = 0.5
α4(a) = 0.4,α4(b) = 0.4,α4(c) = 0.3
Let τ = {0, α1, α2, α3, α4, 1} be a fuzzy topology and I = {0} be a fuzzy ideal on X. Then the fuzzy set
{0.6,0.4,0.7} is fuzzy rpsI-closed but not fuzzy semi pre-I-closed.

Remark 3.4. A subset of a fuzzy rpsI-closed set need not be fuzzy rpsI-closed set.

Theorem 3.5. Every fuzzy closed set is fuzzy rpsI-closed set.
Proof: Let A be a closed set in X. Let A ≤ U and U be fuzzy Irg-open. Since A is closed we have
A = cl(A), cl(A) ≤ U . But fuzzy spIcl(A) ≤ cl(A) ≤ U . Therefore A is fuzzy rpsI-closed.

Example 3.6. In Example 3.3 , {0.6,0.5,0.5} is fuzzy rpsI-closed but the subset {0.6,0.4,0.5} is not fuzzy
rpsI-closed. Also {0.6,0.5,0.5} is not fuzzy closed.

Definition 3.7. A subset A of a fuzzy ideal topological space (X, τ, I) is called fuzzy pre generalized pre
regular I-closed(fuzzy pgprI-closed) if fuzzy pIcl(A) ≤ U whenever A ≤ U and U is fuzzy Irg-open.

Theorem 3.8. Every fuzzy pgprI-closed set is fuzzy rpsI-closed.
Proof: Let A be a fuzzy pgprI-closed set in X. Let A ≤ U and U be fuzzy Irg-open. Since A is fuzzy
pgprI-closed we have fuzzy pIcl(A) ≤ U . Also fuzzy spIcl(A) ≤fuzzy pIcl(A) ≤ U . Therefore A is fuzzy
rpsI-closed.
The following example shows that the converse of the above theorem is not true.

Example 3.9. In Example 3.3,{0.6,0.5,0.5} is fuzzy rpsI-closed but not fuzzy pgprI-closed.

Theorem 3.10. Every fuzzy pre-I-closed set is fuzzy rpsI-closed.
Proof: Let A be a fuzzy pre-I-closed set in X. We know that fuzzy pre-I-closure of A is the smallest fuzzy
pre-I-closed containing A. Therefore fuzzy pIcl(A) ≤ A. Suppose A ≤ U and U be fuzzy Irg-open. Then
fuzzy pIcl(A) ≤ U and U be fuzzy Irg-open. Therefore A is fuzzy pgprI-closed. By Theorem 3.8, A is fuzzy
rpsI-closed.
The following example shows that the converse of the above theorem is not true.

ETIST 2021 3
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Example 3.11. Let X={a,b,c} and the fuzzy set α1and α2 are defined as follows:
α1(a) = 0.5,α1(b) = 0.5,α1=0.6
α2(a) = 0.4,α2(b) = 0.5,α2=0.4
Let τ = {0, α1, α2, 1} be a fuzzy topology and I = {0} be a fuzzy ideal on X.
Then, {0.5, 0.5,0.6} is fuzzy rpsI-closed but not fuzzy pre-I-closed.

Theorem 3.12. Every fuzzy α-I-closed set is fuzzy rpsI-closed.
Proof: Let A be a fuzzy α-I-closed set in X. We know that every fuzzy α-I-closed set is fuzzy pre-I-closed
set. By Theorem 3.10, A is fuzzy rpsI-closed.
The following example shows that the converse of the above theorem is not true.

Example 3.13. In Example 3.11, {0.6,0.4,0.4} is fuzzy rpsI-closed but not fuzzy α-I-closed.

Theorem 3.14. Every fuzzy rI-closed set is fuzzy rpsI-closed.
Proof: Let A be a fuzzy rI-closed subset of X. Let A ≤ U and U be fuzzy Irg-open. Since A is fuzzy rI-closed,
we have A = cl∗(int(A)). Therefore cl∗(int(A)) ≤ U and U be fuzzy Irg-open implies int(cl∗(int(A))) ≤
int(U) ≤ U and U be fuzzy Irg-open. A ∪ int(cl∗(int(A))) ≤ A ∪ U = U and U be fuzzy Irg-open. By
corollary 2.4(iii),we have fuzzy spIcl(A) ≤ U and U be fuzzy Irg-open. Hence A is fuzzy rpsI-closed.
The following example shows that the converse of the above theorem is not true.

Example 3.15. Let X={a,b,c} and the fuzzy set α1,and α2 are defined as follows:
α1(a) = 0.4,α1(b) = 0.5,α1 = 0.5
α2(a) = 0.6,α2(b) = 0.7,α2 = 0.5
Let τ = {0, α1, α2, 1} be a fuzzy topology and I = {0} be a fuzzy ideal on X.
Then,{0.4,0.5,0.5} is fuzzy rpsI-closed but not fuzzy rI-closed.

Definition 3.16. A subset A of a fuzzy ideal topological space (X, τ, I) is called fuzzy SI set if cl∗(int(A)) =
int(A).

Theorem 3.17. Every fuzzy SI set is fuzzy rpsI-closed.
Proof: Let A be a fuzzy SI set of X. Let A ≤ U and U be fuzzy Irg-open. Since A is fuzzy SI set we have
cl∗(int(A)) = int(A).
Now, A ≤ U ⇒ int(A) ≤ int(U) ≤ U ⇒ cl∗(int(A) ≤ U ⇒ int(cl∗(int((A))) ≤ int(U) ≤ U ⇒
A ∪ int(cl∗(int(A)) ≤ A ∪ U = U ⇒ fuzzy spIcl(A) ≤ U . Hence A is fuzzy rpsI-closed.

Example 3.18. In Example 3.15,{0.5,0.5,0.6} is fuzzy rpsI-closed but not fuzzy SI-closed.

Definition 3.19. A subset A of a fuzzy ideal topological space (X, τ, I) is said to be fuzzy semi∗-I-open if
A ≤ cl(int∗(A)).

Corollary 3.20. Let (X, τ, I) be fuzzy ideal topological space and K be subset of X. Then the following
properties are equivalent:
i. K is fuzzy rI-closed .
ii. K is fuzzy semi∗-I-open and closed.
Proof: i)→ ii)
Let K be an fuzzy rI-closed set in X. Then we have, K = cl(int∗(K)). It follows that K is fuzzy semi∗-I-
open and closed.
ii)→ i)
Suppose that K is a fuzzy semi∗-I-open and closed . From the definition of fuzzy semi∗-I-open and closed,
we have K is fuzzy rI-closed set.
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Theorem 3.21. Let (X, τ, I) be fuzzy ideal topological space and K be subset of X. If K is fuzzy semi∗-I-
open and closed then K is fuzzy rpsI-closed.
Proof: Follows from corollary 3.20 and Theorem 3.14, we have K is fuzzy rpsI- closed.

Corollary 3.22. Let (X, τ, I) be fuzzy ideal topological space and K be subset of X, the following properties
are equivalent:
i. K is fuzzy rI-closed .
ii. There exist a ∗-open set L such that K = cl(L).
Proof: Suppose that there exists fuzzy ∗-open set L such that K = cl(L). Since L = int∗(L), then we have
cl(L) = cl(int∗(L)). It follows that,
cl(int∗(cl(L)) = cl(int∗(cl(int∗(L))))

= cl(int∗(L))
= cl(L)

This implies, K = cl(L) = cl(int∗(cl(L)))
= cl(int∗(K)).

i)→ ii)
Suppose that K is a fuzzy rI-closed in X. We have K = cl(int∗(K)). We take L = int∗(K). It follows
that, L is a fuzzy ∗-open and K = cl(L).

Theorem 3.23. Let (X, τ, I) be a fuzzy ideal topological space and K be a subset of X. Suppose there exist
a ∗-open set L such that K = cl(L) then K is fuzzy rpsI-closed set.
Proof: Follows from corollary 3.22 and Theorem 3.14, we have K is fuzzy rpsI-closed.

Definition 3.24. A subset A of a fuzzy ideal topological space (X, τ, I) is said to be fuzzy weakly semi-I-
open if A ≤ cl∗(int(cl(A))). The complement of fuzzy weakly semi-I-open is fuzzy weakly semi-I-closed.

Remark 3.25. If a subset A of a fuzzy ideal topological space (X, τ, I) is fuzzy weakly semi-I-closed then
A is fuzzy semi pre-I-closed.

Theorem 3.26. Every fuzzy weakly semi-I closed set is fuzzy rpsI-closed.
Proof: Let A be fuzzy weakly semi-I-closed. By corolary 3.25, A is fuzzy semi pre-I-closed. By Theorem
3.2, we have A is fuzzy rpsI-closed.
The following example shows that the converse of the above theorem is not true.

Example 3.27. Let X={a,b} and the fuzzy set α1 and α2 are defined as follows:
α1(a) = 0.5,α1(b) = 0.3
α2(a) = 0.6,α2(b) = 0.5
Let τ = {0, α1, α2, 1} be a fuzzy topology and I = {0} be a fuzzy ideal on X.
Then, {0.4,0.5} is fuzzy rpsI-closed but not fuzzy weakly semi-I-closed .

Remark 3.28. The concepts of fuzzy Ig-closed set and fuzzy rpsI-closed set are independent.

Example 3.29. Let X={a,b} and the fuzzy set α1 and α2 are defined as follows:
α1(a) = 0.5,α1(b) = 0.4
α2(a) = 0.6,α2(b) = 0.7
Let τ = {0, α1, α2, 1} be a fuzzy topology and I = {0} be a fuzzy ideal on X.
Then, {0.6,0.8} is fuzzy Ig-closed but not fuzzy rpsI-closed and {0.6,0.5}is fuzzy rpsI-closed but not fuzzy
Ig-closed.
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Theorem 3.30. If A is fuzzy rpsI-closed and cl∗(int(A)) is open. Then A is fuzzy pgprI-closed.
Proof: Let A ≤ U and U be fuzzy Irg-open. Since A is fuzzy rpsI-closed, fuzzy spIcl(A) ≤ U whenever
A ≤ U and U is fuzzy Irg-open. By corollary 2.4(iii),A ∪ int(cl∗(int(A)))) ≤ U which implies A ∪
(cl∗(int(A))) ≤ U . Again by corollary 2.4(ii), fuzzy pIcl(A) ≤ U whenever A ≤ U and U is fuzzy
Irg-open. Therefore A is fuzzy pgprI-closed.

Remark 3.31. The union of two fuzzy rpsI-closed sets need not be a fuzzy rpsI-closed set.

Example 3.32. Consider the fuzzy ideal topological space in Example 3.29. In this fuzzy ideal topological
space the sets {0.6,0.5} and {0.5,0.7} are fuzzy rpsI-closed sets, but their union {0.6,0.7} is not fuzzy
rpsI-closed set.

Remark 3.33. The intersection of two fuzzy rpsI-closed sets need not be a fuzzy rpsI-closed set.

Example 3.34. Consider the fuzzy ideal topological space in Example 3.3. In this fuzzy ideal topological
space the sets {0.6,0.5,0.5} and {0.7,0.4,0.5} are fuzzy rpsI-closed sets, but their intersection {0.6,0.4,0.5}
is not fuzzy rpsI-closed set.

Theorem 3.35. Suppose A is fuzzy Irg-open and A is fuzzy rpsI-closed then A is fuzzy semi pre-I-closed.
Proof: Since A is fuzzy Irg-open and A is fuzzy rpsI-closed and A ≤ A, we have fuzzy spIcl(A) ≤ A.
Therefore A is fuzzy semi pre-I-closed.

Theorem 3.36. If A is fuzzy rpsI-closed, then fuzzy spIcl(A)\A does not contain a non empty fuzzy
Irg-closed set.
Proof: Suppose A is fuzzy rpsI-closed set. Let F be a fuzzy Irg-closed subset of fuzzy spIcl(A)\A. Then
F ≤ fuzzy spIcl(A)∩ (X\A) ≤ X\A and A ≤ X\F . But A is fuzzy rpsI-closed and since X\F is fuzzy
Irg-open, we have fuzzy spIcl(A) ≤ X\F . Therefore F ≤ X\ fuzzy spIcl(A). Since F ≤ fuzzy spIcl(A),
we have F ≤ (X\ fuzzy spIcl(A))∩ fuzzy spIcl(A) = ϕ implies F = ϕ. Therefore fuzzy spIcl(A)\A does
not contain a non empty fuzzy Irg-closed set.

Theorem 3.37. If A is fuzzy rpsI-closed and if A ≤ B ≤ fuzzy spIcl(A) then
i) B is fuzzy rpsI-closed.
ii)fuzzy spIcl(B)\B contains no non-empty fuzzy rpsI-closed sets.
Proof: i. Given A ≤ B ≤ fuzzy spIcl(A).Then fuzzy spIcl(A) =fuzzy spIcl(B). Suppose that B ≤ U
and U is fuzzy Irg-open. Since A is fuzzy rpsI-closed and A ≤ B ≤ U , fuzzy spIcl(A) ≤ U we have fuzzy
spIcl(B) ≤ U . Therefore B is fuzzy rpsI-closed.
ii.Proof follows from Theorem 3.36.

Theorem 3.38. Let A be fuzzy rpsI-closed. Then A is fuzzy semi pre-I-closed iff fuzzy spIcl(A)\A is
fuzzy Irg-closed.
Proof: Let A be fuzzy semi pre-I-closed, then fuzzy spIcl(A) = A.Therefore fuzzy spIcl(A)\A = ϕ which
is fuzzy Irg-closed. Conversely, suppose that fuzzy spIcl(A)\A is fuzzy Irg-closed, by Theorem 3.36 we
have fuzzy spIcl(A)\A = ϕ . Thus fuzzy spIcl(A) = A. Hence A is fuzzy semi pre-I-closed.

Definition 3.39. A subset A of a fuzzy ideal topological space (X, τ, I) is fuzzy quasi I-open if A ≤
cl(int(A∗)).
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Remark 3.40. Every fuzzy open set is fuzzy quasi I-open set and every fuzzy quasi I-open set is fuzzy
rpsI-open.
fuzzy I-open→fuzzy quasi I-open→ fuzzy rpsI-open.
The following example shows that the reverse implications need not be true.

Example 3.41. In Example 3.3, {0.4,0.4,0.4} is fuzzy rpsI-open but not fuzzy quasi-open and {0.4,0.5,0.6}
is fuzzy quasi-open but not fuzzy I-open.

Theorem 3.42. In an extremally disconnected space X, every fuzzy rpsI-closed set is fuzzy pgprI-closed.
Proof: In an extremally disconnected space X,cl∗(int(A)) is open for every subset A of X. Then the proof
follows from Theorem 3.30.

Theorem 3.43. For every point x of a space X,X\{x} is fuzzy rpsI-closed or fuzzy Irg-open.
Proof: Suppose X\{x} is not fuzzy Irg-open. Then X is the only fuzzy Irg-open set containing X\{x}.
This implies that fuzzy spIcl(X\{x}) ≤ X. Hence X\{x} is fuzzy rpsI-closed set in X.

4 Fuzzy generalized pre regular-I-closed sets

Definition 4.1. A subset A of (X, τ, I) is called fuzzy generalized pre regular I-closed(briefly fuzzy gprI-
closed) if fuzzy pIcl(A) ≤ U whenever A ≤ U and U is fuzzy regular open in (X, τ, I).

Definition 4.2. A subset A of a fuzzy ideal topological space (X, τ, I) is called
i. a fuzzy generalized pre-I-closed set(briefly fuzzy gpI-closed) if fuzzy pIcl(A) ≤ U whenever A ≤ U and
U is fuzzy open.
ii. a fuzzy generalized semi pre-I-closed set(briefly fuzzy gspI-closed) if fuzzy spIcl(A) ≤ U whenever
A ≤ U and U is fuzzy open.

Theorem 4.3. Every fuzzy Irg-closed set is fuzzy gprI-closed.
Proof: Let A ≤ X be fuzzy Irg-closed. Let A ≤ U and U be fuzzy regular open. Then A∗ ≤ U because A
is fuzzy Irg-closed. Since every closed set is fuzzy pre-I-closed, fuzzy pIcl(A) = A ∪ cl∗(int(A)) ≤ A ≤ U .
Therefore fuzzy pIcl(A) ≤ U . Hence A is fuzzy gprI-closed.

Example 4.4. Let X={a,b,c} and the fuzzy set α1,α2,α3 and α4 are defined as follows:
α1(a) = 0.5,α1(b) = 0.5,α1(c) = 0.4
α2(a) = 0.4,α2(b) = 0.6,α2(c) = 0.5
α3(a) = 0.4,α3(b) = 0.5,α3(c) = 0.4
α4(a) = 0.5,α4(b) = 0.6,α4(c) = 0.5
Let τ = {0, α1, α2, α3, α4, 1} be a fuzzy topology and I = {0} be a fuzzy ideal on X. Then the fuzzy set
{0.5,0.5,0.3} is fuzzy gprI-closed but not fuzzy Irg-closed.

Theorem 4.5. Every fuzzy gpI-closed set is fuzzy gprI-closed.
Proof: Let A be a fuzzy gpI-closed in (X, τ, I) and A ≤ U where U is fuzzy regular open. since every fuzzy
regular open set is fuzzy open and A is fuzzy gpI-closed, fuzzy pIcl(A) ≤ U . Hence A is fuzzy gprI-closed.

Example 4.6. In Example 4.4, {0.4,0.6,0.4} is fuzzy gprI-closed set but not fuzzy gpI-closed.

Remark 4.7. Fuzzy gprI-closed sets and fuzzy gspI-closed sets are independent of each other.
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Example 4.8. In Example 4.4, {0.5,0.6,0.5} is fuzzy gprI-closed set but not fuzzy gspI-closed.
{0.5,05,0.4} is fuzzy gspI-closed set but not fuzzy gprI-closed.

Theorem 4.9. Let A be a fuzzy gprI-closed set in (X, τ, I). Then fuzzy pIcl(A)−A does not contain any
non-empty fuzzy regular closed set.
Proof: Let F be a fuzzy regular closed set such that F ≤fuzzy pIcl(A) − A. Then F ≤ X − A implies
A ≤ X − F . A is fuzzy gprI-closed and X − F is fuzzy regular open. Therefore fuzzy pIcl(A) ≤ X − F .
That is F ≤ X− fuzzy pIcl(A). Hence F ≤ fuzzy pIcl(A) ∩ (X−fuzzy pIcl(A)) = ϕ. This shows F = ϕ.

Theorem 4.10. Let A be fuzzy gprI-closed in (X, τ, I). Then A is fuzzy pre-I-closed if and only if fuzzy
pIcl(A)− A is fuzzy regular closed.
Proof:Necessity: Let A be fuzzy pre-I-closed. Then fuzzy pIcl(A) = A and so fuzzy pIcl(A) − A = ϕ
which is fuzzy regular closed.
Sufficiency: Suppose fuzzy pIcl(A) − A is fuzzy regular closed.Then fuzzy pIcl(A) − A = ϕ since A is
fuzzy gprI-closed. That is, fuzzy pIcl(A) = A or A is fuzzy pre-I-closed.

Theorem 4.11. If A is fuzzy gprI-closed and A ≤ B ≤fuzzy pIcl(A), then B is fuzzy gprI-closed.
Proof: Let B ≤ U where U is fuzzy regular open. Then A ≤ B implies A ≤ U . Since A is fuzzy
gprI-closed, fuzzy pIcl(A) ≤ U . B ≤ fuzzy pIcl(A) implies fuzzy pIcl(B) ≤ fuzzy pIcl(A). Thus fuzzy
pIcl(B) ≤ U and shows that B is fuzzy gprI-closed.

Theorem 4.12. Every fuzzy gprI-closed set is fuzzy rpsI-closed set.
Proof: Let A be a fuzzy gprI-closed set. From the definition 4.1, fuzzy pIcl(A) ≤ U whenever A ≤ U , U
is regular open. Now, fuzzy spIcl(A) ≤ fuzzy pIcl(A) ≤ U . We know that, every regular open set is fuzzy
Irg-open. Therefore fuzzy spIcl(A) ≤ U , U is fuzzy Irg- open.
The converse need not be true.

Example 4.13. Let X={a,b} and the fuzzy set α1 and α2 are defined as follows:
α1(a) = 0.5,α1(b) = 0.4,α1(c) = 0.4
α2(a) = 0.6,α2(b) = 0.6,α2(c) = 0.7
Let τ = {0, α1, α2, 1} be a fuzzy topology and I = {0} be a fuzzy ideal on X.
Then, {0.5,0.7,0.7} is fuzzy rpsI-closed set but not gprI-closed.

Theorem 4.14. Every fuzzy gprI-closed set is fuzzy pgprI-closed set.
Proof: Let A be a fuzzy gprI-closed set. From the definition 4.1, fuzzy pIcl(A) ≤ U whenever A ≤ U , U
is regular open. We know that, every regular open set is fuzzy Irg-open. Therefore fuzzy pIcl(A) ≤ U , U
is fuzzy Irg-open.
The converse need not be true.

Example 4.15. In Example 4.13, {0.5,0.7,0.7} is fuzzy pgprI-closed set but not gprI-closed .

Summing up the above implications, we have following diagram. However, the reverse implications are
not true as seen by the following examples.
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fuzzy rpsI − closed

fuzzy closed
fuzzy gprI − closed

fuzzy pgprI − closed

fuzzy semi− I − closed

fuzzy rI − closed

fuzzy αI − closedfuzzy WSI − closed

fuzzy SI − closed

fuzzy Ig − closed

fuzzy semi pre-I − closed

fuzzy preI − closed

Remark 4.16. Let X={a,b} and the fuzzy set α1 and α2 are defined as follows:
α1(a) = 0.5,α1(b) = 0.4
α2(a) = 0.6,α2(b) = 0.7
Let τ = {0, α1, α2, 1} be a fuzzy topology and I = {0} be a fuzzy ideal on X.
Then, i.{0.5,0.5} is fuzzy semi-I-closed but not fuzzy closed.
ii. {0.5,0.5} is fuzzy semi-I-closed but not fuzzy rI-closed.
iii. Every fuzzy rI-closed set is fuzzy α-I-Closed. But the converse need not be true, for example the set
{0.4,0.3} is fuzzy α-I-closed but not fuzzy rI-closed.
iv. {0.5,0.8} is fuzzy pre-I-closed but not fuzzy closed.
v. {0.6,0.5} is fuzzy weakly semi-I-closed but not fuzzy α-I-closed.
vi. {0.6,0.5} is fuzzy weakly semi-I-closed but not fuzzy SI-closed.
vii. fuzzy Ig-closed and fuzzy SI-closed sets are independent to each other. For example, the set {0.5,0.5}
is fuzzy Ig-closed but not SI closed and {0.4,0.7} is SI-closed set but not fuzzy Ig-closed.
viii. {0.5,0.4} is fuzzy semi pre-I-closed but not fuzzy pre-I-closed.

Remark 4.17. fuzzy g-closed and fuzzy semi pre-I-closed sets are independent to each other.
In above Remark, the set {0.6,0.8}is fuzzy Ig-closed but not semi pre-I-closed and {0.6,0.5} is semi pre-I-
closed set but not fuzzy Ig-closed.

Remark 4.18. The concepts of fuzzy pgprI-closed set and fuzzy semi-I-closed set are independent.

Example 4.19. Let X={a,b} and the fuzzy set α1 and α2 are defined as follows:
α1(a) = 0.5,α1(b) = 0.4,α1(c) = 0.4
α2(a) = 0.6,α2(b) = 0.6,α2(c) = 0.7
Let τ = {0, α1, α2, 1} be a fuzzy topology and I = {0} be a fuzzy ideal on X.
Then, {0.5,0.7,0.7} is fuzzy pgprI-closed but not fuzzy semi-I-closed. {0.5,0.4,0.4}is fuzzy semi-I-closed
but not fuzzy pgprI-closed.
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