

VOLUME X Physical Science ISBN No.: 978-81-953602-6-0

NALLAMUTHU GOUNDER MAHALINGAM COLLEGE

An Autonomous Institution, Affiliated to Bharathiar University, An ISO 9001:2015 Certified Institution,

Pollachi-642001

SUPPORTED BY

One day International Conference EMERGING TRENDS IN SCIENCE AND TECHNOLOGY (ETIST-2021)

th 27 October 2021

Jointly Organized by

Department of Biological Science, Physical Science and Computational Science

NALLAMUTHU GOUNDER MAHALINGAM COLLEGE

An Autonomous Institution, Affiliated to Bharathiar University

An ISO 9001:2015 Certified Institution, Pollachi-642001.

Proceeding of the

One day International Conference on

EMERGING TRENDS IN SCIENCE AND TECHNOLOGY (ETIST-2021)

 $27th$ October 2021

Jointly Organized by

Department of Biological Science, Physical Science and Computational Science

Copyright © 2021 by Nallamuthu Gounder Mahalingam College

All Rights Reserved

ISBN No: 978-81-953602-6-0

Nallamuthu Gounder Mahalingam College

An Autonomous Institution, Affiliated to Bharathiar University

An ISO 9001:2015 Certified Institution, 90 Palghat Road, Pollachi-642001.

www.ngmc.org

ABOUT THE INSTITUTION

A nations's growth is in proportion to education and intelligence spread among the masses. Having this idealistic vision, two great philanthropists late. S.P. Nallamuthu Gounder and Late. Arutchelver Padmabhushan Dr.N.Mahalingam formed an organization called Pollachi Kalvi Kazhagam, which started NGM College in 1957, to impart holistic education with an objective to cater to the higher educational needs of those who wish to aspire for excellence in knowledge and values. The College has achieved greater academic distinctions with the introduction of autonomous system from the academic year 1987-88. The college has been Re-Accredited by NAAC and it is ISO 9001 : 2015 Certified Institution. The total student strength is around 6000. Having celebrated its Diamond Jubilee in 2017, the college has blossomed into a premier Post-Graduate and Research Institution, offering 26 UG, 12 PG, 13 M.Phil and 10 Ph.D Programmes, apart from Diploma and Certificate Courses. The college has been ranked within Top 100 (72nd Rank) in India by NIRF 2021.

ABOUT CONFERENCE

The International conference on "Emerging Trends in Science and Technology (ETIST-2021)" is being jointly organized by Departments of Biological Science, Physical Science and Computational Science - Nallamuthu Gounder Mahalingam College, Pollachi along with ISTE, CSI, IETE, IEE & RIYASA LABS on 27th OCT 2021. The Conference will provide common platform for faculties, research scholars, industrialists to exchange and discus the innovative ideas and will promote to work in interdisciplinary mode.

EDITORIAL BOARD

Dr. V. Inthumathi

Associate Professor & Head, Dept. of Mathematics, NGM College

Dr. J. Jayasudha

Assistant Professor, Dept. of Mathematics, NGM College

Dr. R. Santhi

Assistant Professor, Dept. of Mathematics, NGM College

Dr. V. Chitra

Assistant Professor, Dept. of Mathematics, NGM College

Dr. S. Sivasankar

Assistant Professor, Dept. of Mathematics, NGM College

Dr. S. Kaleeswari

Assistant Professor, Dept. of Mathematics, NGM College

Dr. N.Selvanayaki

Assistant Professor, Dept. of Mathematics, NGM College

Dr. M. Maheswari

Assistant Professor, Dept. of Mathematics, NGM College

Mrs. A. Gnanasoundari

Assistant Professor, Dept. of Mathematics, NGM College

Dr. A.G. Kannan

Assistant Professor, Dept. of Physics, NGM College

Jointly Organized by

Department of Biological Science, Physical Science and Computational Science

Nallamuthu Gounder Mahalingam College, Affiliated to Bharathiar University, Tamilnadu, India.

International Conference on Emerging Trends in Science and Technology (ETIST 2021) Jointly Organized by Department of Biological Science, Physical Science and Computational Science NallamuthuGounderMahalingam College, Affiliated to Bharathiar University, Tamilnadu, India. Published by NGMC - November 2021

Weakly δP_s **-Continuous Functions**

Shamugapriya¹ , Vidhyapriya P² and Santhi R³ ^{1,2}Research Scholars, Department of Mathematics, ²E-mail: pvidhyapriya19@gmail.com Avinashilingam Institute for Home Science and Higher Education for Women,Coimbatore- 641043. ³AssistantProfessor, Department of Mathematics, NallamuthuGounder Mahalingam College,Pollachi.

ABSTRACT

The purpose of this paper is to introduce a new class of functions called weakly δP_S -continuous functions by using δP_S -open sets in topological spaces. Some properties and characterizations of weakly δP_S -continuous functions arefound.

KEYWORDS: Almosto^P_S-continuousand WeaklyPre-continuousFunctions

1. INTRODUCTION

The class of δ -open subsets of a topological space was first introduced by Veliko [22] in 1968. Munshi [11] initiated and studied the concept of supe continuous mappings in 1982. Masshour et al [10] introduced the concept of precontinuous and weak precontinuous mappings in 1982. Since then many authors defined the various forms of weakly continuous mappings.

In 2020, Vidhyapriya et al., [23] defined a new class of open sets namely δP_S -open sets, combining the concepts of δ -preopen and semi-closed sets. In this paper the author defined weakly δP_S -continuous functions using δP_S -continuous [24], almost δP_S -continuous [25] and precontinuous functions. Further their properties and comparisons are studied.

2. PRELIMINARIES

Definition 2.1. A subset A of a space X is said to be

- a) Preopen [10] if $A \subseteq int$ (cl(A))
- b) Semi-open [8] if $A \subseteq cl$ (int(A))
- c) Regular open [21] if $A = int (cl(A))$
- d) θ -open [22] if for each x ϵ A there exists an open set G such that $x \in G \subseteq clG \subseteq A$
- e) θ-semi-open [4] if for each $x \in A$, there exists an semi-open set G such that $x \in G \subseteq c \mid G \subseteq A$
- f) δ-preopen [17] if $A \subseteq \text{Int}(\delta cl(A))$
- \triangleright The closure and interior of A with respect to X are denoted by $cl(A)$ and int(A) respectively.
- \triangleright The intersection of particular class of closed sets of Xcontaining A is called the corresponding closure of A.
- \triangleright The union of particular class of open sets of X contained in A is called the corresponding interior of A.
- \triangleright The family of all preopen (resp. Semi-open, regular open, θ-open, θ-semi-open,) subsets of X is denoted by $PO(X)$ (resp. $SO(X)$, $RO(X)$, $\Theta O(X)$, $\Theta SO(X)$, $\delta PO(X)$).
- The complement of a preopen (resp. resp. Semi-open, regular open, δ-open, θ-open, δ-preopen, θ-semiopen, δ-preopen) is said to be preclosed (resp. resp. Semi-closed, regular closed,θ-closed,θ-semiclosed, δ-preclosed).

Shanmugapriya H*¹ , Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamilnadu, India.

 The family of all preclosed [10] (resp. Semi-closed, regular closed, θ-closed, θ-semiclosed, δpreclosed) subsets of X is denoted by $PC(X)$ (resp. $SC(X)$, $RC(X)$, $\Theta C(X)$, $\Theta SC(X)$, $\delta PC(X)$).

Definition 2.2[23]:A δ - preopen subset A of a space X is called a δP_S -open set if for each $x \in A$, there exists a semi-closed set F such that $x \in F \subseteq A$.

Definition 2.3:A function $f: (X, \tau) \to (Y, \sigma)$ is said to be precontinuous [10] (resp. super continuous [11]) if the inverse image of each open subset of Y is preopen (resp. δ-open) in X.

Definition 2.4: A function $f: (X, \tau) \to (Y, \sigma)$ issaidtobealmost P_S continuous[5](resp.almostprecontinuous[12],almostα-continuous [14]andalmostcontinuousinthesenseofSingal and Singal [20]) if for each $x \in X$ and each openset Vof Y containing $f(x)$, there exists a δP_S -open(resp.preopen, α openandopen)setUofXcontainingxsuchthat $f(U) \subseteq \text{intcl}(V)$.

Definition 2.5: A function $f: (X, \tau) \to (Y, \sigma)$ is said to be almost δP_S -continuous [25] (resp., almoststrongly θ continuous[13]and θ -irresolute[6])iftheinverse image of eachregular open subset of Yis δP_S -open(resp., θ openandintersectionofregular opensets) inX.

Definition 2.6:A function $f: (X, \tau) \to (Y, \sigma)$ is saidto be δP_S -continuous [24] (resp. precontinuous [10]and semi-continuous [8]) if the inverseimageofeachopensubsetofYis δP_S -open(resp.preopen and semi-open) in X.

Definition 2.7: Afunction $f: (X, \tau) \to (Y, \sigma)$ issaid to be δ -continuous [15] (resp. θ -continuous[3]) if for each $x \in$ X and each open set V of Ycontaining $f(x)$, there exists an open set U of Xcontaining x such that $f(int U) \subseteq$ IntClV (resp. $f(clU) \subseteq clV$).

Definition 2.8:A function $f: (X, \tau) \to (Y, \sigma)$ is said to beweakly continuous [12](resp.weaklyα-continuous [16], weakly pre-continuous [7] and weakly δ -precontinuous[15]) if for each $x \in X$ andeachopensetVofYcontaining $f(x)$, there exists a open (resp. α -open, preopen and δ -preopen) set U of X containing x such that $f(U) \subseteq cUV$.

Definition 2.9:Afunction $f: (X, \tau) \to (Y, \sigma)$ issaidtobeS-continuous [27] if for every $F \in RC(Y)$, $f^{-1}(F)$ isthe union of regular closed sets of X.

Definition 2.10:Afunction $f: (X, \tau) \to (Y, \sigma)$ is almost open [19] if $f(U) \subseteq int(cl(f(U))$ for each opensubsetUof X.

Definition2.11.AspaceXissaidtobe

- a) Extremally disconnected [1] if the closure ofeveryopen setof Xisopenin X.
- b) Locally indiscrete [2] if every open subset ofXis closed.
- c) Semi-T₁ [9] if to each pair of distinct pointsx, y of X, there exists a pair of semi-opensets,one containingxbutnotyandtheothercontainingybutnotx.

d) Semi-regular [28] if for any open set U of Xand each point $x \in U$, there exists a regular open setVof X such that $x \in V \subseteq U$.

e) Almost regular $[18]$ if forany regularclosedsetFofXandapointx \notin F,thereexistdisjointopen setsU and Vsuch that $F \subseteq U$ and $x \in V$.

Lemma 2.12[23].A subset A of a space X is δP_S -open if and only if A is a δ -preopen set and A is a union of semi-closed sets.

Proposition2. 1 3 [23].IfaspaceXissemi-T₁, then $\delta P_S O(X) = PO(X)$.

Proposition2.14[23].Ifatopologicalspace(X, τ)islocallyindiscrete, then $\delta P_S O(X) = \tau$.

Lemma 2.15[23]. For any subset A of a space X. If $A \in \theta SO(X)$ and $A \in \theta O(X)$, then $A \in \delta P_S O(X)$

Lemma 2.16[23]. Let (X, τ) be any extremally disconnected space. If $A \in \theta SO(X)$ then $A \in \delta P_S O(X)$

Proposition 2.17[23]. Let (Y, τ_Y) be a subspace of aspace (X, τ) . If $A \in \delta P_{S}O(Y, \tau_Y)$ and $Y \in$ $RO(X,\tau)$,then $A \in \delta P_{S}O(X,\tau)$.

Corollary 2.18[23]. If $A \in \delta P_{\delta}O(X)$ and B is eitheropen or regular semi-open subset of X, then $A \cap B \in$ $\delta P_{\rm S}O(B)$.

Proposition2.19.LetAbeasubsetofatopologicalspace (X, τ) ,thenthefollowingstatements are true:

a) If $A \in SO(X)$, then $\delta P_SCl(A) = cl(A)[26]$

b) If $A \in \tau$, then $cl_{\theta}(A) = cl(A)$ [22].

Proposition2.20[24]. If $f: (X, \tau) \to (Y, \sigma)$ is a continuous and an open function and V is a δP_S -open set of Y, then $f^{-1}(V)$ is a δP_S -open set ofX.

Proposition2.21[8]. Let $f: (X, \tau) \to (Y, \sigma)$ be a function andX is a locally indiscrete space. Then f is almost δP_S continuousifandonlyif*f*isalmostcontinuous.

Corollary 2.22[25]. If $f: (X, \tau) \to (Y, \sigma)$ is almost δP_S -continuous function if and only if f is almost continuous where X is locally indiscrete space.

Proposition2.23 [25]. If $f: (X, \tau) \to (Y, \sigma)$ is an almost δP_S -continuous function and Y is semi-regular. Then f is δP_S -continuous.

Thefollowingresultscanbeproved easily.

Proposition2.24.If $f: (X, \tau) \to (Y, \sigma)$ is almost δ -precontinuous and Y is semi-regular, then f is precontinuous.

Proposition2.25. If $f: (X, \tau) \to (Y, \sigma)$ is almost continuous and Y is semi-regular, then *f* is continuous.

Proposition2.26[23].Afunction $f: (X, \tau) \to (Y, \sigma)$ is weakly continuous if and only if $clf^{-1}(V) \subseteq f^{-1}(clV)$ for each opensubsetVof Y.

Proposition2.27[18]. A function $f:(X,\tau) \to (Y,\sigma)$ is almost-open if and only if $f^{-1}(c|V) \subseteq clf^{-1}(V)$ for eachopen subsetVof Y.

Proposition2.28[18]. A function $f: (X, \tau) \to (Y, \sigma)$ is almost-openandalmostcontinuousifandonlyifcl $f^{-1}(V)$ = $f^{-1}(clV)$ foreach opensubsetV of Y.

3. WEAKLY δP_S - CONTINUOUS FUNCTIONS

In this section, we introduce the conceptof weakly δP_S -continuous functions by using δP_S opensets. Wegivesomecharacterizations of weakly δP_S -continuousfunctionswithseveralrelations between this function andothertypesofcontinuousfunctionsandspaces

Definition 3.1. A function $f: (X, \tau) \to (Y, \sigma)$ is calledweakly δP_S -continuous if for each $x \in X$ and each open set V of Y containing $f(x)$, there exists a δP_S -opensetUofXcontainingxsuchthat $f(U) \subseteq \delta cl(V)$. [For an open set δ -closure and closure coincide[21]. Hence in the above definition we can have $f(U) \subseteq$ $cl(V)$.

Lemma3.2.The following results supervene from their definitions directly:

- a) Every almost δP_S -continuous functions is weakly δP_S -continuous.
- b) Every weakly δP_S -continuous function is weakly δ -pre-continuous.
- c) Every weakly P_S -continuous function is weakly δP_S -continuous.

Proof: a) Let $f: (X, \tau) \to (Y, \sigma)$ be almost δP_S -continuous. Let $x \in X$ and each open set V of Y containing $f(x)$. Since f is almost δP_S -continuous, there exists a δP_S -open set U of X contained in x such that $f(U) \subseteq$ $int(cl(V))$

We know that $int(cl(V)) \subseteq cl(V)$

Hence $f(U) \subseteq cl(V)$

b) Let $f: (X, \tau) \to (Y, \sigma)$ be weakly δP_S -continuous. Let $x \in X$ and V be an open set in Y containing x. Since f is weakly δP_S -continuous, there exists a δP_S -open set V contained in $f(x)$ such that $f(U) \subseteq V$. Since every δP_S open set is δP -open set f is weakly δ -precontinuous.

c) Follows from the fact that every P_S -open set is δP_S -open set.

Therefore from the above Proposition we have:

FIGURE 3.1

In the sequel, we shall show that none oftheimplications that concerning weakly δP_S -continuity in Figure3.1 isreversible.

Example 3.3. Let $X = \{a, b, c, d\}$ with the twotopologies $\tau = \{ X, \emptyset, \{c\}, \{a,b\}, \{a,b,c\} \}$ and $\sigma = \{ X, \emptyset, \{a\}, \{a,b,c\} \}$ {c},{a,b},{a,c}, {a,b,c},{a,c,d}} then $\delta P_S O(X, \tau) = {\emptyset, X, \{c\}, \{a, b\}, \{a, b, c\}}$. Let $f: (X, \tau) \to (X, \sigma)$ be the identity function. Then f is weakly δP_S -continuous, but it is not almost δP_S -continuous, because {a} is an open set in (X,σ) containing*f*(a)=a,butthereexistno δP_S -openset U in (X,τ) containing a such that a $\in f(U) \subseteq IntCl$ {a} = {a}.

Example 3.4. Let X = {a, b, c, d} with the two topologies $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}\}\$ and $\{\sigma =$ $\{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\};$ then $\delta P_S O(X, \tau) = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}.$ Let $f: (X, \tau) \to (X, \sigma)$ be a function defined asfollows: $f(a) = af(b) = f(c) = b$ and $f(d) = d$. Then fisweakly δP_s continuous. Howeverf is not weakly P_S -continuous since, an open set $\{a\}$ in (X,σ) containing $f(\{a\}) =$ a,butthereexistnoP_S-opensetUin(X, τ)containing a such that $f(\lbrace d \rbrace) = a \in f(U) \subseteq int cl\lbrace a \rbrace = \lbrace a \rbrace$ as $P_S O(X, \tau) =$ $\{X, \emptyset\}.$

Example 3.5. Let X, τ , σ be same as in Example 3.3. Then *f* isweakly δ -precontinuous,but itis notweakly δP_s continuous.

Remark3.6.Wenoticethateveryidentityfunction is weakly δP_S -continuous and a function $f: (X, \tau) \to (Y, \sigma)$ is weakly δP_S -continuous if either X isdiscrete or Yisindiscrete.

Proof: Case-(i) X is discrete

Proof: When *X* is discrete, (ie.,) $\tau = \mathcal{P}(X)$. Hence for every $x \in X$, $\{x\}$ is a δP_S -open in *X*.

Therefore, the δP_S -open set $U = \{x\}$ containing x such that $f(U) = f(\{x\}) = f(x) \in V \subseteq cl(V)$. Thus f is weakly δP_S -continuous

Case $-(ii)$ Y is indiscrete

Proof: When Y is indiscrete, $\sigma = \{Y, \sigma\}$ then $\delta P_S O(\sigma) = \{Y, \sigma\}$. Any open set V in σ is Y. and $cl(V) = Y$. Hence for any $U, f(U) \subseteq Y = cl(V)$

 \therefore f is weakly δP_S -continuous.

Proposition3.7.Ifafunction $f: (X, \tau) \to (Y, \sigma)$ is weakly δP_S -continuous, then foreach $x \in X$ and each θ -openset V of Y containing $f(x)$, there exists a δP_S -open setUinXcontainingxsuch that $f(U) \subseteq V$.

Proof.Let $x \in X$ and let V be any θ -openset of Y

containing*f*(x).Thenforeach*f*(x)∈V,thereexistsanopensetGcontaining*f*(x)suchthat $G \subseteq Cl(G) \subseteq V$. Since *f* is weakly δP_S -continuous, there exists a δP_S -open set U of X containing xsuch that $f(U) \subseteq Cl(G) \subseteq V$. This completes theproof.

Corollary 3.8. If a function $f: (X, \tau) \to (Y, \sigma)$ is weakly δP_S -continuous, then for each $x \in X$ and each θ -open set V of Y containing $f(x)$, there exists asemi-closedsetFinXcontainingxsuchthat $f(F) \subseteq V$.

Proof. Let $x \in X$ and let V be any θ -open set of Y containing $f(x)$. Since fisweakly δP_S -continuous, then by Proposition 3.7, there exists $a\delta P_S$ -openset UinXcontainingx such that

 $f(U) \subseteq V$. Since Uisa δP_S -opensetinX, then for each x \in U, there exists a semi-closed set F of X such that $x \in F \subseteq$ U. Therefore, we obtain $f(F) \subseteq f(U) \subseteq V$. Hence $f(F) \subseteq V$.

Proposition3.9. Let $f: (X, \tau) \to (Y, \sigma)$ be a function. If foreach $x \in X$ and each regular closed set R of Y containing $f(x)$, there exists a δP_S -open set U in X containing x such that $f(U) \subseteq R$, then f is weakly δP_S continuous.

Proof. Let X and let V be any open set of Y containing $f(x)$. Then put $R = cl(V)$ which is aregularclosedsetofYcontaining*f*(x).Byhypothesis, there existsa δP_s -open setU inXcontainingxsuchthat $f(U)$ ⊆ $R = cl(V)$.Hence*f*isweakly δP_S -continuous.

Proposition3.10. If a function $f:(X,\tau) \to (Y,\sigma)$ is weakly δP_S -continuous, then the inverse image of each θ open setof *Y* is a δP_S -open setin X.

Proof. Let V be any θ -open set in Y. We have to show that $f^{-1}(V)$ is a δP_S -open set in X. Let $x \in$ $f^{-1}(V)$ Then $f(x) \in V$. Since f is weakly δP_S -continuous, then by Proposition3.7, there exists $a\delta P_S$ opensetUofXcontainingxsuchthat $f(U) \subseteq V$. $^{-1}(V)$. Therefore, $f^{-1}(V)$) isa δP_S $opensetinX$.

Corollary3.11.Ifafunction $f: (X, \tau) \to (Y, \sigma)$ is weakly δP_S -continuous, then the inverse image of each θ -closed set of Y is a δP_S -closed set in X.

Proposition3.12. Let $f: (X, \tau) \to (Y, \sigma)$ beatunction. If $f^{-1}(cl(V))$ is a δP_S -openset in X for each open set Vin Y, then*f* is weakly δP_s -continuous.

Proof. Let $x \in X$ and let V be any open set of Y containing $f(x)$. Then $x \in f^{-1}(V) \subseteq f^{-1}(cl(V))$. By hypothesis, we have $f^{-1}(cl(V))$ is a δP_S -open set inXcontainingx.Therefore,weobtain $f(f^{-1}(cl(V))) \subseteq cl(V)$. Hence f is weakly δP_S -continuous.

Corollary3 .13. Let $f: (X, \tau) \to (Y, \sigma)$ beafunction. If $f^{-1}(int(F))$ is a δP_S -closed set in Xforeach closed set F in Y, then f is weakly δP_S -continuous.

Proposition3.14. Let $f: (X, \tau) \to (Y, \sigma)$ be a function. If the inverse image of each regular closed set of Y is $a\delta P_S$ -open set in X, then *f* is weakly δP_S -continuous.

Proof.LetVbeanyopensetofY.Thencl(V) is a regular closed set in Y. By hypothesis, we have $f^{-1}(cl(V))$ isaδP_S-opensetinX.Therefore,byProposition3.12, *f*is weaklyδP_S-continuous.

Corollary 3.15. Let $f: (X, \tau) \to (Y, \sigma)$ be a function. If the inverse image of each regular open set of Y is a δP_s closedsetinX,then*f*isweaklyδP_S-continuous.

Proposition3.16. If a function $f: (X, \tau) \to (Y, \sigma)$ is weakly δP_S -continuous, then for each $x \in X$ and

eachopensetVofYcontaining*f*(x),thereexistsa semi-closedsetFinXcontainingxsuchthat $f(F) \subseteq cl(V)$.

Proof. Let $x \in X$ and let V be any open set of Y containing $f(x)$. Since f is weakly δP_S -continuous, then there exists a δP_S -open set U of X containing x such that $f(U) \subseteq cl(V)$. Since U is δP_S -open set, then for each $x \in U$, there exists a semi-closedset F of X such that $x \in F \subseteq U$. Therefore, we have $f(F) \subseteq Cl(V)$.

The following result is a characterization of weakly δP_S -continuous functions:

Proposition3.17.Forafunction $f: (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

a) f is weakly δP_S -continuous.

b) $\delta P_{\mathcal{S}} \mathcal{C} \mathcal{C} \mathcal{C} \mathcal{C}^{-1}(\mathcal{C} \mathcal{C} \mathcal{C}) \mathcal{C} \mathcal{C}$

c) $f^{-1}(int(B)) \subseteq \delta P_S int f^{-1}(cl(int(B)))$ for each $B \subseteq Y$

- d) $f^{-1}(int(cl V)) ⊆ δP_S int f^{-1}(clV)$ foreachopensetVofY
- e) $f^{-1}(V) \subseteq \delta P_S int(f^{-1}(cl(V))$ for each regular open set V of Y.
- f) $\delta P_{\mathcal{S}}(cl(f^{-1}(int(F))) \subseteq f^{-1}(F)$,foreachregular closed setF ofY.
- g) $\delta P_S(cl(f^{-1}(int(F))) \subseteq f^{-1}(cl(int(F))),$ foreachclosed set F of Y.
- h) $\delta P_S(cl(f^{-1}(V))) \subseteq f^{-1}(cl(V))$,foreachopensetV of Y.
- i) $f^{-1}(int(F))$ ⊆ $\delta P_S(int(f^{-1}(F))$, for each closed set F of Y.

Proof. (a) \Rightarrow (b). LetB be any subset of Y. Assume that $x \notin f^{-1}(cl(B))$. Then $f(x) \notin cl(B)$ and there exists an open set V containing $f(x)$ suchthat $V \cap B = \emptyset$,hence $cl(V) \cap int(cl(B)) = \emptyset$.By(a),thereexistsa δP_S opensetUofXcontainingxsuchthat $f(U) \subseteq cl(V)$.Therefore,wehave $f(U) \cap Int(Cl(B)) = \emptyset$ whichimpliesthat $U \cap$ $f^{-1}(int(cl(B)) = \emptyset$ and hence $x \notin \delta P_S(cl(f^{-1}(int(cl(B))))$. Therefore, weobtain $\delta P_S(cl(f^{-1}(int(cl(B))) \subseteq$ $f^{-1}(cl(B)).$

(b)(c).LetBbeanysubsetofY.Thenapply (b)

toY\Bweobtain $\delta P_S \text{cl} f^{-1}(\text{intcl}(Y \setminus B)) \preceq^{\text{-}1}(\text{cl}(Y \setminus B)) \Rightarrow \delta P_S \text{cl} f^{-1}(\text{intB}) \preceq^{\text{-}1}(\text{Y} \setminus \text{intB}) \Rightarrow \delta P_S \text{cl} f^{-1}(Y \setminus \text{clintB}) \preceq^{\text{-}1}(\text{Y} \setminus \text{intB})$ $Y\in B$) \Rightarrow δ $P_Scl(X)f^{-1}(clintB)$)⊆X \forall f⁻¹(intB) \Rightarrow X\ δ P_S int(f⁻¹(clintB)) ⊆ X \forall f^{-1} (intB) \Rightarrow *f* f^{-1} (intB) \subseteq δP_S int*f*⁻¹(clintB).Therefore,weobtain*f*⁻¹(intB)⊆ δP_S int*f*⁻¹(clintB).

(c) \Rightarrow (d). Let V be any open set of Y. Then apply (c) to $cl(V)$ we obtain f⁻¹(IntclV) ⊆ δP_S intf⁻¹(clintclV) = δP_S intf⁻¹(clV). Therefore, we obtain f⁻¹(intclV) $\subseteq \delta P_S$ intf⁻¹(clV).

(d) \Rightarrow (e). Let V be any regular open set of Y. Then V is an open set of Y. By (d), we have f⁻¹(V) = f

 \exists intclV)⊆ δP_S intf⁻¹(clV)). Therefore, we obtain f⁻¹(V) ⊆ δP_S intf⁻¹(clV).

(e) \Rightarrow (f). Let F be any regular closed set of Y. Then Y\F is a regular open set of Y. By (e), wehave $f^{-1}(Y\ F) \subseteq$

 $\delta P_{\rm S}$ int $f^{-1}(cl(Y|F))$ \Rightarrow $X\backslash f^{-1}(F)$ \subseteq $\delta P_{\rm S}$ int $f^{-1}(Y$ \int $F)$ \Rightarrow $X\backslash f^{-1}(F)$ \subseteq $\delta P_{\rm S}$ int $(X\backslash f^{-1}$ (int $F)$)

 \Rightarrow X\f⁻¹(F)⊆X\ $\delta P_{S}clf^{-1}$ (intF) \Rightarrow $\delta P_{S}clf^{-1}$ (intF)⊆f⁻¹(F). Hence $\delta P_{S}clf^{-1}$ (intF) ⊆f⁻¹(F).

f \Rightarrow (g). Let F be any closed set of Y. Then $\text{int}(F)$ is a regular closed set of Y. By (f) wehave $\delta P_S cl f^{-1}$ (intclintF)= $\delta P_S cl f^{-1}$ (intF)⊆ $f^{-1}(clint)$. Therefore, we obtain $\delta P_S cl f^{-1}(int)$ ⊆ $f^{-1}(clint)$.

 $(g) \Rightarrow (h)$. Let V be any open set of Y. Then by $\mathbb{P}^1(V)$ ⊆

δP_Sclf⁻¹(int*clV*)⊆*f*⁻¹(*clintclV*)=*f*⁻¹(*clV*).Therefore,*δP_Sclf⁻¹(V)*⊆*f*⁻¹(*clV*).

(h) \Rightarrow **(i). Let** F be any closed set of Y. Then Y\Fisanopensetof Y.By(h), we have $\delta P_S \, clf^{-1}(Y \mid F) \subset f^{-1}(cl(Y \mid F))$ $\Rightarrow \delta P_{S}cl(X\mathcal{F}^{-1}(F))$ ⊆*f* ⁻¹(Y\intF)⇒X\ δP_Sintf⁻¹(F)⊆X\f⁻¹(intF)⇒f⁻¹(intF)⊆ δP_Sintf⁻¹(F).Therefore,f⁻¹(intF)⊆ δP_S int $f^{-1}(F)$.

i) \Rightarrow (a). Let x be any point of X and let V beany open set in Y containing *f* (x). Then x $\in f^{-1}(V)$ and clV is a closed set in Y. By (*i*), wehave $x \in f^{-1}(V) \subset f^{-1}(\text{int}cVV) \subseteq \delta P_S \text{Int}f^{-1}(cUV)$. Put $U = \delta P_S \text{Int}f^{-1}(cUV)$. Then we obtain $x \in U \in \delta P_S O(X)$ and $f(U) \subseteq \mathcal{C}V$. Therefore, f is weakly δP_S -continuous.

Proposition3.18.Ifafunction $f: (X, \tau) \to (Y, \sigma)$ is continuous, then fis weakly δP_{S} -continuous.

Proof. Let V be any open set of Y. Since f iscontinuous, then $f^{-1}(V)$ is anopenset and hence it is a semi-open set. By Proposition2.19(a), ^{∞-1}(V)=*clf*⁻¹(V).Also,since*f*iscontinuous, then *clf* −1 (V) ⊆*f* $^{c-1}(cl(V).$ Therefore, we obtain that $\delta P_S \text{cl} f^{-1}(V) \subseteq f^{-1}(clV)$ and henceby Proposition3.17, *f* is weakly δP_S -continuous.

Anothercharacterization theoremofweakly δP_S -continuous functions is the following:

Proposition3.19.Forafunction $f: (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- a) f is weakly δP_S -continuous.
- b) $f(\delta P_S c I A) \subseteq cl_{\theta} f(A)$, foreach subsetAofX.
- c) $int_{\theta} f(A) \subseteq f(\delta P_S)$ intA), for each subsetAofX.
- d) f^{-1} (int_θB)⊆ δP_S int $f^{-1}(B)$,foreachsubsetBofY.
- e) $\delta P_{\rm S} c l f^{-1}$ (B) \subseteq f⁻¹(cl_{θ} B), for each subset B of Y.

Proof. (a) \Rightarrow (b). Let A be a subset of X. Suppose that $f(\delta P_S c \text{IA}) \nsubseteq cl_0f(A)$. Then there exists y $\in f(\delta P_S c \text{IA})$ such that $y \notin cl_0f(A)$, then there exists an open set G in Y containing y such that $clG \cap f(A) = \emptyset$. If $f^{-1}(y) = \emptyset$, then there is nothing to prove. Suppose that x be any arbitrary point of $f^{-1}(y)$, so $f(x) \in G$. Since G is anopenset in Y, by (a), there exists a δP_S -open set H in X containing x such that $f(H) \subseteq c \cdot dG$. Therefore, wehave $f(H) \cap f(A) = \emptyset$. Then $\psi \notin \delta P_{\varsigma}cl(f(A)) \Rightarrow x \notin \delta P_{\varsigma}cl(A)$. Hence $\psi \notin \delta P_{\varsigma}cl(A)$ which is a contradiction. Therefore, we have $f(\delta P_{\rm S} c l_{\rm A}) \subseteq c l_{\theta} f(A)$.

(b) \Rightarrow **(c).LetAbeanysubsetofX.Thenapply (b) to X\A we obtain f(** $\delta P_S cl(X \mid A)$ **)** $\subseteq cl_0 f(X \mid A) \Rightarrow f(X \mid \delta P_S int A)$ $cl_{\theta}(Y \mid f(A)) \Rightarrow Y \mid f(\delta P_{\delta} \mid f(A)) \subseteq Y \mid f(A) \Rightarrow \text{int}_{\theta} f(A) \subseteq f(\delta P_{\delta} \mid f(A))$. Therefore, we obtain that $\text{int}_{\theta} f(A) \subseteq Y \mid f(A)$ $f(\delta P_S \text{int} A)$.

(c) \Rightarrow (d). Let B be a subset of Y. Then f⁻¹(B) is a subset of X. By (c), we have Int_θf(f⁻¹(B)) ⊆ f(δP_S intf⁻¹(B)). Then int $\theta B \subseteq f(\delta P_S Int^{-1}(B))$ and hence $f^{-1}(int_{\theta}B) \subseteq \delta P_S int^{-1}(B)$.

(d) \Rightarrow (e). Let B be any subset of Y. Then apply (d) to Y\B we obtain f⁻¹(Int_θ(Y\B)) ⊆ δP_S intf⁻¹(Y\B) \Rightarrow f $^{-1}(Y \setminus \mathcal{C}l_{\theta}B) \subseteq \delta P_{S}$ int(X\f $^{-1}(B) \Rightarrow X \setminus f^{-1}(\mathcal{C}l_{\theta}B) \subseteq X \setminus \delta P_{S}$ clf $^{-1}(B) \Rightarrow \delta P_{S}$ clf $^{-1}(B) \subseteq f^{-1}(\mathcal{C}l_{\theta}B)$. Therefore, we obtain δ $P_Sclf^{-1}(B)$ ⊆f⁻¹($cl_{\theta}B$).

(e) \Rightarrow (a). Let V be any open set of Y. By (e), we have $\delta P_{\rm S}clf^{-1}(V) \subseteq f^{-1}(cl_{\theta}V)$. By Proposition2.19 (b), we

have $\delta P_S cl f^{-1}(V) \subseteq f^{-1}(cl(V)).$

Therefore, by Proposition3.17, f is weakly δP_S -continuous.

Proposition3.20. A function $f: (X, \tau) \to (Y, \sigma)$ is weakly δP_S -continuous if and only if $\delta P_S cl f^{-1}(intcl(B)) \subseteq$ $f^{-1}(cl(B))$ for each subset B of Y

Proof. Necessity. Let B be any subset of Y. Assume that $x \notin f^{-1}(cl_{\theta}B)$. Then $f(x) \notin cl_{\theta}B$ and hence there exists an open set H containing f (x) such that B $\cap cI$ H = Ø. This implies that $cl_0B \cap H = \emptyset$ and so $H \subseteq Y\setminus cl_0B$ and hence $cIH \subseteq cl(Y \setminus cl_\theta B)$. Since f is weakly δP_S -continuous, there exists a δP_S -open set U of X containing x such that $f(U) \subseteq cI$ H $\subseteq cl(Y \setminus cl_{\theta}B) = Y\setminus Intcl_{\theta}B$. This implies that $f(U) \cap int(cl_{\theta}B) = \emptyset$ and hence $U \cap f^{-1}(intcl_{\theta}B) =$ \emptyset . Then $x \notin \delta P_{S}clf^{-1}(\text{int}cl_{\theta}B)$. Therefore, $\delta P_{S}clf^{-1}(\text{int}cl_{\theta}B) \subseteq f^{-1}(cl_{\theta}B)$.

Sufficiency. Let V be any open set of Y. Then by hypothesis and Proposition2.19(b), we have $\delta P_{\mathcal{S}} cl(f^{-1}(\text{intcl}V)) = \delta P_{\mathcal{S}} cl f^{-1}(\text{Intint}(cl_{\theta}(V)) \subseteq f^{-1}(cl_{\theta}(V)).$ Therefore, $\delta P_{\mathcal{S}} cl(f^{-1}(\text{intcl}(V)) \subseteq f^{-1}(cl(V)).$ Hence by Proposition 3.17(b), f is weakly δP_S -continuous.

From Proposition3.20, we obtain that:

Corollary 3.21. A function $f: (X, \tau) \to (Y, \sigma)$ is weakly δP_S -continuous if and only if $f^{-1}(int_{\theta}(B)) \subseteq$ $\delta P_S(int(f^{-1}(cl(int_{\theta}(B))))$ for each subset B of Y.

Proposition3.22. A function $f: (X, \tau) \to (Y, \sigma)$ is weakly δP_S -continuous if and only if $f^{-1}(V) \subseteq$ $\delta P_S(int(f^{-1}(cl(V))))$ for each open set V of Y.

Proof. Necessity. Let f be weakly δP_S -continuous and let V be any open set of Y. Then $V \subseteq int(cl(V))$. Therefore, by Proposition3.17(b), $f^{-1}(V) \subseteq f^{-1}(int(cl(V)) \subseteq \delta P_S int(f^{-1}(cl(V)))$. Hence $f^{-1}(V) \subset f^{-1} \subseteq$ $\delta P_S(int(f^{-1}(cl(V))).$

Sufficiency. Let V be any regular open set of Y. Then V is an open set of Y. By hypothesis, we have $f^{-1}(V) \subseteq$ $\delta P_S f^{-1}(cl(V))$. Therefore, by Proposition3.17(c), f is weakly δP_S -continuous.

From Proposition3.22, we obtain that:

Corollary 3.23. A function $f: (X, \tau) \to (Y, \sigma)$ is weakly δP_S -continuous if and only if $\delta P_S \text{cl}(f^{-1}(\text{int}(F)))$ ⊆ $f^{-1}(F)$ for each closed set F of Y.

Proposition3.24. A function $f: (X, \tau) \to (Y, \sigma)$ is weakly δP_S -continuous if and only if $\delta P_S \text{cl}(f^{-1}(V)) \subseteq$ $f^{-1}(\delta P_S(cl(V)))$ for each open set V of Y.

Proof. Necessity. Let V be any open set of Y. Since f is weakly δP_S -continuous, then by Proposition3.17(h), we have $\delta P_S cl(f^{-1}(V)) \subseteq f^{-1}(\delta P_S(cl(V)))$. Since V is an open set and hence V is a semi-open set. Therefore, by Proposition 2.19(a), we obtain $\delta P_S(cl(f^{-1}(V))) \subseteq f^{-1}(\delta P_S(cl(V)).$

Sufficiency. Let F be any closed set of Y. Then $int(F)$ is an open set in Y. By hypothesis, we have $\delta P_S(cl(f^{-1}(int(F))) \subseteq f^{-1}(\delta P_S(cl(int(F))).$ Since $int(F)$ is a semi-open set, then by Proposition2.19(a), $\delta P_S(cl(f^{-1}(int(F))) \subseteq f^{-1}(cl(int(F))).$ Therefore, by Proposition3.17(g), f is weakly δP_S -continuous. From Proposition3.24, we obtain that:

Corollary 3.25. A function $f: (X, \tau) \to (Y, \sigma)$ is weakly δP_S -continuous if and only if f⁻¹(δP_S intF) ⊆ $\delta P_{\rm S}$ int($f^{-1}(F)$) for each closed set F of Y.

Proposition3.26. If a function $f: (X, \tau) \to (Y, \sigma)$ is weakly δP_S -continuous, then $f: (X, \tau) \to (Y, \sigma_{\theta})$ is δP_S continuous.

Proof. Let H $\in \sigma_{\theta}$, then H is θ -open set in (Y, σ) . Since $f: (X, \tau) \to (Y, \sigma)$ is weakly δP_S -continuous, then by

Proposition3.10, f⁻¹(H) is a δP_S -open set in X. Therefore, $f: (X, \tau) \to (Y, \sigma_{\theta})$ is δP_S -continuous.

Proposition3.27. Let X be a locally indiscrete space. Then the function $f: (X, \tau) \to (Y, \sigma)$ is weakly δP_S continuous if and only if $f: (X, \tau) \to (Y, \sigma_{\theta})$ is continuous.

Proof. Let H $\in \sigma_{\theta}$, then H is θ -open set in (Y, σ) . Since $f: (X, \tau) \to (Y, \sigma)$ is weakly δP_S -continuous, then by Proposition3.10, $f^{-1}(H)$ is a δP_S -open set in X. Since X is a locally indiscrete space, then by Proposition2.14,

 $f^{-1}(H)$ is open set in X. Therefore, $f: (X, \tau) \to (Y, \sigma_{\theta})$ is continuous.

Proposition3.28. Let $f: (X, \tau) \to (Y, \sigma)$ be a function. Let \mathcal{B} be any basis for τ_{θ} in Y. If f is weakly δP_S continuous, then for each $B \in \mathcal{B}$, f⁻¹(B) is a δP_S -open set of X.

Proof. Suppose that f is weakly δP_S -continuous. Since each $B \in \mathcal{B}$ is a 0-open subset of Y, therefore, by Proposition3.10, $f^{-1}(B)$ is a δP_S -open subset of X.

4. PROPERTIES AND COMPARISONS

In this section, we give some properties of weakly δP_S -continuous functions and we compare them with other types of continuous functions.

Proposition4.1. Let $f: (X, \tau) \to (Y, \sigma)$ be weakly δP_S -continuous function. If A is a regular semi-open subset of X, then the restriction $f | A: A \to Y$ is weakly δP_S -continuous in the subspace A.

Proof. Let $x \in A$ and V be an open set of Y containing $f(x)$. Since f is weakly δP_s -continuous, there exists a δP_S -open set U of X containing x such that f(U) \subseteq clV. Since A is a regular semi-open subset of X, by Corollary 2.18, A \cap U is a δP_S -open subset of A containing x and (f|A)(A \cap U) = f(A \cap U) \subseteq f(U) \subseteq clV. This show that f|A is weakly δP_S -continuous.

Corollary 4.2. Let $f: (X, \tau) \to (Y, \sigma)$ be a weakly δP_S -continuous function. If A is a regular open subset of X, then the restriction $f|A:A \rightarrow Y$ is weakly δP_S -continuous in the subspace A.

Proof. Since every regular open set is regular semi-open, this is an immediate consequence of Proposition4.1.

Proposition4.3. Let $f: (X, \tau) \to (Y, \sigma)$ be a function. If for each $x \in X$, there exists a regular open set A of X containing x such that the restriction $f|A:A \rightarrow Y$ is weakly δP_S -continuous, then f is weakly δP_S -continuous.

Proof. Let $x \in X$, then by hypothesis, there exists a regular open set A containing x such that $f|A:A \rightarrow Y$ is weakly δP_S -continuous. Let V be any open set of Y containing f(x), there exists a δP_S -open set U in A containing x such that $(f|A)(U) \subseteq cUV$. Since A is regular open set, by Proposition 2.17, U is δP_S -open set in X and hence $f(U) \subseteq cUV$. This shows that f is weakly $\delta P_{\rm s}$ continuous.

As an immediate consequence of Corollary 4.2 and Proposition4.3, we obtain that:

Corollary 4.4. Let $\{U\alpha : \alpha \in \Delta\}$ be a regular open cover of a topological space X. A function $f:(X,\tau) \to$ (Y, σ) is weakly δP_S -continuous if and only if the restriction f|U α :U $\alpha \to Y$ is weakly δP_S continuous for each α $\in \Delta$.

Remark 4.5. If $f: (X, \tau) \to (Y, \sigma)$ is a weakly δP_S continuous function and A, B are any subsets of X. Then the restriction f|A:A \rightarrow f(A) need not be weakly δP_S -continuous in general. Moreover, f|(A \cup B): A \cup B \rightarrow f(A \cup B) is not always weakly δP_S -continuous even if f|A:A→f(A), f|B:B→f(B) and f are all weakly δP_S -continuous.

Proposition4.6. If $X = R \cup S$, where R and S are regular open sets and $f: (X, \tau) \rightarrow (Y, \sigma)$ is a function such that both f|R and f|S are weakly δP_S -continuous, then f is weakly δP_S -continuous.

Proof. Let $x \in X$ and V be an open set of Y containing $f(x)$. Since $f|R$ and $f|S$ are weakly δP_S -continuous, there exist δP_S -open sets U of R and W of S with $x \in U$ and $x \in W$, such that $(f|R)(U) \subseteq clV$ and $(f|S)(W) \subseteq clV$. Then $f(U \cup W) = (f|R)(U) \cup (f|S)(W) \subseteq c/V$. Since R and S are regular open sets in X, then by Proposition 2.17, U and W are δP_S -open sets in X. Since union of two δP_S -open sets is δP_S -open, then $U \cup W$ is a δP_S -open set of X containing x. Therefore, f is weakly δP_S -continuous. In general, if $X = \cup \{K\alpha : \alpha \in \Delta\}$, where each $K\alpha$ is a regular open set and $f: (X, \tau) \to (Y, \sigma)$ is a function such that the restriction f|K α is weakly δP_S -continuous for each α , then f is weakly δP_S -continuous.

Proposition4.7. Let $X = R_1 \cup R_2$, where R_1 and R_2 are regular open sets in X. Let $f:R_1 \rightarrow Y$ and $g:R_2 \rightarrow Y$ be weakly δP_S -continuous. If $f(x) = g(x)$ for each $x \in R_1 \cap R_2$, then $h: R_1 \cup R_2 \rightarrow Y$ such that

$$
h(x) = \begin{cases} f(x) & \text{if } x \in R_1 \text{ and } x \notin R_2 \\ g(x) & \text{if } x \in R_1 \text{ and } x \notin R_2 \\ f(x) = g(x) & \text{if } x \in R_1 \cap R_2 \end{cases}
$$

is weakly δP_S -continuous.

Proof. Let $x \in X$ and V be an open set of Y containing *h* (x). Then $x \in R_1 \cup R_2$ and V is anopensetofYcontaining $f(x)$ and $g(x)$.Since f is weakly δP_s -continuous, there exists a δP_s -openset U of X containing x such that $f(U) \subseteq \text{clV}.$ Then $f^{-1}(\text{clV})$ is a P_S -openset of R₁ containing x. But R₁ is a regular open set in X, then byProposition 2.17, $f^{-1}(cUV)$ is a δP_S -open set of Xcontaining x. Similarly, $f^{-1}(cUV)$ is a δP_S -open setin R₂ and hence, a δP_S -open set in X. Since unionoftwo δP_S -opensetsis δP_S -open.Therefore, $h^{-1}(cUV) = f^{-1}(cUV)$ \cup g⁻¹(clV) is a δP_S -open setin X and it is clear that*h* (*h*⁻¹(clV)) ⊆ clV.Hence*h* is weakly δP_S -continuous.

Proposition4.8. Let $f: (X, \tau) \to (Y, \sigma)$ beweakly δP_S -continuous surjection and A be aregular semi-open subset of X. If *f* is an openfunction, then the function *g*:A \rightarrow *f* (A), definedby *g* (x) = *f* (x) for each $x \in A$, is weakly δP_s continuous.

Proof.PuttingH= $f(A)$.Letx \in AandV be any open set in H containing *g* (x). Since H isopeninYandVisopeninH,thenVisopeninY. Since f is weakly δP_S -continuous, there exists a δP_S -open set U in X containing x such that f (U) \subseteq clV. Taking W = U \cap A, since A is either openoraregularsemiopensubsetofX,thenbyCorollary 2.18, W is a δP_S -open set in A containingx and *g* (N) $\subseteq cl_YV \cap H = cl_HV$. Then $g(W) \subseteq cl_H V$. Thisshows that gis weakly δP_S -continuous.

Proposition4.9. Let $f: (X, \tau) \to (Y, \sigma)$ beaweakly δP_S -continuous function and for each $x \in X$. If Y isany subset of Z containing $f(x)$, then $f: (X, \tau) \to (Z, \eta)$ is weakly δP_S -continuous.

Proof. Let $x \in X$ and V be any open set of Zcontaining $f(x)$. Then V \cap Yisopenin Y containing $f(x)$. Since $f: (X, \tau) \to$ (Y, σ) isweakly δP_S -continuous, there exists a δP_S -open set U of Xcontaining x such that $f(U) \subseteq cl(V \cap Y)$ andhence $f(U) \subseteq cl(V)$. Therefore, $f: (X, \tau) \to (Z, \eta)$ is weakly δP_S -continuous.

We shall obtain some conditions for which the composition of two functions is weakly δP_S -continuous: **Proposition4.10.**Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ befunctions. Then the composition function $g \circ$

 $f: (X, \tau) \to (Z, \eta)$ isweakly δP_S -continuousiffandgsatisfyoneofthefollowingconditions:

- a) *f*is δP_S -continuous and*g*is weakly continuous.
- b) f isweakly δP_s -continuousand*g*isalmoststrongly θ -continuous.
- c) f isweakly δP_S -continuousand*g*is θ -continuous.
- d) fisweakly δP_S -continuous and *g* is continuous.
- e) f iscontinuousandopenand*g*isweakly δP_S -continuous.

Zcontaining*g*(*f*(x)).Since*g*isweaklycontinuous,thereexistsanopensetVofYcontaining *f* (x) such that $g(V)$ ⊆ $cl(W)$ (i.e.,) $f(x) \in V \subseteq g^{-1}(cl(W))$. Hence $g^{-1}(cl(W))$ is open in Y containing $f(x)$. Since f isweakly δP_s continuous, there exists a δP_S -open setU of X containing x such that $f(U) \subseteq g^{-1}(cl(W))$, from Definition 2.6. Therefore, we obtain $(g \circ f)(U) = g(f(U)) \subseteq clW$. Hence $g \circ f$ is weakly δP_S -continuous.

b) LetWbeanyregularopensubsetofZ. Since g is almost strongly θ -continuous from the Definition 2.5, $g^{-1}(W)$ is θ -opensubsetofY.Since fisweakly δP_S -continuous, then by Proposition 3.10, $(g \circ f)^{-1}(W)$

 $=f^{-1}(g^{-1}(W))$ is a δP_S-open subset in X. Therefore, *g* • f isalmostδP_S-continuous, [byProposition 3.10(e) of 24]andhenceitisweakly δP_S -continuous, by Proposition 3.2(a).

c) Let $x \in X$, and W be an open set of Z containing $g(f(x))$. Since g is θ -continuous, there

exists an open set V of Y containing $f(x)$ such that $g(cl(V)) \subseteq cl(W)$, by definition 2.7.Since fisweakly δP_s

continuous, there exists a δP_S -open set U of Xcontaining x such that $f(U) \subseteq cl(V)$. Hence $g(f(U)) \subseteq cl(V)$

 $g(cl(V)) \subseteq cl(W)$). Therefore, $g \circ f$ is weakly δP_S -continuous.

d) Letx∈XandWbeanopensetofZcontaining *g*(*f*(x)). Since *g* is continuous, $g^{-1}(W)$ is an open set of Y containing *f* (x). Since *f* isweakly δP_S -continuous, there exists a δP_S -open setU of X containing x such that

f (U) ⊆ $clg^{-1}(W)$.Also, since *g* is continuous, then we have *f* (U) ⊆*g*⁻¹(*clW*).Thisimpliesthat*g*(*f*(U))⊆ clW.Therefore,*gofis* weaklyδP_S-continuous.

e) Letx \in XandWbeanopensetofZcontaining*g*(*f*(x)).Sincegisweakly δP_S -continuous, there exists a δP_S -open set U of Y containing $f(x)$ such that $g(U) \subseteq clW$. It is clearthat $g^{-1}(clW)$ is a δP_S -open set of Y containing $f(x)$.Sincefiscontinuousandopen,thenbyProposition2.20, $f^{-1}(g^{-1}(c lW)) = (g \circ f)^{-1}(c lW)$ is a δP_S -open set in X containingxandclearly(*g* ∘ *f*)((*g* ∘ *f*)⁻¹(*clW*)) ⊂*clW*. Hence *f* is weaklyδP_S-continuous.

Proposition4.11.If $f: (X, \tau) \to (Y, \sigma)$ is a weakly δP_S -continuous functionand Y is almost regular, then *f* is almost δP_S continuous.

Proof. Let $x \in X$ and let V be any open set of Y containing $f(x)$. By the almost regularity of Y,thereexistsaregularopensetGofYsuchthat $f(x) \in G \subseteq clG \subseteq int(cl V)$ [18, Proposition 2.2].Since f is weakly δP_S -continuous, there exists a δP_S $a\delta P_S$ -opensetUofXcontainingxsuchthat $f(U) \subseteq cl(G) \subseteq int(cl|V)$. Therefore, f is almost δP_S -continuous, from Definition 2.4.

Proposition4.12.Iff: $(X, \tau) \rightarrow (Y, \sigma)$ is a weakly δP_S -

continuousfunctionandYisanextremallydisconnectedspace,thenfisalmostoP_S-continuous.

Proof. Let $x \in X$ and let V be any open set of Y containing $f(x)$. Since f is weakly δP_S -continuous, there exists a δP_S -open set U of X containing xsuch that $f(U) \subseteq cUV$. Since Y is extremally disconnected, from Definition 2.11(a) $cl(V)$ is open, (i.e.,) $cl(V) = int(cl(V))$, then $f(U) \subseteq int(cl(V))$. Therefore, f isalmost δP_S -continuous.

Corollary 4.13. A function $f: (X, \tau) \to (Y, \sigma)$ is almost δP_S -continuous if and only if *f* is weakly δP_S -continuous and itsatisfies oneofthe followingproperties:

- a) Yis almostregular.
- b) Y isextremallydisconnected.

Proof.The proof follows from Proposition 3.2(a). The converse is proved in Proposition4.11 andProposition4.12.

Corollary4.14.Let $f: (X, \tau) \to (Y, \sigma)$ beafunctionandXisalocallyindiscretespace. Then fisweakly δP_S

continuousifandonlyif*f*isweaklycontinuous.

Proof. Follows fromProposition2.14.

Corollary 4.15. If X is a locally indiscrete spaceand Y is either almost regular or an extremallydisconnected space, the following statements are equivalent for a function $f: (X, \tau) \to (Y, \sigma)$:

- a) f is almost δP_S -continuous.
- b) f is weakly δP_S -continuous.
- c) f is weakly continuous.
- d) fisalmostcontinuous.

Proof.(a) \Rightarrow (b)Followsfrom Proposition 3.2

- (b) \Rightarrow (c)Follows fromCorollary 4.14
- $(c) \Rightarrow (d)$ Follows from Corollary 4.12

(d) \Rightarrow (a) Since X is locally indiscrete, $\delta P_S O(X) = \tau$. Hence almost continuous function is a almost δP_S continuous function, from Proposition 2.21.

Corollary4.16.IfYisaregularspace,thefollowingstatementsareequivalentforafunction $f: (X, \tau) \rightarrow (Y, \sigma)$:

a) *f* is δP_S -continuous.

b) *f* is almost δP_S -continuous.

c) f is weakly δP_S -continuous.

Proof.FollowsfromProposition4.11andProposition2.23andthefactthateveryregular space is almostregularand semi-regularspace.

Corollary4.17.IfXisalocally indiscretespace

andYisaregularspace,thefollowingstatementsareequivalentforafunction $f: (X, \tau) \rightarrow (Y, \sigma)$:

- a) *f* is δP_S -continuous.
- b) *f* is almost δP_S -continuous.
- c) f is weakly δP_S -continuous.
- d) fisweaklycontinuous.
- e) fisalmostcontinuous.
- f) fiscontinuous.

Proof.FollowsfromCorollary4.15,Corollary 4.16 and Proposition2.25 and the fact that everyregular space is almost regular and semi-regularspace.

Proposition4.18.Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function and Xisasemi-T₁space.Thenfisweakly $\delta P_{\rm s}$ continuousifandonlyif*f*isweakly-precontinuous.

Proof.FollowsfromProposition2.13.

Corollary 4.19. If X is a semi-T₁ space and Y iseitheralmostregularoranextremallydisconnected space, the following statements are equivalent for a function $f: (X, \tau) \to (Y, \sigma)$:

- a) f is almost δP_S -continuous.
- b) f is weakly δP_S -continuous.
- c) f is weakly δ -precontinuous.
- d) f isalmost δ -precontinuous.

Proof.FollowsfromCorollary4.13,Proposition4.18 andProposition2.22.

Corollary 4.20. If X is a semi- T_1 space and Y isaregularspace,the following statements are equivalent for

afunction $f: (X, \tau) \to (Y, \sigma)$:

- a) *f* is δP_S -continuous.
- b) f is almost δP_S -continuous.
- c) f is weakly δP_S -continuous.
- d) f isweakly δ -precontinuous.
- e) f isalmost δ -precontinuous.
- f) f is δ -precontinuous.

Proof.FollowsfromCorollary4.16,Corollary 4.19 and Proposition2.24 and the fact that everyregular space is almost regular and semi-regularspace.

Proposition4.21. If $f: (X, \tau) \to (Y, \sigma)$ is a semi-continuous function. Then f is weakly continuous if and onlyiffis weakly δP_S -continuous.

Proof. Necessity. Let V be any open set of Y.Since f is weakly continuous, by Proposition2.26, $cf^{-1}(V)$ $\subseteq f^{-1}$ (clV). Since f is semi-continuous, then $f^{-1}(V)$ is a semi-open set in X. Hence byProposition2.19(a),δP_Sclf⁻¹(V)=clf⁻¹(V).Therefore,weobtainδP_Sclf⁻¹(V)⊆f⁻¹(clV).ThusbyProposition3.17(h),*f* isweakly δP_S -continuous.

Sufficiency. Let V be any open set in Y. Since fisweakly δP_S continuous,byProposition3.17(h), $\delta P_S cl f^{-1}(V) \subseteq f^{-1}(clV)$.Since*fissemi*-continuous, then $f^{-1}(V)$ is semi-open set of X.HencebyProposition2.19(a),wehaveδP_Sclf⁻¹(V)=clf⁻¹(V).Therefore,weobtainclf⁻¹(V)⊆f⁻¹(clV).ThusbyPropos ition2.26,*f*isweaklycontinuous.

Corollary 4.22.A function $f: (X, \tau) \to (Y, \sigma)$ is weakly δP_S -continuousifandonly if fismeakly continuousifitsatisfiesoneofthe following properties:

a) X islocallyindiscretespace.

b) *f*is semi-continuous.

Proof.FollowsfromCorollary4.14andProposition4.21.

Proposition4.23.If $f: (X, \tau) \to (Y, \sigma)$ is weakly θ s-continuous and weakly δ -precontinuous, then f is weakly δP_s continuous.

Proof. Let $x \in X$ and let V be any open set of Ycontaining $f(x)$. Since f is weakly θ s-continuousand weakly δ pre-continuous, then there exists a θ -semi-open and a δ -preopen set U of X containing xsuch that $f(U) \subseteq cUV$, respectively. HencebyLemma 2.15, U is a δP_S -open set of X containing xsuch that $f(U) \subseteq cUV$. Therefore, f is weakly δP_S -continuous.

Proposition4.24. Let $f: (X, \tau) \to (Y, \sigma)$ be a function and Xbeanextremallydisconnectedspace.Iffisweakly θ scontinuous, then*f* is weakly δ*P*_S-continuous.

Proof. FollowsfromLemma2.16.

Proposition4.25.If $f: (X, \tau) \to (Y, \sigma)$ is weakly δ -precontinuous and either S-continuous or a θ irresolutefunction, then*f*isweaklyδP_S-continuous.

Proof. Let $x \in X$ and V be any open set of Ycontaining $f(x)$. Since f is weakly δ -precontinuous, there exists a δ preopen set U of Y containing *f* (x)suchthat*f*(U)⊆ clV.Then*f*⁻¹(clV)isaδ-preopen set of Y containing x. Since clV is aregularclosedsetofYand*fiseitherS*-continuous or θ -irresolute, then $f^{-1}(clV)$ is theunionofregularclosedsetsofXandhenceisthe union of semi-closed sets of X. By Lemma2.12, $f⁻¹(cUV)$ is a δP_S

open set of X containing xand clearly $f(f^{−1}(c¹V)) ⊆ c¹V$. Hence *f* is weakly δP_S-continuous.

Corollary4.26.Let $f: (X, \tau) \to (Y, \sigma)$ be either S-continuous or a θ -irresolute function. Then f is weakly δP_s continuous if and only if f is weakly δ -precontinuous.

Proposition4.27. If a function $f:(X,\tau) \to (Y,\sigma)$ is weakly δP_S -continuousandopen, then $f(\delta P_S c V) \subseteq \delta P_S c l f(V)$ for eachopen setV of X.

Proof. Let V be any open set of X. Since f isopen, then $f(V)$ is an open set in Y. Since f isweakly δP_S continuous, then by Proposition 3.24, we obtain that $\delta P_S cl f^{-1}(f(V)) \subseteq f^{-1}(\delta P_S cl f(V))$ which implies that $f(\delta P_S cl V) \subseteq$ $\delta P_{\rm s}$ *clf*(V).

Corollary 4.28. If a function $f: (X, \tau) \to (Y, \sigma)$ is weakly δP_S -continuous and open, then δP_S *intf* $(F) \subseteq$ $f(\delta P_S int(F))$ for each closed set F of X.

Proposition4.29.Ifafunction $f: (X, \tau) \to (Y, \sigma)$ issemi-continuous and almost open, then f is weakly δP_{S} continuous if and only if $\delta P_{\mathcal{S}} cl f^{-1}(V) = f^{-1} (\delta P_{\mathcal{S}} cl V)$ for each open setVof Y.

Proof. Necessity. Let V be any open set of Y.Since fisweakly δP_S -continuous, then by Proposition 3.24, $\delta P_{S}clf^{-1}(V)$ ⊆*f* $\subseteq f^{-1}(\delta P_{\varsigma}clV).$ Since Visopen,henceitissemi-open.ThenbyProposition2.19(a), $\delta P_{\rm s}cl(V)$ = $cl(V)$ which implies that $\delta P_S cl(V) \subseteq cl(V)$ and hence $f^{-1}(\delta P_S cl V) \subseteq f^{-1}(clV)$. Since V is an open set of Y and f is almost open, then byProposition2.27, $f^{-1}(c|V) \subseteq clf^{-1}(V)$. Therefore,we have $f^{-1}(\delta P_S c|V) \subseteq f^{-1}(c|V) \subseteq f^{-1}(V)$ andhence $f^{-1}(\delta P_S c V)$ ⊆ $c l f^{-1}(V)$. Since V is an openset of Y and f is semi-continuous, then $f^{-1}(V)$ is a semiopen set in X. Then by Proposition2.19(a)weobtainthat $f^{-1}(\delta P_S c V)$ ⊆ $\delta P_S c l f^{-1}(V)$. Therefore, we have $\delta P_{S}clf^{-1}(V)=f^{-1}(\delta P_{S}clV).$

Sufficiency**.** Follows from Proposition3.24.

Corollary4.30.Ifafunction $f: (X, \tau) \to (Y, \sigma)$ is weakly δP_S -continuous, semi-continuous and almost

open, then δP_S int $f^{-1}(F) = f^{-1}(\delta P_S$ intF) for each closed setF of Y.

Proof.Followsfrom Proposition4.29.

Corollary 4.31. If a function $f: (X, \tau) \to (Y, \sigma)$ is weakly δP_S -continuous, semi-continuous and almost open, then $\text{cl} f^{-1}(V) = f^{-1}(\text{cl} V)$ for each open setVof Y.

Proof.FollowsfromProposition4.29 and Proposition 2.19(a).

Corollary 4.32. Let $f: (X, \tau) \to (Y, \sigma)$ be an almost openfunction. If f is weakly δP_S -continuous and semi-

continuous,then*f*isalmostcontinuousandhence *f*is weaklycontinuous.

Proof.FollowsfromProposition4.31 and Proposition2.28.

REFERENCE

- [1] Di Maio G. and Noiri T., On s-closed spaces, Indian J. Pure Appl. Math., 18 (3) (1987), 226-233.
- [2] Dontchev J., Survey on preopen sets, The Proceedings of the Yatsushiro Topological Conference, (1998), 1-18.
- [3] Fomin S., Extensions of topological spaces, Ann. of Math., 44 (3) (1943), 471-480.
- [4] Joseph J. E. and Kwack M. H., On S-closed spaces, Proc. Amer. Math. Soc., 80 (2) (1980), 341-348.
- [5] Khalaf A. B. and Asaad B. A., Almost Ps-continuous functions, Tamkang J. Math., 43 (1) (2012), 33-50,
- [6] Khedr F. H. and Noiri T., On θ -irresolute functions, Indian J. Math., 28 (3) (1986), 211-217.
- [7] Levine N., A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68 (1) (1961), 44-46.
- [8] Levine N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1) (1963), 36-41.
- [9] Maheshwari S. N. and Prasad R.,Some new separation axioms, Ann. Soc. Sci. Bruxelles, Ser. I.,89(1975),395-402.
- [10] Mashhour A. S., Abd El-Monsef M. E. and El-Deeb S. N., On precontinuous and week precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- [11] Munshi B.M., and Bassan D.S., Super Continuous Mappings, Indian J.Pure and Applied Mathematics, 13(2),(1982), 229-236.
- [12] Nasef A. A. and Noiri T., Some weak forms of almost continuity, Acta Math. Hungar., 74 (3) (1997), 211- 219.
- [13] Noiri T. and Kang S. M., On almost strongly θ -continuous functions, Indian J. Pure Appl. Math.,15 (1) (1984),1-8.
- [14] Noiri T., Almost α-continuous functions, Kyungpook Math. J., 28 (1988), 71-77.
- [15] Noiri T., On δ -continuous functions, J. Korean Math. Soc., 16 (2) (1980), 161-166.
- [16] Noiri T., Weakly α-continuous functions, Internat. J. Math. and Math. Sci., 10 (3) (1987), 483-490.
- [17] Raychaudhuri S. and Mukherjee M. N., On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica, 21 (1993), 357-366.
- [18] Rose D. A., Weak continuity and almost continuity, Internat. J. Math. and Math. Sci., 7 (2) (1984), 311- 318.
- [19] Singal M. K. and Arya S. P., On almost regular spaces, Glasnik Mat., 4 (24) (1969), 89-99.
- [20] Singal M. K. and Singal A. R., Almost continuous mappings, Yokohama Math. J., 16 (1968), 63-73.
- [21] Stone M. H., Applications of the theory of Boolean rings to topology, Trans. Amer. Math. Soc.,41(1937), 375-481.
- [22] Velicko N. V., H-closed topological spaces, Amer. Math. Soc. Transl., 78 (2) (1968), 103-118.
- [23] Vidhyapriya P, Shanmugapriya H and Sivakamasundari K, δP_S -Open Sets in Topological Spaces, AIP Conference Proceedings 2261, 030103 (2020).
- [24] Vidhyapriya P,ShanmugapriyaH and Sivakamasundari K, δP_S -Continuity and Decomposition of Perfect Continuity and Complete Continuity, Indian Journal of Natural Sciences 12(65), 30484-30495, April (2021)
- [25] Vidhyapriya P and Sivakamasundari K,Almost δP_S Continuous Functions (Communicated)
- [26] Vidhyapriya P and Sivakamasundari K, δP_{S} Closed Sets, Closure and Interior Operators (Communicated)
- [27] Wang G. H., On S-closed spaces, Acta Math. Sinica, 24 (1981), 55-63.
- [28] Willard, Stephen "14E. Semiregular spaces", General Topology, Dover, ISBN 978-0-486-43479-7. (2004), p. 98.