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ABSTRACT 

The purpose of this paper is to introduce a new class of functions called weakly 𝛿𝑃𝑆-continuous functions by 

using𝛿𝑃𝑆-open sets in topologicalspaces. Some properties and characterizations ofweakly𝛿𝑃𝑆-continuous 

functions arefound. 

KEYWORDS:Almost𝛿𝑃𝑆-continuousand WeaklyPre-continuousFunctions 

1. INTRODUCTION 

The class of 𝛿-open subsets of a topological space was firsrt introduced by Veliko [22] in 1968. Munshi 

[11] initiated and studied the concept of supe continuous mappings in 1982. Masshour et al [10] introduced the 

concept of precontinuous and weak precontinuous mappings in 1982. Since then many authors defined the 

various forms of weakly continuous mappings.  

 In 2020, Vidhyapriya et al., [23] defined a new class of open sets namely 𝛿𝑃𝑆-open sets, combining the 

concepts of 𝛿-preopen and semi-closed sets. In this paper the author defined weakly 𝛿𝑃𝑆-continuous functions 

using 𝛿𝑃𝑆-continuous [24], almost 𝛿𝑃𝑆-continuous [25] and precontinuous functions. Further their properties 

and comparisons are studied. 

2. PRELIMINARIES 

Definition 2.1. A subset A of a space X is said to be  

a) Preopen [10] if A ⊆int (cl(A)) 

b) Semi-open [8] if A ⊆ 𝑐𝑙 (int(A)) 

c)  Regular open [21] if A = int (𝑐𝑙(A)) 

d) θ-open [22] if for each x ϵ A there exists an open set G such that x∈ G ⊆ 𝑐𝑙G ⊆  A 

e) θ-semi-open [4] if for each x ϵ A, there exists an semi-open set G such that x ∈ G ⊆  𝑐𝑙G ⊆ A 

f) δ-preopen [17] if A ⊆  Int(δ𝑐𝑙(A)) 

 The closure and interior of A with respect to X are denoted by 𝑐𝑙(A) and int(A) respectively.  

 The intersection of particular class of closed sets of Xcontaining A is called the corresponding closure 

of A. 

  The union of particular class of open sets of X contained in A is called the corresponding interior of A.  

 The family of all preopen (resp. Semi-open, regular open, θ-open, θ-semi-open,) subsets of X is 

denoted by PO(X) (resp. SO(X), RO(X), θO(X),θSO(X), δPO(X)). 

 The complement of a preopen (resp. resp. Semi-open, regular open, δ-open, θ-open, δ-preopen, θ-semi-

open, δ-preopen) is said to be preclosed (resp. resp. Semi-closed, regular closed,θ-closed,θ-semiclosed, 

δ-preclosed).  
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 The family of all preclosed [10] (resp. Semi-closed, regular closed, θ-closed, θ-semiclosed, δ-

preclosed) subsets of X is denoted by PC(X) (resp. SC(X), RC(X), θC(X), θSC(X), δPC(X)). 

Definition 2.2[23]:A δ- preopen subset A of a space X is called a 𝛿𝑃𝑆-open set if for each x ϵ A, there exists a 

semi-closed set F such that x ϵ F⊆ A. 

Definition 2.3:A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is said to be precontinuous [10] (resp. super continuous [11]) if the 

inverse image of each open subset of Y is preopen (resp. δ-open) in X.  

Definition 2.4:  A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)issaidtobealmost𝑃𝑆-

continuous[5](resp.almostprecontinuous[12],almostα-continuous [14]andalmostcontinuousinthesenseofSingal 

and Singal [20]) if for each 𝑥 ∈ 𝑋 andeachopensetVofYcontainingf(x),thereexistsa𝛿𝑃𝑆-open(resp.preopen,α-

openandopen)set𝑈of𝑋containing𝑥suchthat𝑓(𝑈) ⊆ 𝑖𝑛𝑡𝑐𝑙(𝑉). 

Definition 2.5: A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)  is said to be almost𝛿𝑃𝑆-continuous[25](resp.,almoststrongly𝜃-

continuous[13]and𝜃 -irresolute[6])iftheinverse image of eachregular open subset ofYis𝛿𝑃𝑆-open(resp.,𝜃 -

openandintersectionofregular opensets) inX. 

Definition 2.6:A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is saidto be 𝛿𝑃𝑆-continuous [24] (resp. precontinuous [10]and 

semi-continuous [8]) if the inverseimageofeachopensubsetofYis𝛿𝑃𝑆-open(resp.preopen and semi-open) in X.  

Definition 2.7: Afunction𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)issaid to be -continuous [15] (resp. -continuous[3]) if for each x  

X and each open set V of Ycontaining f (x), there exists an open set U of Xcontaining x such that f (int𝑐𝑙U) ⊆ 

IntClV (resp.f(𝑐𝑙U) ⊆ 𝑐𝑙V).  

Definition 2.8:A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is said to beweaklycontinuous[12](resp.weaklyα-continuous [16], 

weakly pre-continuous [7] and weakly 𝛿-precontinuous[15]) if for each x  X 

andeachopensetVofYcontainingf(x), there exists a open (resp. α-open, preopen and𝛿-preopen) set U of X 

containing x such that f(U) ⊆ 𝑐𝑙V. 

Definition 2.9:Afunction 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)issaidtobeS-continuous [27] if for every F  RC(Y), f−1(F) isthe 

union of regular closed sets of X.  

Definition 2.10:Afunction 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is almost open [19] if f(U) ⊆ 𝑖𝑛𝑡(𝑐𝑙(𝑓(𝑈)) for each 

opensubsetUof X. 

Definition2.11.AspaceXissaidtobe 

a) Extremally disconnected [1] if the closure ofeveryopen setof Xisopenin X. 

b) Locally indiscrete [2] if every open subset ofXis closed. 

c) Semi-T1 [9] if to each pair of distinct pointsx, y of X, there exists a pair of semi-opensets,one 

containingxbutnotyandtheothercontainingybutnotx. 

d) Semi-regular [28] if for any open set U of Xand each point x  U, there exists a regular open setVof X 

such thatxV⊆U. 

e) Almost regular[18] if forany regularclosedsetFofXandapointxF,thereexistdisjointopen setsU  

andVsuchthatF⊆U and xV. 

Lemma 2.12[23].A subset A of a space X is 𝛿𝑃𝑆-open if and only if A is a δ-preopen set and A is a union of 

semi-closed sets. 

Proposition2 . 1 3 [23].IfaspaceXissemi-T1, then 𝛿𝑃𝑆𝑂(𝑋) = 𝑃𝑂(𝑋). 

Proposition2.14[23].Ifatopologicalspace(X,)islocallyindiscrete, then 𝛿𝑃𝑆𝑂(𝑋) = 𝜏. 
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Lemma 2.15[23]. For any subset A of a space X. If 𝐴 ∈ 𝜃𝑆𝑂(𝑋) and 𝐴 ∈ 𝑃𝑂(𝑋), then 𝐴 ∈ 𝛿𝑃𝑆𝑂(𝑋) 

Lemma 2.16[23]. Let (𝑋, 𝜏) be any extremally disconnected space. If 𝐴 ∈ 𝜃𝑆𝑂(𝑋) then 𝐴 ∈ 𝛿𝑃𝑆𝑂(𝑋) 

Proposition 2.17[23]. Let (Y,Y) be a subspace of aspace (X,). If A 𝛿𝑃𝑆O(Y,Y) and Y  

RO(X,),thenA𝛿𝑃𝑆O(X,). 

Corollary 2.18[23]. If 𝐴 ∈ 𝛿𝑃𝑆𝑂(𝑋) and B is eitheropen or regular semi-open subset of X, then𝐴 ∩ 𝐵 ∈

𝛿𝑃𝑆𝑂(𝐵). 

Proposition2.19.LetAbeasubsetofatopologicalspace(X,),thenthefollowingstatements are true: 

a) IfASO(X), then𝛿𝑃𝑆𝐶𝑙(𝐴) = 𝑐𝑙(𝐴)[26] 

b) IfA, then 𝑐𝑙θ(A)= 𝑐𝑙(A) [22]. 

Proposition2.20[24]. If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is a continuous and an open function and V is a δPS-open set of Y, 

then f −1(V) is a δPS-open set ofX. 

Proposition2.21[8]. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a function andX is a locally indiscrete space. Then f is almost𝛿𝑃𝑆-

continuousifandonlyiffisalmostcontinuous. 

Corollary 2.22[25]. If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is almost 𝛿𝑃𝑆-continuous function if and only if 𝑓 is almost continuous 

where 𝑋 is locally indiscrete space. 

Proposition2.23 [25].If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is an almost 𝛿𝑃𝑆-continuous function and Y is semi-regular. Then f is 

𝛿𝑃𝑆-continuous. 

Thefollowingresultscanbeproved easily. 

Proposition2.24.If𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)isalmost𝛿-precontinuous and Y is semi-regular, then𝑓isprecontinuous. 

Proposition2.25. If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is almost continuousand Y is semi-regular, thenfis continuous. 

Proposition2.26[23].Afunction𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)isweaklycontinuousifandonlyif𝑐𝑙f−1(V)⊆f−1(𝑐𝑙V)for each 

opensubsetVof Y. 

Proposition2.27[18]. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is almost-open if and only if f−1(𝑐𝑙V) ⊆ 𝑐𝑙f−1(V) for 

eachopen subsetVof Y. 

Proposition2.28[18]. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is almost-openandalmostcontinuousifandonlyif𝑐𝑙f−1(V)= 

f−1(𝑐𝑙V)foreach opensubsetV of Y. 

3. WEAKLY 𝜹𝑷𝑺- CONTINUOUS FUNCTIONS 

In this section, we introduce the conceptof weakly 𝛿𝑃𝑆-continuous functions by using 𝛿𝑃𝑆-

opensets.Wegivesomecharacterizations of weakly 𝛿𝑃𝑆-continuousfunctionswithseveralrelations between this 

function andothertypesofcontinuousfunctionsandspaces 

Definition 3.1. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is calledweakly 𝛿𝑃𝑆-continuous if for each𝑥 ∈ 𝑋 and each open set 

V of Y containing f (x), there exists a𝛿𝑃𝑆-opensetUofXcontainingxsuchthat𝑓(𝑈) ⊆ 𝛿𝑐𝑙(𝑉). [For  an open se t  

𝛿-c lo sure  and  c lo sure  co inc ide[21] .  Hence  in  the  above  de f ini t io n we can  have  𝑓(𝑈) ⊆

𝑐𝑙(𝑉)) .  

Lemma3.2.The following results supervene from their definitions directly: 

a) Every almost 𝛿𝑃𝑆-continuous functions is weakly 𝛿𝑃𝑆-continuous. 

b) Every weakly 𝛿𝑃𝑆-continuous function is weakly 𝛿-pre-continuous. 

c) Every weakly 𝑃𝑆-continuous function is weakly 𝛿𝑃𝑆-continuous. 
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Proof: a) Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be almost 𝛿𝑃𝑆-continuous. Let 𝑥 ∈ 𝑋 and each open set 𝑉 of 𝑌 containing 𝑓(𝑥). 

Since 𝑓 is almost 𝛿𝑃𝑆-continuous, there exists a 𝛿𝑃𝑆-open set 𝑈 of 𝑋 contained in 𝑥 such that 𝑓(𝑈) ⊆

𝑖𝑛𝑡(𝑐𝑙(𝑉)) 

We know that 𝑖𝑛𝑡(𝑐𝑙(𝑉)) ⊆ 𝑐𝑙(𝑉) 

Hence 𝑓(𝑈) ⊆ 𝑐𝑙(𝑉) 

b) Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be weakly 𝛿𝑃𝑆-continuous. Let 𝑥 ∈ 𝑋 and 𝑉 be an open set in 𝑌 containing 𝑥. Since 𝑓 

is weakly 𝛿𝑃𝑆-continuous, there exists a 𝛿𝑃𝑆-open set 𝑉 contained in 𝑓(𝑥) such that 𝑓(𝑈) ⊆ 𝑉. Since every 𝛿𝑃𝑆-

open set is 𝛿𝑃-open set 𝑓 is weakly 𝛿-precontinuous. 

c) Follows from the fact that every 𝑃𝑆-open set is 𝛿𝑃𝑆-open set. 

 

Therefore from the above Proposition we have: 

 

𝛿-continuous                    almost 𝛿𝑃𝑆-continuous                     weakly 𝛿𝑃𝑆-continuous 

 

 

almost 𝑃𝑆-continuous                    weakly 𝑃𝑆-continuous               weakly 𝛿-precontinuous 

 

 

almost 𝛼-continuousalmostprecontinuousweakly precontinuousweakly 𝛼- continuous 

 

   

almost continuous                   almost 𝛿-precontinuous 

FIGURE 3.1 

In the sequel, we shall show that none oftheimplicationsthatconcerningweakly𝛿𝑃𝑆-continuityin 

Figure3.1 isreversible. 

Example 3.3. Let X = {a, b, c, d} with the twotopologies={ X, ∅, {c},{a,b}, {a,b,c}} and={ X, ∅, {a}, 

{c},{a,b},{a,c}, {a,b,c},{a,c,d}} then𝛿𝑃𝑆𝑂(𝑋, 𝜏)={∅, X, {c}, {a, b}, {a, b, c}}.Let 𝑓: (𝑋, 𝜏) → (𝑋, 𝜎) be the 

identity function. Then𝑓is weakly 𝛿𝑃𝑆-continuous, but it is not almost 𝛿𝑃𝑆-continuous, because {a} is an open 

set in (X,)containingf(a)=a,butthereexistno𝛿𝑃𝑆-openset U in (X,) containing a such that a f (U) ⊆IntCl{a} = 

{a}.  

Example 3.4. Let X = {a, b, c, d} with the twotopologies={∅,X,{a},{b},{a,b}}and{𝜎 =

{𝑋, ∅, {a}, {c}, {a, b}, {a, c}, {a, b, c}, {a, c, d}};then𝛿𝑃𝑆𝑂(𝑋, 𝜏) = {𝑋, ∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}}. Let 

𝑓: (𝑋, 𝜏) → (𝑋, 𝜎) be a function defined asfollows: f (a) =a,f (b) = f(c) = b and f (d) = d.Thenfisweakly 𝛿𝑃𝑆-

continuous.Howeverf is not weakly 𝑃𝑆-continuous since, an open set {a} in (X,) containing f ({a}) = 

a,butthereexistno𝑃𝑆-opensetUin(X,)containing a such that f ({d}) = af (U)⊆int cl{a} = {a} as 𝑃𝑆𝑂(𝑋, 𝜏) =

{𝑋, ∅}. 

Example 3.5. Let 𝑋, 𝜏, 𝜎 be same as in Example 3.3. Then f isweakly 𝛿-precontinuous,but itis notweakly 𝛿𝑃𝑆-

continuous. 

Remark3.6.Wenoticethateveryidentityfunction is weakly 𝛿𝑃𝑆-continuous and a function𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is 

weakly 𝛿𝑃𝑆-continuous if either X isdiscrete orYisindiscrete. 



Shanmugapriya H, Vidhyapriya P et al 

ETIST 2021  89 
 

Proof: Case-(i) 𝑋 is discrete 

   Proof: When 𝑋 is discrete, (ie.,)𝜏 = 𝒫(𝑋).Hence for every 𝑥 ∈ 𝑋, {𝑥} is a 𝛿𝑃𝑆-open in 𝑋.  

Therefore, the 𝛿𝑃𝑆-open set 𝑈 = {𝑥} containing 𝑥 such that 𝑓(𝑈) = 𝑓({𝑥}) = 𝑓(𝑥) ∈ 𝑉 ⊆ 𝑐𝑙(𝑉). Thus 𝑓 is 

weakly 𝛿𝑃𝑆-continuous 

Case –(ii) 𝑌 is indiscrete 

  Proof: When 𝑌 is indiscrete, 𝜎 = {𝑌, 𝜎} then 𝛿𝑃𝑆𝑂(𝜎) = {𝑌, 𝜎}. Any open set 𝑉 in 𝜎 is 𝑌. and 𝑐𝑙(𝑉) = 𝑌. 

Hence for any 𝑈, 𝑓(𝑈) ⊆ 𝑌 = 𝑐𝑙(𝑉) 

∴ 𝑓 is weakly 𝛿𝑃𝑆-continuous. 

Proposition3.7.Ifafunction𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)isweakly 𝛿𝑃𝑆-continuous,thenforeachx X andeach-openset V of 

Y containing f (x), there exists a 𝛿𝑃𝑆-open setUinXcontainingxsuch that𝑓(𝑈) ⊆ 𝑉. . 

Proof.Let𝑥 ∈ 𝑋andletVbeany-opensetofY 

containingf(x).Thenforeachf(x)V,thereexistsanopensetGcontainingf(x)suchthat𝐺 ⊆ 𝐶𝑙(𝐺) ⊆ 𝑉.Since f is 

weakly 𝛿𝑃𝑆-continuous,there exists a 𝛿𝑃𝑆-open set U of X containing xsuch that 𝑓(𝑈) ⊆ 𝐶𝑙(𝐺) ⊆ 𝑉. .  

This completes theproof. 

Corollary 3.8. If a function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is weakly𝛿𝑃𝑆-continuous, then for each𝑥 ∈ 𝑋 and each -open 

set V of Y containing f (x), there exists asemi-closedsetFinXcontainingxsuchthat𝑓(𝐹) ⊆ 𝑉.  

Proof. Let 𝑥 ∈ 𝑋and let V be any -open set ofYcontainingf(x).Sincefisweakly𝛿𝑃𝑆-continuous, then by 

Proposition3.7, there exists a𝛿𝑃𝑆-opensetUinXcontainingx suchthat  

𝑓(𝑈) ⊆ 𝑉.SinceUisa𝛿𝑃𝑆-opensetinX,thenforeachx U, there exists a semi-closed set F of X suchthat𝑥 ∈ 𝐹 ⊆

𝑈.Therefore,weobtain𝑓(𝐹) ⊆ 𝑓(𝑈) ⊆ 𝑉.  Hence 𝑓(𝐹) ⊆ 𝑉.  

Proposition3.9. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a function. If foreach 𝑥 ∈ 𝑋 and each regular closed set 𝑅 of 

𝑌containing 𝑓(𝑥), there exists a 𝛿𝑃𝑆-open set 𝑈 in 𝑋containing x such that 𝑓(𝑈) ⊆ 𝑅,  then f is weakly𝛿𝑃𝑆-

continuous. 

Proof. Let𝑥 ∈ 𝑋 and let V be any open set of Ycontaining f (x). Then put 𝑅 = 𝑐𝑙(𝑉)which is 

aregularclosedsetofYcontainingf(x).Byhypothesis, there existsa 𝛿𝑃𝑆-open setU inXcontainingxsuchthat𝑓(𝑈) ⊆

𝑅 = 𝑐𝑙(𝑉).Hencefisweakly𝛿𝑃𝑆-continuous. 

Proposition3.10. If a function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is weakly𝛿𝑃𝑆-continuous, then the inverse image of each -

open setof 𝑌is a 𝛿𝑃𝑆-open setin X. 

Proof. Let V be any -open set in Y. We have to show that 𝑓−1(𝑉)is a 𝛿𝑃𝑆-open set in 𝑋. Let 𝑥 ∈

𝑓−1(𝑉)Then𝑓(𝑥) ∈ 𝑉. Since f is weakly 𝛿𝑃𝑆-continuous, then by Proposition3.7, there exists a𝛿𝑃𝑆-

opensetUofXcontainingxsuchthat𝑓(𝑈) ⊆ 𝑉, whichimpliesthat𝑥 ∈ 𝑈 ⊆ 𝑓−1(𝑉). Therefore,𝑓−1(𝑉))isa𝛿𝑃𝑆-

opensetin𝑋. 

Corollary3.11.Ifafunction𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)isweakly𝛿𝑃𝑆-continuous,thentheinverseimageofeachθ-closed setof 

Y is a 𝛿𝑃𝑆-closedsetin X. 

Proposition3.12.Let𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)beafunction.If𝑓−1(𝑐𝑙(𝑉))isa𝛿𝑃𝑆-opensetinXforeachopen set  Vin Y, 

thenfis weakly𝛿𝑃𝑆-continuous. 

Proof. Let 𝑥 ∈ 𝑋and let V be any open set of Ycontaining f (x). Then 𝑥 ∈ 𝑓−1(𝑉) ⊆ 𝑓−1(𝑐𝑙(𝑉)).Byhypothesis, 

we have 𝑓−1(𝑐𝑙(𝑉)) is a 𝛿𝑃𝑆-open set inXcontainingx.Therefore,weobtain𝑓(𝑓−1(𝑐𝑙(𝑉))) ⊆ 𝑐𝑙(𝑉).Hence f is 

weakly 𝛿𝑃𝑆-continuous. 
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Corollary3 .13.Let𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)beafunction.If𝑓−1(𝑖𝑛𝑡(𝐹))isa𝛿𝑃𝑆-closedsetinXforeach closed set F in Y, 

then fis weakly𝛿𝑃𝑆-continuous. 

Proposition3.14. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a function. If theinverse image of each regular closed set of Y is 

a𝛿𝑃𝑆-open set in X, then f is weakly 𝛿𝑃𝑆-continuous. 

Proof.LetVbeanyopensetofY.Then𝑐𝑙(𝑉) is a regular closed set in Y. By hypothesis, we have 

𝑓−1(𝑐𝑙(𝑉))isa𝛿𝑃𝑆-opensetinX.Therefore,byProposition3.12, fis weakly𝛿𝑃𝑆-continuous. 

Corollary 3.15. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a function. If theinverse image of each regular open set of Y is a𝛿𝑃𝑆-

closedsetinX,thenfisweakly𝛿𝑃𝑆-continuous. 

Proposition3.16. If a function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is weakly𝛿𝑃𝑆-continuous, then for each 𝑥 ∈ 𝑋 and 

eachopensetVofYcontainingf(x),thereexistsa semi-closedsetFinXcontainingxsuchthat𝑓(𝐹) ⊆ 𝑐𝑙(𝑉).  

Proof. Let 𝑥 ∈ 𝑋 and let V be any open set of Ycontaining f (x). Since f is weakly 𝛿𝑃𝑆-continuous,then there 

exists a 𝛿𝑃𝑆-open set U of X containing x such that 𝑓(𝑈) ⊆ 𝑐𝑙(𝑉). Since U is 𝛿𝑃𝑆-open set,then for each 𝑥 ∈ 𝑈, 

there exists a semi-closedset F of X such that 𝑥 ∈ 𝐹 ⊆ 𝑈.Therefore, wehave 𝑓(𝐹) ⊆ 𝐶𝑙(𝑉). 

The following result is a characterizationofweakly𝛿𝑃𝑆-continuous functions: 

Proposition3.17.Forafunction𝑓: (𝑋, 𝜏) → (𝑌, 𝜎),thefollowingstatements are equivalent: 

a) f is weakly𝛿𝑃𝑆-continuous. 

b) 𝛿𝑃𝑆𝑐𝑙𝑓−1(𝑖𝑛𝑡𝑐𝑙(𝐵)) ⊆ 𝑓−1(𝑐𝑙(𝐵)) for each 𝐵 ⊆ 𝑌 

c) 𝑓−1(𝑖𝑛𝑡(𝐵)) ⊆  𝛿𝑃𝑆𝑖𝑛𝑡𝑓−1(𝑐𝑙(𝑖𝑛𝑡(𝐵))) for each 𝐵 ⊆ 𝑌 

d) 𝑓−1(𝑖𝑛𝑡(𝑐𝑙 𝑉)) ⊆  𝛿𝑃𝑆𝑖𝑛𝑡𝑓−1(𝑐𝑙𝑉) foreachopensetVofY 

e) 𝑓−1(𝑉) ⊆ 𝛿𝑃𝑆𝑖𝑛𝑡(𝑓−1(𝑐𝑙(𝑉)) for each regular open set 𝑉 of 𝑌. 

f) 𝛿𝑃𝑆(𝑐𝑙 (𝑓−1(𝑖𝑛𝑡(𝐹))) ⊆ 𝑓−1(𝐹),foreachregular closed setF ofY. 

g) 𝛿𝑃𝑆(𝑐𝑙(𝑓−1(𝑖𝑛𝑡(𝐹))) ⊆ 𝑓−1(𝑐𝑙(𝑖𝑛𝑡(𝐹))),foreachclosed set 𝐹 of 𝑌. 

h) 𝛿𝑃𝑆(𝑐𝑙(𝑓−1(𝑉))) ⊆ 𝑓−1(𝑐𝑙(𝑉)),foreachopenset𝑉 of 𝑌. 

i) 𝑓−1(𝑖𝑛𝑡(𝐹)) ⊆ 𝛿𝑃𝑆(𝑖𝑛𝑡(𝑓−1(𝐹)),for each closed set F of Y. 

Proof. (a) (b). LetB be any subset ofY.Assume that𝑥 ∉ 𝑓−1(𝑐𝑙(𝐵)). Then𝑓(𝑥) ∉ 𝑐𝑙(𝐵) andthere exists an 

open set V containing 𝑓(𝑥)suchthat𝑉 ∩ 𝐵 = ∅,hence𝑐𝑙(𝑉) ∩ 𝑖𝑛𝑡(𝑐𝑙(𝐵)) = ∅.By(a),thereexistsa𝛿𝑃𝑆-

opensetUofXcontainingxsuchthat𝑓(𝑈) ⊆ 𝑐𝑙(𝑉).Therefore,wehave𝑓(𝑈) ∩ 𝐼𝑛𝑡(𝐶𝑙(𝐵)) = ∅whichimpliesthat𝑈 ∩

𝑓−1(𝑖𝑛𝑡(𝑐𝑙(𝐵)) = ∅ and hence𝑥 ∉ 𝛿𝑃𝑆(𝑐𝑙(𝑓−1(𝑖𝑛𝑡(𝑐𝑙(𝐵)))).Therefore, weobtain𝛿𝑃𝑆(𝑐𝑙(𝑓−1(𝑖𝑛𝑡(𝑐𝑙(𝐵))) ⊆

𝑓−1(𝑐𝑙(𝐵)). 

(b)(c).LetBbeanysubsetofY.Thenapply (b) 

toY\Bweobtain𝛿𝑃𝑆𝑐𝑙f−1(int𝑐𝑙(Y\B))f−1(𝑐𝑙(Y\B))𝛿𝑃𝑆𝑐𝑙f−1(int(Y\intB))⊆f−1(Y\intB)𝛿𝑃𝑆𝑐𝑙f−1(Y\𝑐𝑙intB)⊆f−1(

Y\intB)𝛿𝑃𝑆𝑐𝑙(X\f−1(𝑐𝑙intB))⊆X\f−1(intB)X\ 𝛿𝑃𝑆int(f−1(𝑐𝑙intB)) ⊆ X\f−1(intB) f−1(intB) ⊆

𝛿𝑃𝑆intf−1(𝑐𝑙intB).Therefore,weobtainf−1(intB)⊆ 𝛿𝑃𝑆intf−1(𝑐𝑙intB). 

(c)  (d). Let V be any open set of Y. Then apply (c) to 𝑐𝑙(𝑉)we obtain f −1(Int𝑐𝑙V) ⊆ 𝛿𝑃𝑆intf−1(𝑐𝑙int𝑐𝑙V) = 

𝛿𝑃𝑆𝑖ntf −1(𝑐𝑙V). Therefore, we obtain f −1(int𝑐𝑙V) ⊆ 𝛿𝑃𝑆intf−1(𝑐𝑙V).  

(d)  (e). Let V be any regular open set of Y. Then V is an open set of Y. By (d), we have f −1(V) = f 

−1(int𝑐𝑙V)⊆ 𝛿𝑃𝑆intf−1(𝑐𝑙V)). Therefore, we obtain f −1(V) ⊆ 𝛿𝑃𝑆intf−1(𝑐𝑙V). 

e (f).Let F be any regular closed set of Y.Then Y\F is a regular open set of Y. By (e), wehave f−1(Y\F) ⊆
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𝛿𝑃𝑆intf−1(𝑐𝑙(Y\F))  X\f−1(F) ⊆ 𝛿𝑃𝑆intf−1(Y\intF)X\f−1(F)⊆ 𝛿𝑃𝑆int(X\f−1(intF)) 

X\f−1(F)⊆X\ 𝛿𝑃𝑆𝑐𝑙f−1(intF)𝛿𝑃𝑆𝑐𝑙f−1(intF)⊆f−1(F). Hence 𝛿𝑃𝑆𝑐𝑙f−1(intF) ⊆f−1(F). 

f (g).Let F be any closed set of Y. Then𝑐𝑙 𝑖𝑛𝑡(𝐹) is a regular closed set of Y. By (f) 

wehave𝛿𝑃𝑆𝑐𝑙f−1(int𝑐𝑙intF)=𝛿𝑃𝑆𝑐𝑙f−1(intF)⊆f−1(𝑐𝑙intF). Therefore, we obtain 𝛿𝑃𝑆𝑐𝑙f−1(intF) ⊆f−1(𝑐𝑙intF). 

g(h).LetVbeanyopensetofY.Thenby (g)wehave𝛿𝑃𝑆𝑐𝑙f−1(V)⊆

𝛿𝑃𝑆𝑐𝑙f−1(int𝑐𝑙V)⊆f−1(𝑐𝑙int𝑐𝑙V)=f−1(𝑐𝑙V).Therefore,𝛿𝑃𝑆𝑐𝑙f−1(V)⊆f−1(𝑐𝑙V). 

h (i).Let F be any closed set of Y. ThenY\FisanopensetofY.By(h),wehave𝛿𝑃𝑆𝑐𝑙f−1(Y\F) f−1(𝑐𝑙(Y\F)) 

𝛿𝑃𝑆𝑐𝑙(X\f−1(F)) ⊆f−1(Y\intF)X\ 𝛿𝑃𝑆intf−1(F)⊆X\f−1(intF)f−1(intF)⊆ 𝛿𝑃𝑆intf−1(F).Therefore,f−1(intF)⊆

𝛿𝑃𝑆intf−1(F). 

i (a). Let x be any point of X and let V beany open set in Y containing f (x). Then x f−1(V) and clV is a 

closed set in Y. By (𝑖), wehave x f−1(V) f−1(int𝑐𝑙V) ⊆ 𝛿𝑃𝑆lntf−1(𝑐𝑙V).Put U = 𝛿𝑃𝑆Intf−1(𝑐𝑙V). Then we obtain 

x  U 𝛿𝑃𝑆O(X) and f (U) ⊆ 𝑐𝑙V. Therefore, f is weakly𝛿𝑃𝑆-continuous. 

Proposition3.18.Ifafunction𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)iscontinuous, thenfis weakly𝛿𝑃𝑆-continuous. 

Proof. Let V be any open set of Y. Since𝑓 iscontinuous,thenf−1(V)isanopensetandhenceit is a semi-open set. By 

Proposition2.19(a), wehave𝛿𝑃𝑆𝑐𝑙f−1(V)=𝑐𝑙f−1(V).Also,sincefiscontinuous, then 𝑐𝑙f−1(V) ⊆f−1(𝑐𝑙(𝑉). 

Therefore,we obtain that 𝛿𝑃𝑆𝑐𝑙f−1(V) ⊆f−1(𝑐𝑙V) and henceby Proposition3.17,fis weakly𝛿𝑃𝑆-continuous. 

Anothercharacterization theoremofweakly𝛿𝑃𝑆-continuous functions is the following: 

Proposition3.19.Forafunction𝑓: (𝑋, 𝜏) → (𝑌, 𝜎),thefollowingstatements are equivalent: 

a) f is weakly𝛿𝑃𝑆-continuous. 

b) f(𝛿𝑃𝑆𝑐𝑙A)⊆ 𝑐𝑙θf(A), foreach subsetAofX. 

c) intθf(A)⊆f (𝛿𝑃𝑆intA), for eachsubsetAofX. 

d) f−1(intθB)⊆ 𝛿𝑃𝑆intf−1(B),foreachsubsetBofY. 

e) 𝛿𝑃𝑆𝑐𝑙f −1(B) ⊆ f −1(𝑐𝑙θB), for each subset B of Y.  

Proof. (a)  (b). Let A be a subset of X. Suppose that f(𝛿𝑃𝑆𝑐𝑙A) ⊈ 𝑐𝑙θf(A). Then there exists y f(𝛿𝑃𝑆𝑐𝑙A) 

such that y 𝑐𝑙θf(A), then there exists an open set G in Y containing y such that 𝑐𝑙G  f(A) = ∅. If f −1(y) = ∅, 

then there is nothing to prove. Suppose that x be any arbitrary point of f−1(y), so f(x)  G. Since G is anopenset 

in Y, by (a), there exists a 𝛿𝑃𝑆-open set H in X containing x such that f(H) ⊆ 𝑐𝑙G. Therefore, 

wehavef(H)f(A)=∅.Then𝑦 ∉ 𝛿𝑃𝑆𝑐𝑙(𝑓(𝐴)) ⇒ 𝑥 ∉ 𝛿𝑃𝑆𝑐𝑙(𝐴). Hence𝑦 ∉ 𝛿𝑃𝑆𝑐𝑙(𝐴) which is a contradiction. 

Therefore,wehave f(𝛿𝑃𝑆𝑐𝑙A)⊆ 𝑐𝑙θf(A). 

(b)(c).LetAbeanysubsetofX.Thenapply (b) to X\A we obtain f(𝛿𝑃𝑆𝑐𝑙(X\A)) ⊆ 𝑐𝑙θf(X\A)  f(X\ 𝛿𝑃𝑆𝑖ntA) ⊆

𝑐𝑙θ(Y\ f(A))  Y\ f(𝛿𝑃𝑆intA) ⊆ Y\intθf(A) intθf(A) ⊆ f(𝛿𝑃𝑆intA). Therefore, we obtain that intθf(A) ⊆ 

f(𝛿𝑃𝑆𝑖ntA).  

(c)  (d). Let B be a subset of Y. Then f −1(B) is a subset of X. By (c), we have Intθf(f −1(B)) ⊆ f(𝛿𝑃𝑆intf−1(B)). 

Then intθB⊆f(𝛿𝑃𝑆Intf −1(B)) and hence f −1(intθB) ⊆ 𝛿𝑃𝑆intf−1(B).  

(d)  (e). Let B be any subset of Y. Then apply (d) to Y\B we obtain f −1(Intθ(Y\B)) ⊆ 𝛿𝑃𝑆intf−1(Y\B)  f 

−1(Y\𝑐𝑙θB) ⊆ 𝛿𝑃𝑆𝑖nt(X\f −1(B))  X\f −1(𝑐𝑙θB) ⊆ X\ 𝛿𝑃𝑆𝑐𝑙f −1(B) 𝛿𝑃𝑆𝑐𝑙f −1(B) ⊆ f −1(𝑐𝑙θB). Therefore, we 

obtain 𝛿𝑃𝑆𝑐𝑙f −1(B) ⊆f −1(𝑐𝑙θB).  

(e)  (a). Let V be any open set of Y. By (e), we have 𝛿𝑃𝑆𝑐𝑙f −1(V) ⊆f −1(𝑐𝑙θV). By Proposition2.19 (b), we 
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have𝛿𝑃𝑆𝑐𝑙𝑓−1(𝑉) ⊆ 𝑓−1(𝑐𝑙(𝑉)). 

Therefore, by Proposition3.17, f is weakly 𝛿𝑃𝑆-continuous.  

Proposition3.20. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is weakly 𝛿𝑃𝑆-continuous if and only if 𝛿𝑃𝑆𝑐𝑙𝑓−1(𝑖𝑛𝑡𝑐𝑙(𝐵)) ⊆

𝑓−1(𝑐𝑙(𝐵)) for each subset B of Y 

Proof. Necessity. Let B be any subset of Y. Assume that x  f −1(𝑐𝑙θB). Then f (x) 𝑐𝑙θB and hence there exists 

an open set H containing f (x) such that B 𝑐𝑙H = ∅. This implies that 𝑐𝑙θB  H = ∅ and so H ⊆ Y\𝑐𝑙θB and 

hence 𝑐𝑙H ⊆ 𝑐𝑙(Y\𝑐𝑙θB). Since f is weakly 𝛿𝑃𝑆-continuous, there exists a 𝛿𝑃𝑆-open set U of X containing x such 

that f (U) ⊆ 𝑐𝑙H ⊆ 𝑐𝑙(Y\𝑐𝑙θB) = Y\Int𝑐𝑙θB. This implies that f (U) 𝑖𝑛𝑡(𝑐𝑙θB) = ∅ and hence U  f −1(int𝑐𝑙θB) = 

∅. Then x 𝛿𝑃𝑆𝑐𝑙f −1(int𝑐𝑙θB). Therefore, 𝛿𝑃𝑆𝑐𝑙f −1(int𝑐𝑙θB) ⊆ f −1(𝑐𝑙θB).  

Sufficiency. Let V be any open set of Y. Then by hypothesis and Proposition2.19(b), we have 

𝛿𝑃𝑆𝑐𝑙(f−1(intclV))=𝛿𝑃𝑆𝑐𝑙f−1(Int𝑖𝑛𝑡(𝑐𝑙𝜃(𝑉)) ⊆ 𝑓−1(𝑐𝑙𝜃(𝑉)). Therefore, 𝛿𝑃𝑆𝑐𝑙(𝑓−1(𝑖𝑛𝑡𝑐𝑙(𝑉) ⊆ 𝑓−1(𝑐𝑙(𝑉)). 

Hence by Proposition3.17(b), f is weakly 𝛿𝑃𝑆-continuous.  

From Proposition3.20, we obtain that:  

Corollary 3.21. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is weakly 𝛿𝑃𝑆-continuous if and only if 𝑓−1(𝑖𝑛𝑡𝜃(𝐵)) ⊆

𝛿𝑃𝑆(𝑖𝑛𝑡(𝑓−1(𝑐𝑙(𝑖𝑛𝑡𝜃(𝐵))) for each subset B of Y.  

Proposition3.22. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is weakly 𝛿𝑃𝑆-continuous if and only if 𝑓−1(𝑉) ⊆

𝛿𝑃𝑆(𝑖𝑛𝑡(𝑓−1(𝑐𝑙(𝑉)))) for each open set V of Y.  

Proof. Necessity. Let 𝑓 be weakly 𝛿𝑃𝑆-continuous and let V be any open set of Y. Then𝑉 ⊆ 𝑖𝑛𝑡(𝑐𝑙(𝑉)). 

Therefore, by Proposition3.17(b),𝑓−1(𝑉) ⊆ 𝑓−1(𝑖𝑛𝑡(𝑐𝑙(𝑉)) ⊆ 𝛿𝑃𝑆𝑖𝑛𝑡(𝑓−1(𝑐𝑙(𝑉))). Hence f −1(V) 𝑓−1 ⊆

𝛿𝑃𝑆(𝑖𝑛𝑡(𝑓−1(𝑐𝑙(𝑉)). 

Sufficiency. Let V be any regular open set of Y. Then V is an open set of Y. By hypothesis, we have 𝑓−1(𝑉) ⊆

𝛿𝑃𝑆𝑓−1(𝑐𝑙(𝑉)). Therefore, by Proposition3.17(c), 𝑓 is weakly 𝛿𝑃𝑆-continuous.  

From Proposition3.22, we obtain that:  

Corollary 3.23. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is weakly 𝛿𝑃𝑆-continuous if and only if 𝛿𝑃𝑆𝑐𝑙(𝑓−1(𝑖𝑛𝑡(𝐹))) ⊆

𝑓−1(𝐹) for each closed set F of Y.  

Proposition3.24. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is weakly 𝛿𝑃𝑆-continuous if and only if 𝛿𝑃𝑆𝑐𝑙(𝑓−1(𝑉)) ⊆

𝑓−1(𝛿𝑃𝑆(𝑐𝑙(𝑉))) for each open set V of Y.  

Proof. Necessity. Let V be any open set of Y. Since 𝑓 is weakly 𝛿𝑃𝑆-continuous, then by Proposition3.17(h), we 

have 𝛿𝑃𝑆𝑐𝑙(𝑓−1(𝑉)) ⊆ 𝑓−1(𝛿𝑃𝑆(𝑐𝑙(𝑉))). Since V is an open set and hence V is a semi-open set. Therefore, by 

Proposition2.19(a), we obtain 𝛿𝑃𝑆(𝑐𝑙(𝑓−1(𝑉))) ⊆ 𝑓−1(𝛿𝑃𝑆(𝑐𝑙(𝑉)). 

Sufficiency. Let F be any closed set of Y. Then 𝑖𝑛𝑡(𝐹) is an open set in Y. By hypothesis, we have 

𝛿𝑃𝑆(𝑐𝑙(𝑓−1(𝑖𝑛𝑡(𝐹))) ⊆ 𝑓−1(𝛿𝑃𝑆(𝑐𝑙(𝑖𝑛𝑡(𝐹))). Since 𝑖𝑛𝑡(𝐹) is a semi-open set, then by Proposition2.19(a), 

𝛿𝑃𝑆(𝑐𝑙(𝑓−1(𝑖𝑛𝑡(𝐹))) ⊆ 𝑓−1(𝑐𝑙(𝑖𝑛𝑡(𝐹))). Therefore, by Proposition3.17(g), 𝑓 is weakly 𝛿𝑃𝑆-continuous.  

From Proposition3.24, we obtain that:  

Corollary 3.25. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is weakly 𝛿𝑃𝑆-continuous if and only if f −1(𝛿𝑃𝑆intF) ⊆

𝛿𝑃𝑆𝑖𝑛𝑡(𝑓−1(𝐹)) for each closed set F of Y.  

Proposition3.26. If a function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is weakly 𝛿𝑃𝑆-continuous, then 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎𝜃) is 𝛿𝑃𝑆-

continuous.  

Proof. Let H θ, then H is θ-open set in (Y,). Since 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is weakly 𝛿𝑃𝑆-continuous, then by 
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Proposition3.10, f −1(H) is a 𝛿𝑃𝑆-open set in X. Therefore,𝑓: (𝑋, 𝜏) → (𝑌, 𝜎𝜃) is 𝛿𝑃𝑆-continuous.  

Proposition3.27. Let X be a locally indiscrete space. Then the function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is weakly 𝛿𝑃𝑆-

continuous if and only if 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎𝜃)is continuous.  

Proof. Let H θ, then H is -open set in (Y,). Since 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is weakly 𝛿𝑃𝑆-continuous, then by 

Proposition3.10, f −1(H) is a 𝛿𝑃𝑆-open set in X. Since X is a locally indiscrete space, then by Proposition2.14,  

f −1(H) is open set in X. Therefore, 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎𝜃)is continuous. 

Proposition3.28. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)be a function. Let ℬ be any basis for θ in Y. If f is weakly 𝛿𝑃𝑆-

continuous, then for each𝐵 ∈ ℬ, f −1(B) is a 𝛿𝑃𝑆-open set of X.  

Proof. Suppose that f is weakly 𝛿𝑃𝑆-continuous. Since each 𝐵 ∈ ℬis a -open subset of Y, therefore, by 

Proposition3.10, f −1(B) is a 𝛿𝑃𝑆-open subset of X.  

4. PROPERTIES AND COMPARISONS 

 In this section, we give some properties of weakly 𝛿𝑃𝑆-continuous functions and we compare them 

with other types of continuous functions.  

Proposition4.1. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be weakly 𝛿𝑃𝑆-continuous function. If A is a regular semi-open subset of 

X, then the restriction𝑓|𝐴: 𝐴 → 𝑌 is weakly 𝛿𝑃𝑆-continuous in the subspace A.  

Proof. Let x  A and V be an open set of Y containing f(x). Since f is weakly 𝛿𝑃𝑆-continuous, there exists a 

𝛿𝑃𝑆-open set U of X containing x such that f(U) ⊆ 𝑐𝑙V. Since A is a regular semi-open subset of X, by 

Corollary 2.18, A  U is a 𝛿𝑃𝑆-open subset of A containing x and (f|A)(A  U) = f(A  U) ⊆ f(U) ⊆ 𝑐𝑙V. This 

show that f|A is weakly 𝛿𝑃𝑆-continuous.  

Corollary 4.2. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a weakly 𝛿𝑃𝑆-continuous function. If A is a regular open subset of X, 

then the restriction f|A:AY is weakly 𝛿𝑃𝑆-continuous in the subspace A.  

Proof. Since every regular open set is regular semi-open, this is an immediate consequence of Proposition4.1.  

Proposition4.3. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a function. If for each x  X, there exists a regular open set A of X 

containing x such that the restriction f|A:AY is weakly 𝛿𝑃𝑆-continuous, then f is weakly 𝛿𝑃𝑆-continuous.  

Proof. Let x  X, then by hypothesis, there exists a regular open set A containing x such that f|A:AY is 

weakly 𝛿𝑃𝑆-continuous. Let V be any open set of Y containing f(x), there exists a 𝛿𝑃𝑆-open set U in A 

containing x such that (f|A)(U) ⊆ 𝑐𝑙V. Since A is regular open set, by Proposition 2.17, U is 𝛿𝑃𝑆-open set in X 

and hence f(U) ⊆ 𝑐𝑙V. This shows that f is weakly 𝛿𝑃𝑆continuous.  

As an immediate consequence of Corollary 4.2 and Proposition4.3, we obtain that:  

Corollary 4.4. Let {Uα : α  Δ} be a regular open cover of a topological space X. A function 𝑓: (𝑋, 𝜏) →

(𝑌, 𝜎)is weakly 𝛿𝑃𝑆-continuous if and only if the restriction f|Uα :Uα Y is weakly 𝛿𝑃𝑆continuous for each α 

 Δ.  

Remark 4.5. If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is a weakly 𝛿𝑃𝑆continuous function and A, B are any subsets of X. Then the 

restriction f|A:Af(A) need not be weakly 𝛿𝑃𝑆-continuous in general. Moreover, f|(A  B): ABf(A  B) is 

not always weakly 𝛿𝑃𝑆-continuous even if f|A:Af(A), f|B:Bf(B) and f are all weakly 𝛿𝑃𝑆-continuous. 

Proposition4.6. If X = R  S, where R and S are regular open sets and𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is a function such that 

both f|R and f|S are weakly 𝛿𝑃𝑆-continuous, then f is weakly 𝛿𝑃𝑆-continuous.  

Proof. Let x  X and V be an open set of Y containing f (x). Since f|R and f|S are weakly 𝛿𝑃𝑆-continuous, there 

exist 𝛿𝑃𝑆-open sets U of R and W of S with x  U and x  W, such that (f|R)(U) ⊆ 𝑐𝑙V and (f|S)(W) ⊆ 𝑐𝑙V. 
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Then f(U  W) = (f|R)(U)  (f|S)(W) ⊆ 𝑐𝑙V. Since R and S are regular open sets in X, then by Proposition 

2.17, U and W are 𝛿𝑃𝑆-open sets in X. Since union of two 𝛿𝑃𝑆-open sets is𝛿𝑃𝑆-open, then U  W is a 𝛿𝑃𝑆-open 

set of X containing x. Therefore, f is weakly 𝛿𝑃𝑆-continuous. In general, if X = {Kα : α  Δ}, where each K 

is a regular open set and 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is a function such that the restriction f|Kα is weakly 𝛿𝑃𝑆-continuous 

for each α, then f is weakly 𝛿𝑃𝑆-continuous.  

Proposition4.7. Let X = R1 R2, where R1 and R2 are regular open sets in X. Let f:R1Y and g:R2Y be 

weakly 𝛿𝑃𝑆-continuous. If f(x) = g(x) for each x  R1 R2, then h:R1 R2Y such that  

ℎ(𝑥) = {

𝑓(𝑥)                             𝑖𝑓 𝑥 ∈ 𝑅1 𝑎𝑛𝑑 𝑥 ∉ 𝑅2

𝑔(𝑥)                             𝑖𝑓 𝑥 ∈ 𝑅1𝑎𝑛𝑑 𝑥 ∉ 𝑅2

𝑓(𝑥) = 𝑔(𝑥)                        𝑖𝑓 𝑥 ∈ 𝑅1 ∩ 𝑅2

 

 is weakly 𝛿𝑃𝑆-continuous. 

Proof. Let x  X and V be an open set of Ycontaining h (x). Then x  R1 R2 and V is 

anopensetofYcontainingf(x)andg(x).Sincefis weakly 𝛿𝑃𝑆-continuous, there exists a 𝛿𝑃𝑆-openset U of X 

containing x such that f (U) ⊆ 𝑐𝑙V.Thenf−1(𝑐𝑙V)isa𝛿𝑃𝑆-opensetofR1containingx. But R1 is a regular open set in 

X, then byProposition 2.17, f−1(𝑐𝑙V) is a 𝛿𝑃𝑆-open set of Xcontaining x. Similarly, f−1(𝑐𝑙V) is a 𝛿𝑃𝑆-open setin 

R2 and hence, a 𝛿𝑃𝑆-open set in X. Since unionoftwo𝛿𝑃𝑆-opensetsis𝛿𝑃𝑆-open.Therefore,h−1(𝑐𝑙V) = f−1(𝑐𝑙V) 

g−1(𝑐𝑙V) is a 𝛿𝑃𝑆-open setin X and it is clear thath (h−1(𝑐𝑙V)) ⊆ 𝑐𝑙V.Henceh is weakly𝛿𝑃𝑆-continuous. 

Proposition4.8.Let𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)beweakly𝛿𝑃𝑆-continuous surjection and A be aregular semi-open subset of 

X. If f is an openfunction, then the function g:Af (A), definedby g (x) = f (x) for each x  A, is weakly 𝛿𝑃𝑆-

continuous. 

Proof.PuttingH=f(A).LetxAandV b e  a n y  open set in H containing g (x). Since H 

isopeninYandVisopeninH,thenVisopeninY. Since f is weakly 𝛿𝑃𝑆-continuous, there exists a𝛿𝑃𝑆-open set U in X 

containing x such that f (U) ⊆ 𝑐𝑙V. Taking W = U  A, since A is either openoraregularsemi-

opensubsetofX,thenbyCorollary 2.18, W is a 𝛿𝑃𝑆-open set in A containingx and g (N) ⊆ 𝑐𝑙YV  H = 𝑐𝑙HV. 

Then g (W) ⊆ 𝑐𝑙HV.Thisshowsthatgisweakly𝛿𝑃𝑆-continuous. 

Proposition4.9.Let𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)beaweakly𝛿𝑃𝑆-continuous function and for each x  X. If Y isany subset 

of Z containing f (x), then 𝑓: (𝑋, 𝜏) → (𝑍, 𝜂)isweakly𝛿𝑃𝑆-continuous. 

Proof. Let x  X and V be any open set of Zcontainingf(x).ThenVYisopeninYcontainingf(x).Since𝑓: (𝑋, 𝜏) →

(𝑌, 𝜎)isweakly𝛿𝑃𝑆-continuous, there exists a 𝛿𝑃𝑆-open set U of Xcontaining x such that 𝑓(𝑈) ⊆ 𝑐𝑙(𝑉 ∩ 𝑌) 

andhence 𝑓(𝑈) ⊆ 𝑐𝑙(𝑉). Therefore, 𝑓: (𝑋, 𝜏) → (𝑍, 𝜂)is weakly𝛿𝑃𝑆-continuous. 

We shall obtain some conditions forwhichthe composition of two functions is weakly 𝛿𝑃𝑆-continuous: 

Proposition4.10.Let𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)and𝑔: (𝑌, 𝜎) → (𝑍, 𝜂)befunctions.Thenthecompositionfunction𝑔 ∘

𝑓: (𝑋, 𝜏) → (𝑍, 𝜂)isweakly𝛿𝑃𝑆-continuousiffandgsatisfyoneofthefollowingconditions: 

a) fis𝛿𝑃𝑆-continuous andgis weaklycontinuous. 

b) fisweakly𝛿𝑃𝑆-continuousandgisalmoststrongly𝜃-continuous. 

c) fisweakly𝛿𝑃𝑆-continuousandgis𝜃-continuous. 

d) fisweakly𝛿𝑃𝑆-continuousandg iscontinuous. 

e) fiscontinuousandopenandgisweakly𝛿𝑃𝑆-continuous. 

Proof. a) Let x  X and W be an open set of 



Shanmugapriya H, Vidhyapriya P et al 

ETIST 2021  95 
 

Zcontainingg(f(x)).Sincegisweaklycontinuous,thereexistsanopensetVofYcontaining f (x) such that 𝑔(𝑉) ⊆

𝑐𝑙(𝑊)(i.e.,) 𝑓(𝑥) ∈ 𝑉 ⊆ 𝑔−1(𝑐𝑙(𝑊)). Hence𝑔−1(𝑐𝑙(𝑊)) is open in Y containing f (x). Since f isweakly 𝛿𝑃𝑆-

continuous, there exists a 𝛿𝑃𝑆-open setU of X containing x such that 𝑓(𝑈) ⊆ 𝑔−1(𝑐𝑙(𝑊)), from Definition 2.6. 

Therefore, we obtain (gοf)(U) = g(f (U)) ⊆ 𝑐𝑙W.Hence𝑔 ∘ 𝑓is weakly𝛿𝑃𝑆-continuous. 

b) LetWbeanyregularopensubsetofZ. Since g is almost strongly -continuous from the 

Definition 2.5, g−1(W)is 𝜃-opensubsetofY.Sincefisweakly𝛿𝑃𝑆-continuous, then by Proposition3.10, (𝑔 ∘ 𝑓)−1(W) 

=f−1(g−1(W)) is a 𝛿𝑃𝑆-open subset in X. Therefore,𝑔 ∘ 𝑓isalmost𝛿𝑃𝑆-continuous, [byProposition 3.10(e) of 

24]andhenceitisweakly𝛿𝑃𝑆-continuous, by Proposition 3.2(a). 

c) Let𝑥 ∈ 𝑋,andWbeanopensetofZcontaining g(f(x)). Since g is 𝜃-continuous, there 

exists an open set V of Y containing f (x) suchthat𝑔(𝑐𝑙(𝑉)) ⊆ 𝑐𝑙(𝑊), by definition 2.7.Sincefisweakly𝛿𝑃𝑆-

continuous, there exists a 𝛿𝑃𝑆-open set U of Xcontaining x such that𝑓(𝑈) ⊆ 𝑐𝑙(𝑉).  Hence𝑔(𝑓(𝑈)) ⊆

𝑔(𝑐𝑙(𝑉)) ⊆ 𝑐𝑙(𝑊)). Therefore, 𝑔 ∘ 𝑓is weakly𝛿𝑃𝑆-continuous. 

d) LetxXandWbeanopensetofZcontaining g(f(x)). Since g is continuous, g−1(W)is an open set of Y containing f 

(x). Since f isweakly 𝛿𝑃𝑆-continuous, there exists a 𝛿𝑃𝑆-open setU of X containing x such that  

f (U) ⊆ 𝑐𝑙g−1(W).Also, since g is continuous, then we have f (U) ⊆g−1(𝑐𝑙W).Thisimpliesthatg(f(U))⊆

𝑐𝑙W.Therefore,gοfis weakly𝛿𝑃𝑆-continuous. 

e) LetxXandWbeanopensetofZcontainingg(f(x)).Sincegisweakly𝛿𝑃𝑆-continuous, there exists a 𝛿𝑃𝑆-open set U 

of Ycontaining f (x) such that g (U) ⊆ 𝑐𝑙W. It is clearthat g−1(𝑐𝑙W) is a 𝛿𝑃𝑆-open set of Y containing 

f(x).Sincefiscontinuousandopen,thenbyProposition2.20, f−1(g−1(𝑐𝑙W)) = (𝑔 ∘ 𝑓)−1(𝑐𝑙W) is a 𝛿𝑃𝑆-open set in X 

containingxandclearly(𝑔 ∘ 𝑓)((𝑔 ∘ 𝑓)−1(𝑐𝑙W)) 𝑐𝑙W. Hence f is weakly𝛿𝑃𝑆-continuous. 

Proposition4.11.If𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)isaweakly𝛿𝑃𝑆-continuousfunctionandYisalmostregular,then fis almost𝛿𝑃𝑆-

continuous. 

Proof. Let x  X and let V be any open set of Ycontaining f (x). By the almost regularity of 

Y,thereexistsaregularopensetGofYsuchthat 𝑓(𝑥) ∈ 𝐺 ⊆ 𝑐𝑙𝐺 ⊆ 𝑖𝑛𝑡(𝑐𝑙 𝑉) [18, Proposition 2.2].Since 𝑓is weakly 

𝛿𝑃𝑆-continuous, there exists a𝛿𝑃𝑆-opensetUofXcontainingxsuchthat𝑓(𝑈) ⊆ 𝑐𝑙(𝐺) ⊆ 𝑖𝑛𝑡(𝑐𝑙 𝑉). 

Therefore,𝑓isalmost𝛿𝑃𝑆-continuous, from Definition 2.4. 

Proposition4.12.If𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)isaweakly𝛿𝑃𝑆-

continuousfunctionandYisanextremallydisconnectedspace,thenfisalmost𝛿𝑃𝑆-continuous. 

Proof. Let𝑥 ∈ 𝑋 and let V be any open set of Ycontaining f (x). Since f is weakly 𝛿𝑃𝑆-continuous,there exists a 

𝛿𝑃𝑆-open set U of X containing xsuch that f (U) ⊆ 𝑐𝑙V. Since Y is extremallydisconnected,from Definition 

2.11(a) 𝑐𝑙(𝑉) is open, (i.e.,)𝑐𝑙(𝑉) = 𝑖𝑛𝑡(𝑐𝑙(𝑉)), then𝑓(𝑈) ⊆ 𝑖𝑛𝑡(𝑐𝑙(𝑉)). Therefore,𝑓isalmost𝛿𝑃𝑆-continuous. 

Corollary 4.13. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is almost 𝛿𝑃𝑆-continuous if and only if f is weakly 𝛿𝑃𝑆-continuous 

and itsatisfies oneofthe followingproperties: 

a) Yis almostregular. 

b) Y isextremallydisconnected. 

 

Proof.The proof follows from Proposition 3.2(a). The converse is proved in Proposition4.11 

andProposition4.12. 

Corollary4.14.Let𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)beafunctionandXisalocallyindiscretespace.Thenfisweakly 𝛿𝑃𝑆-
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continuousifandonlyiffisweaklycontinuous. 

Proof. Follows fromProposition2.14. 

Corollary 4.15. If X is a locally indiscrete spaceand Y is either almost regular or an extremallydisconnected 

space, the following statements areequivalentfor afunction𝑓: (𝑋, 𝜏) → (𝑌, 𝜎): 

a) 𝑓is almost 𝛿𝑃𝑆-continuous. 

b) 𝑓is weakly𝛿𝑃𝑆-continuous. 

c) 𝑓isweaklycontinuous. 

d) 𝑓isalmostcontinuous. 

Proof.(a) ⇒ (𝑏)Followsfrom Proposition 3.2 

(b) ⇒ (𝑐)Follows fromCorollary 4.14 

(c) ⇒ (𝑑)Follows from Corollary 4.12 

(d) ⇒ (𝑎)  Since 𝑋 is locally indiscrete, 𝛿𝑃𝑆𝑂(𝑋) = 𝜏. Hence almost continuous function is a almost 𝛿𝑃𝑆-

continuous function, from Proposition 2.21. 

Corollary4.16.IfYisaregularspace,thefollowingstatementsareequivalentforafunction 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎): 

a) fis 𝛿𝑃𝑆-continuous. 

b) f is almost 𝛿𝑃𝑆-continuous. 

c) f is weakly𝛿𝑃𝑆-continuous. 

Proof.FollowsfromProposition4.11andProposition2.23andthefactthateveryregular space is almostregularand 

semi-regularspace. 

Corollary4.17.IfXisalocally indiscretespace 

andYisaregularspace,thefollowingstatementsareequivalentforafunction𝑓: (𝑋, 𝜏) → (𝑌, 𝜎): 

a) 𝑓is 𝛿𝑃𝑆-continuous. 

b) 𝑓is almost 𝛿𝑃𝑆-continuous. 

c) 𝑓is weakly𝛿𝑃𝑆-continuous. 

d) 𝑓isweaklycontinuous. 

e) 𝑓isalmostcontinuous. 

f) 𝑓iscontinuous. 

Proof.FollowsfromCorollary4.15,Corollary 4.16 and Proposition2.25 and the fact that everyregular space is 

almost regular and semi-regularspace. 

Proposition4.18.Let𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)be a function and Xisasemi-T1space.Thenfisweakly𝛿𝑃𝑆-

continuousifandonlyiffisweakly𝛿-precontinuous. 

Proof.FollowsfromProposition2.13. 

Corollary 4.19. If X is a semi-T1 space and Y iseitheralmostregularoranextremallydisconnected space, the 

following statements areequivalentfor afunction𝑓: (𝑋, 𝜏) → (𝑌, 𝜎): 

a) 𝑓is almost 𝛿𝑃𝑆-continuous. 

b) 𝑓is weakly𝛿𝑃𝑆-continuous. 

c) 𝑓isweakly𝛿-precontinuous. 

d) 𝑓isalmost𝛿-precontinuous. 

Proof.FollowsfromCorollary4.13,Proposition4.18 andProposition2.22. 

Corollary 4.20. If X is a semi-T1 space and Y isaregularspace,thefollowingstatementsareequivalentfor 
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afunction𝑓: (𝑋, 𝜏) → (𝑌, 𝜎): 

a) 𝑓is 𝛿𝑃𝑆-continuous. 

b) 𝑓isalmost𝛿𝑃𝑆-continuous. 

c) 𝑓is weakly𝛿𝑃𝑆-continuous. 

d) 𝑓isweakly𝛿-precontinuous. 

e) 𝑓isalmost𝛿-precontinuous. 

f) 𝑓is𝛿-precontinuous. 

Proof.FollowsfromCorollary4.16,Corollary 4.19 and Proposition2.24 and the fact that everyregular space is 

almost regular and semi-regularspace. 

Proposition4.21. If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is a semi-continuousfunction. Then𝑓is weakly continuous if and onlyiffis 

weakly𝛿𝑃𝑆-continuous. 

Proof. Necessity. Let V be any open set of Y.Since f is weakly continuous, by Proposition2.26,𝑐𝑙f−1(V) 

⊆f−1(𝑐𝑙V). Since f is semi-continuous,then f−1(V) is a semi-open set in X. Hence 

byProposition2.19(a),𝛿𝑃𝑆𝑐𝑙f−1(V)=𝑐𝑙f−1(V).Therefore,weobtain𝛿𝑃𝑆𝑐𝑙f−1(V)⊆f−1(𝑐𝑙V).ThusbyProposition3.17(h),f

isweakly𝛿𝑃𝑆-continuous. 

Sufficiency. Let V be any open set in Y. Since fisweakly𝛿𝑃𝑆-

continuous,byProposition3.17(h),𝛿𝑃𝑆𝑐𝑙f−1(V)⊆f−1(𝑐𝑙V).Sincefissemi-continuous, then f−1(V) is semi-open set of 

X.HencebyProposition2.19(a),wehave𝛿𝑃𝑆𝑐𝑙f−1(V)=𝑐𝑙f−1(V).Therefore,weobtain𝑐𝑙f−1(V)⊆f−1(𝑐𝑙V).ThusbyPropos

ition2.26,fisweaklycontinuous. 

Corollary 4.22.A function𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)isweakly𝛿𝑃𝑆-continuousifandonlyiffisweakly 

continuousifitsatisfiesoneofthe following properties: 

a) X islocallyindiscretespace. 

b) fis semi-continuous. 

Proof.FollowsfromCorollary4.14andProposition4.21. 

Proposition4.23.If𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)isweaklys-continuous and weakly 𝛿-precontinuous, then f isweakly𝛿𝑃𝑆-

continuous. 

Proof. Let x  X and let V be any open set of Ycontaining f (x). Since f is weakly s-continuousand weakly 𝛿-

pre-continuous, then there exists a -semi-open and a 𝛿-preopen set U of X containing xsuch thatf(U)⊆ 𝑐𝑙V, 

respectively. HencebyLemma 2.15, U is a 𝛿𝑃𝑆-open set of 𝑋 containing xsuch that f (U)  ⊆ 𝑐𝑙V. Therefore, 𝑓is 

weakly 𝛿𝑃𝑆-continuous. 

Proposition4.24. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)be a function and Xbeanextremallydisconnectedspace.Iffisweaklys-

continuous,thenfisweakly𝛿𝑃𝑆-continuous. 

Proof. FollowsfromLemma2.16. 

Proposition4.25.If𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)isweakly𝛿-precontinuous and eitherS-continuous or a-

irresolutefunction,thenfisweakly𝛿𝑃𝑆-continuous. 

Proof. Let x  X and V be any open set of Ycontaining f (x). Since f is weakly 𝛿-precontinuous,there exists a 𝛿-

preopen set U of Y containing f (x)suchthatf(U)⊆ 𝑐𝑙V.Thenf−1(𝑐𝑙V)isa𝛿-preopen set of Y containing x. Since 

𝑐𝑙V is aregularclosedsetofYandfiseitherS-continuous or -irresolute, then f−1(𝑐𝑙V) is 

theunionofregularclosedsetsofXandhenceisthe union of semi-closed sets of X. By Lemma2.12, f−1(𝑐𝑙V) is a 𝛿𝑃𝑆-
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open set of X containing xand clearly f (f−1(𝑐𝑙V)) ⊆ 𝑐𝑙V. Hence f is weakly𝛿𝑃𝑆-continuous. 

Corollary4.26.Let𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)beeitherS-continuous or a -irresolute function. Then 𝑓isweakly 𝛿𝑃𝑆-

continuous if and only if 𝑓is weakly𝛿-precontinuous. 

Proposition4.27. If a function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is weakly𝛿𝑃𝑆-continuousandopen,thenf(𝛿𝑃𝑆𝑐𝑙V)⊆ 𝛿𝑃𝑆𝑐𝑙f(V) 

for eachopen setV of X. 

Proof. Let V be any open set of X. Since f isopen, then f (V) is an open set in Y. Since f isweakly𝛿𝑃𝑆-

continuous,thenbyProposition3.24,weobtainthat𝛿𝑃𝑆𝑐𝑙f−1(f(V))⊆f−1(𝛿𝑃𝑆𝑐𝑙f(V))whichimplies thatf(𝛿𝑃𝑆𝑐𝑙V)⊆

𝛿𝑃𝑆𝑐𝑙f(V). 

Corollary 4.28. If a function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is weakly 𝛿𝑃𝑆-continuous and open, then 𝛿𝑃𝑆𝑖𝑛𝑡𝑓(𝐹) ⊆

𝑓(𝛿𝑃𝑆𝑖𝑛𝑡(𝐹))for each closed set F of X.  

Proposition4.29.Ifafunction𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)issemi-continuous and almost open, then𝑓is weakly 𝛿𝑃𝑆-

continuous if and only if 𝛿𝑃𝑆𝑐𝑙f−1(V) = f−1(𝛿𝑃𝑆𝑐𝑙V)for each open setVof Y. 

Proof. Necessity. Let V be any open set of Y.Since𝑓isweakly𝛿𝑃𝑆-continuous,thenbyProposition3.24, 

𝛿𝑃𝑆𝑐𝑙f−1(V) ⊆f−1(𝛿𝑃𝑆𝑐𝑙V). Since Visopen,henceitissemi-open.ThenbyProposition2.19(a),𝛿𝑃𝑆𝑐𝑙(𝑉) =

𝑐𝑙(𝑉)whichimpliesthat𝛿𝑃𝑆𝑐𝑙(𝑉) ⊆ 𝑐𝑙(𝑉) and hence f−1(𝛿𝑃𝑆𝑐𝑙V) ⊆f−1(𝑐𝑙V). Since V is an open set of Y and f is 

almost open, then byProposition2.27, f−1(𝑐𝑙V) ⊆ 𝑐𝑙f−1(V). Therefore,we have f−1(𝛿𝑃𝑆𝑐𝑙V) ⊆f−1(𝑐𝑙V) ⊆f−1(V) 

andhence f−1(𝛿𝑃𝑆𝑐𝑙V) ⊆ 𝑐𝑙f−1(V). Since V is an openset of Y and f is semi-continuous, then f−1(V) is a semi-

open set in X. Then by Proposition2.19(a)weobtainthatf−1(𝛿𝑃𝑆𝑐𝑙V)⊆ 𝛿𝑃𝑆𝑐𝑙f−1(V).Therefore,we have 

𝛿𝑃𝑆𝑐𝑙f−1(V)= f−1(𝛿𝑃𝑆𝑐𝑙V). 

Sufficiency. Follows from Proposition3.24. 

Corollary4.30.Ifafunction𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)isweakly𝛿𝑃𝑆-continuous,semi-continuous and almost 

open,then𝛿𝑃𝑆𝑖ntf−1(F)=f−1(𝛿𝑃𝑆𝑖ntF)foreach closed setF of Y. 

Proof.Followsfrom Proposition4.29. 

Corollary 4.31. If a function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is weakly𝛿𝑃𝑆-continuous,semi-continuousand almost open, then 

clf−1(V) = f−1(clV) for each open setVof Y. 

Proof.FollowsfromProposition4.29 and Proposition 2.19(a). 

Corollary 4.32. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)be an almost openfunction. If f is weakly 𝛿𝑃𝑆-continuous and semi-

continuous,thenfisalmostcontinuousandhence fis weaklycontinuous. 

Proof.FollowsfromProposition4.31 and Proposition2.28. 
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