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ABOUT THE INSTITUTION 

A nations's growth is in proportion to education and intelligence spread among the masses. 

Having this idealistic vision, two great philanthropists late. S.P. Nallamuthu Gounder and Late. 

Arutchelver Padmabhushan Dr.N.Mahalingam formed an organization called Pollachi Kalvi 

Kazhagam, which started NGM College in 1957, to impart holistic education with an objective to 

cater to the higher educational needs of those who wish to aspire for excellence in knowledge and 

values. The College has achieved greater academic distinctions with the introduction of 

autonomous system from the academic year 1987-88. The college has been Re-Accredited by 

NAAC and it is ISO 9001 : 2015 Certified Institution. The total student strength is around 6000. 

Having celebrated its Diamond Jubilee in 2017, the college has blossomed into a premier Post-

Graduate and Research Institution, offering 26 UG, 12 PG, 13 M.Phil and 10 Ph.D Programmes, 

apart from Diploma and Certificate Courses. The college has been ranked within Top 100 (72nd 

Rank) in India by NIRF 2021. 

 

 

ABOUT CONFERENCE 

The International conference on “Emerging Trends in Science and Technology (ETIST-2021)” is  

being jointly organized by Departments of Biological Science, Physical Science and 

Computational Science - Nallamuthu Gounder Mahalingam College, Pollachi along with ISTE, 

CSI, IETE, IEE & RIYASA LABS on 27th OCT 2021. The Conference will provide common 

platform for faculties, research scholars, industrialists to exchange and discus the innovative ideas 

and will promote to work in interdisciplinary mode. 
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Abstract: 

 Neutrosophic sets play important role to develop the novel ideas in Mathematics 

particularly in Topological spaces. Neutrosophic topology provides the new class of closed sets 

to develop the theoretical concepts in Topological spaces.As a continuous development of 

Neutrosophic approach in Topological Spaces, in this paper we have introduced a novel method 

to generate the Topologies using the (𝛼, 𝛽, 𝛾) - cuts of Neutrosophic sets, which is the extension 

work of the topologies generated by fuzzy numbers and intuitionistic fuzzy numbers.  

Keywords: Fuzzy Numbers, Intuitionistic Fuzzy Numbers, Neutrosophic sets, 

(𝛼, 𝛽, 𝛾) – cuts of Neutrosophic sets. 

 

1. Introduction: 

 Neutrosophic set is the generalization of classical set, fuzzy set(1965), intuitionistic fuzzy 

set (1986) which consists of membership values, non-membership values, indeterminant values 

of a set. The concept of “Neutrosophic set” was first given by F. Smarandache (2005). Bera and 

Mahapatra introduced the (𝛼, 𝛽, 𝛾) – cuts of Neutrosophic sets. Initially, topologies genetaed by 

the open sets. Then the topologies generate by the basis and subbasis. It is very easy when the 

number of elements are less. To overcome the difficulty of these methods, in this paper a novel 

approach to generate topologies using Neutrosophic numbers and Neutrosophic Basis. This novel 

approach is  based on topologies generated by fuzzy numbers introduced by Padmapriya in 2010 

and Topologies generated by Intuitionistic fuzzy numbers by Santhi and Kungumaraj, 2020. 
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2. Preliminaries: 

Definition 2.1 Fuzzy Set: Let X be a nonempty set. A fuzzy set �̅� of X is defined as �̅� =

{(𝑥, 𝜇�̅�(𝑥));𝑥 ∈ 𝑋}  where 𝜇�̅�(𝑥) is called the membership function which maps each element of 

X to a value between 0 and 1. 

Definition 2.2 Fuzzy Number: A fuzzy number �̅� is a convex normalized fuzzy set on the real 

line ℝ such that: 

(i) There exist at least one 𝑥 ∈ ℝ with 𝜇�̅�(𝑥) = 1; 

(ii) 𝜇�̅�(𝑥)is piecewise continuous. 

 

Definition 2.4. α- cut of fuzzy number 

The α- cut of a fuzzy number A(x) is defined as A(α) = {x/µ(x) ≥ A(x), α ∈ [0, 1]}. 

Definition2. 5  Intuitionistic Fuzzy Set : 

 Let X be a nonempty set. An intuitionistic fuzzy set �̅�𝐼 of X is defined as  

�̅� = {(𝑥, 𝜇�̅�𝐼(𝑥), 𝛾�̅�𝐼(𝑥)); 𝑥 ∈ 𝑋} where 𝜇�̅�𝐼(𝑥) and 𝛾�̅�𝐼(𝑥) are membership and 

nonmembership functions such that 𝜇�̅�𝐼(𝑥) , 𝛾�̅�𝐼(𝑥) ∶  X →  [0, 1] and  

0 ≤ 𝜇�̅�𝐼(𝑥) + 𝛾�̅�𝐼(𝑥) ≤ 1 for all x ∈ X. 

Definition 2. 6 Intuitionistic Fuzzy Number:  

 An intuitionistic fuzzy subset  �̅�𝐼 = {(𝑥, 𝜇�̅�𝐼(𝑥), 𝛾�̅�𝐼(𝑥));𝑥 ∈ 𝐴} of the real line ℝis 

called an intuitionistic fuzzy number (IFN) if the following conditions hold:  

(i) There exists 𝑥∈ℝsuch that 𝜇�̅�𝐼(𝑥) = 1 and 𝛾�̅�𝐼(𝑥) = 0.  

(ii) 𝜇�̅�𝐼(𝑥)is a continuous function from ℝ→ [0, 1] such that 0 ≤ 𝜇�̅�𝐼(𝑥) + 𝛾�̅�𝐼(𝑥) ≤ 1for all 

𝑥∈𝑋. 

 

Definition2.7 (α-cut of a fuzzy number): The α-cut of A denoted by 𝐴𝛼  is the crisp set  𝐴𝛼 =

(𝑥 ∈ 𝑋; 𝐴(𝑥) ≥ 𝛼) and the strong α-cut of A is denoted by 𝐴𝛼+ is the crisp set 𝐴𝛼+ = 𝑥 ∈

𝑋; 𝐴(𝑥) > 𝛼). 

Definition2.8(Topologies generated by the fuzzy subsets): If Ais a fuzzy subset of X then the 

topology generated by the α – cut of A is called the topology generated by the fuzzy subset 

A. 
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Definition2.9 ((α, β) – Cut of  Intuitionistic Fuzzy Subset ): If 𝐴𝐼 is an intuitionistic fuzzy 

number. A set of (α, β ) – cut of  𝐴𝐼 of X, is defined by𝐴𝛼,𝛽 = {𝑥, 𝜇𝐴𝐼(𝑥), 𝜗𝐴𝐼(𝑥): 𝑥 ∈

𝑋; 𝜇𝐴𝐼(𝑥) ≥ 𝛼, 𝜗𝐴𝐼(𝑥) ≤ 𝛽, 𝛼, 𝛽 ∈ [0,1] where α, β ∈ [0,1] are the fixed numbers and α +β ≤ 

1. 

Definition 2.10Topology Generated by (α ,β ) – cut of Intuitionistic Fuzzy Numbers: 

Let A is an Intuitionistic fuzzy subset of X. If τ be the collection of opens sets of (α, β )-cut of 

elements of A and it is a topology on X, then τ is called topology generated by Intuitionistic 

fuzzy subset A of X. 

Definition2.11 Neutrosophic Set: Let X be a universe set. A neutrosophic set A on X is 

defined as 𝐴 = {(𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥 ∈ 𝑋}, where 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥): 𝑋 →−]0,1[+ 

represents the degree of membership, degree of indeterministic and degree of non-

membership respectively of the element of 𝑥 ∈  𝑋, such that 0 ≤ 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ≤ 3. 

Definition 2.12 ( α, β,𝜸)-cut of a Neutrosophic number: The Aof Neutrosophic set N is 

denoted by 𝑁(𝛼,𝛽,𝛾) , where 𝛼, 𝛽, 𝛾 ∈ [0,1] and are fixed numbers, such that 𝛼 + 𝛽 + 𝛾 ≤ 3 is 

defined as 𝑁(𝛼,𝛽,𝛾) = {(𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥 ∈ 𝑋, 𝑇𝐴(𝑥) ≥ 𝛼, 𝐼𝐴(𝑥) ≤ 𝛽, 𝐹𝐴(𝑥) ≤ 𝛾}. 

Definition 2.13 Strong (α, β, 𝜸)-cut of a Neutrosophic number:  The Strong (𝛼, 𝛽, 𝛾)+ − 𝑐𝑢𝑡 of 

neutrosophic set N is denoted by 𝑁(𝛼,𝛽,𝛾)+  , where 𝛼, 𝛽, 𝛾 ∈ [0,1] and are fixed numbers, 

such that 𝛼 + 𝛽 + 𝛾 ≤ 3 is defined as 𝑁(𝛼,𝛽,𝛾)+ = {(𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥 ∈ 𝑋, 𝑇𝐴(𝑥) >

𝛼, 𝐼𝐴(𝑥) < 𝛽, 𝐹𝐴(𝑥) < 𝛾}. 

Definition 2.14 Crisp Basis:Let X be non-empty set. B ⊂ P(X) is called a base if  

(i) ∪ {B / B ∈ ℬ  } = X 

(ii) U, V ∈  ℬ and x∈ U ∩ V implies there exist W ∈ ℬ such that x ∈ W ⊂ U ∩ V. 

Let τ be the collection of all union of finite number of elements of ℬ. Then τ is a 

topology and ℬ is a base for the topology. 

3. Topology Generated by(α , β ,𝜸) − 𝒄𝒖𝒕 Neutrosophic Sets: 

Definition 3.1: Let A is a Neutrosophic subset of X. If τ  be the collection of opens sets of (α , β 

,𝛾) − 𝑐𝑢𝑡 of elements of A and it is a topology on X, then τ is called the topology generated 

by the Neutrosophic Subset A of X. 
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Example 3.2: Let X = (a, b, c) and A = {
0.1

𝑎
+

0.2

𝑏
+

0.7

𝑐
;

0.8

𝑎′ +
0.7

𝑏′ +
0.2

𝑐′ ;
0.3

𝑎′′ +
0.4

𝑏′′ +
0.6

𝑐′′}.  

Then 𝐴(𝛼,𝛽,𝛾) is the whole set for α =0, β =1, γ =1, and is empty set for α =1, β =0, γ =0.  

Also 𝐴(𝛼,𝛽,𝛾) = 𝑋 for 0<α ≤ 0.1, 0.8 < β ≤ 1, 0.8 < γ  ≤ 1, 𝐴(𝛼,𝛽,𝛾) = {𝑐}, 𝑓𝑜𝑟 0.2 < 𝛼 ≤ 0.7;  

0.2 < 𝛽 ≤ 0.7;  0.2 < 𝛾 ≤ 0.7, 𝐴(𝛼,𝛽,𝛾) = 𝜙 𝑓𝑜𝑟 0.7 < 𝛼 ≤ 1, 0.2 < 𝛽 ≤ 0. Then 

𝜏𝑁(𝐴) = {X, {b, c}, {c}, ϕ }. Clearly 𝜏𝑁(𝐴) is topology on X. 

Example 3.3: : Let X = (p, q, r) and A = {
0.8

𝑝
+

0.9

𝑞
+

1

𝑟
;

0.2

𝑝′ +
0.1

𝑞′ +
0

𝑟′ ;
0.2

𝑝′′ +
0.1

𝑞′′ +
0

𝑟′′}.  

Then𝜏𝑁(𝐴) = {X, {r, s}, {s}, ϕ } when α =0.9, β =0.3, γ =0.4. Clearly 𝜏𝑁(𝐴) is not topology on 

X. 

Theorem 3.4: If A = (𝑎, 𝑎′, 𝑎′′) is a neutrosophic subset of X = {x} then 𝜏𝐴 = {𝑋, 𝜙}. 

Proof: Let X = {x} and A = 
𝑎

𝑥
;

𝑎′

𝑥
+

𝑎′′

𝑥
; 0 ≤ 𝑎 ≤ 1. Then 𝜏𝑁(𝐴) = 𝑋. 

Topology generated by 𝜏𝑁(𝐴) = Topology generated by {X} = {X, ϕ}. Therefore 𝜏𝑁(𝐴) =

{𝑋, 𝜙}. 

Theorem 3.5:If A = (𝑎, 𝑎′, 𝑎′′; 𝑏, 𝑏′, 𝑏′′) is a Neutrosophic subset of X ={x, y} then 𝜏𝑁(𝐴) =

{𝑋, 𝜙} or 𝜏𝑁(𝐴) = {𝑋, 𝜙, 𝜆} where 𝜆 ∈ {{𝑥}, {𝑦}}. 

Proof: Let X ={x, y}. There are four topologies on X 

They are given by 𝜏𝑁1
(𝐴) = {𝑋, 𝜙}, 𝜏𝑁2

(𝐴) = {𝑋, 𝜙, {𝑥}}, 𝜏𝑁3
(𝐴) = {𝑋, 𝜙, {𝑦}}, 𝜏𝑁4

(𝐴) =

{𝑋, 𝜙, {𝑥}, {𝑦}}. 

Case 1: If 𝐴 =
𝑎

𝑥
;

𝑎′

𝑥
;

𝑎′′

𝑥
 where 0 ≤ 𝑎, 𝑎′, 𝑎′′ ≤ 1 then 𝜏𝑁(𝐴) = 𝑋 

Topology generated by 𝜏𝑁(𝐴) = Topology generated by {X} = {X, 𝜙} = 𝜏𝑁1
 

Case 2: If 𝐴 =
𝑎

𝑥
+

𝑏

𝑦
;

𝑎′

𝑥
+

𝑏′

𝑦
;

𝑎′′

𝑥
+

𝑏′′

𝑦
 where 0 ≤ 𝑎′′ ≤ 𝑎′ ≤ 𝑎 < 𝑏 ≤ 𝑏′ ≤ 𝑏′′ ≤ 1 then 

𝜏𝑁(𝐴) = {𝑋, {𝑥}} 
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Topology generated by  𝜏𝑁(𝐴) = Topology generated by {𝑋, {𝑥}} = {X,{x}, 𝜙} = 𝜏𝑁2
 

 

Case 3: If A = 𝐴 =
𝑎

𝑥
+

𝑏

𝑦
;

𝑎′

𝑥
+

𝑏′

𝑦
;

𝑎′′

𝑥
+

𝑏′′

𝑦
 where 0 ≤ 𝑏′′ ≤ 𝑏′ ≤ 𝑏 < 𝑎 ≤ 𝑎′ ≤ 𝑎′′ ≤ 1 then 

𝜏𝑁(𝐴) = {𝑋, {𝑦}}. 

Topology generated by  𝜏𝑁(𝐴) = Topology generated by {𝑋, {𝑥}} = {X,{y}, 𝜙} = 𝜏𝑁3
 

Theorem 3.6: The discrete topology on {x, y} is not generated by the (α , β ,𝛾) − 𝑐𝑢𝑡 of any 

Neutrosophic subset of {x, y}. 

Proof: Let A be a Neutrosophic subset of {x.y}. Then 𝐴 = (
𝑎

𝑥
+

𝑏

𝑦
;

𝑎′

𝑥
+

𝑏′

𝑦
;

𝑎′′

𝑥
+

𝑏′′

𝑦
) 

If a = b then using Theorem 3.4, 𝜏𝑁(𝐴) = 𝜏𝑁1
 

If a < b then using Theorem 3.5, 𝜏𝑁(𝐴) = 𝜏𝑁2
 

If a > b then using Theorem 3.5 𝜏𝑁(𝐴) = 𝜏𝑁3
 

4. Neutrosophic Basis in Topological Spaces: 

Definition 4.1:Neutrosophic Basis 

Let X be a nonempty set and B ⊂ P(X) . A function 𝑓𝜇, 𝑓𝜅 , 𝑓𝜗: 𝑃(𝑋) → [0,1] is called 

Neutrosophic Basis if 

(i) ∪ {𝐵 |𝑓𝜇(𝐵) = 1, 𝑓𝜗(𝐵) = 0, 𝑓𝛾(𝐵) = 0} = 𝑋. 

(ii) For each (𝛼, 𝛽, 𝛾) ∈ (0, 1] with 𝛼 + 𝛽 + 𝛾 ≤ 3.𝑓𝜇(𝑈) ≥ 𝛼, 𝑓𝜅(𝑈) ≤ 𝛽, 𝑓𝜗(𝑈) ≤ 𝛾 

and 𝑓𝜇(𝑉) ≥ 𝛼, 𝑓𝜅(𝑉) ≤ 𝛽, 𝑓𝜗(𝑉) ≤ 𝛾 and x ∈  U ∩ V implies there exist 𝑓𝜇(𝑊) ≥

𝛼, 𝑓𝜅(𝑊) ≤ 𝛽, 𝑓𝜗(𝑊) ≤ 𝛾 such that x ∈ W ⊂   U ∩ V. 

If 𝜏𝑁 is the topology of X based on the basis B, then it is called the topology generated by the 

Neutrosophic Basis. 
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Definition 4.2: Strong Neutrosophic Basis 

Let X be a nonempty set. A function 𝑓𝜇, 𝑓𝜅 , 𝑓𝜗: 𝑃(𝑋) → [0,1] is called Strong Neutrosophic 

Basis if 

(i) ∪ {𝐵 |𝑓𝜇(𝐵) = 1, 𝑓𝜗(𝐵) = 0, 𝑓𝛾(𝐵) = 0} = 𝑋. 

(ii) 𝑓𝜇(𝑈 ∩ 𝑉) ≥ min { 𝑓𝜇(𝑈), 𝑓𝜇(𝑉)}, 𝑓𝜅(𝑈 ∪ 𝑉) ≤ max { 𝑓𝜅(𝑈), 𝑓𝜅(𝑉)}, 𝑓𝜗(𝑈 ∪ 𝑉) ≤

max { 𝑓𝜗(𝑈), 𝑓𝜗(𝑉)}, for U, V ⊂ X with U ∩ V = ϕ. 

If 𝜏𝑁 is the topology of X based on the basis B, then it is called the topology 

generated by the Neutrosophic Strong Basis. 

Theorem 4.3: Every crisp basis induces a Neutrosophic basis. 

Proof: Let X be a non-empty set. Let B be a crisp basis. Define 𝑓: 𝑃(𝑋) → [0,1] as 𝑓(𝐴) =

1𝑖𝑓 𝐴 ∈ 𝐵 and 𝑖𝑓𝑓(𝐴) = 0 if A does not belong to B. 

(i) ∪ {B | (B) = 1} = ∪ {B / B ∈ B } = X, by definition of crisp basis 

(ii) Take α, β, γ ∈ (0,1] with 𝛼 + 𝛽 + 𝛾 ≤ 3. Let 𝑓𝜇(𝑈) ≥ 𝛼, 𝑓𝜅(𝑈) ≤ 𝛽, 𝑓𝜗(𝑈) ≤ 𝛾, and 

𝑥 ∈ 𝑈 ∩ 𝑉,  𝑓𝜇(𝑉) ≥ 𝛼, 𝑓𝜅(𝑉) ≤ 𝛽, 𝑓𝜗(𝑉) ≤ 𝛾 implies 𝑓𝜇(𝑈) = 1, 𝑓𝜅(𝑈) =

0, 𝑓𝜗(𝑈) = 0 and 𝑓𝜇(𝑉) = 1, 𝑓𝜅(𝑉) = 0, 𝑓𝜗(𝑉) = 0. This implies that U, V ∈B. 

Since B is a crisp basis ∃ W∈B , x ∈ W ⊂ U ∪ V. Since W∈B, 𝑓(𝑊) = 1and hence  

𝑓𝜇(𝑊) ≥ 𝛼 , 𝑓𝜅(𝑈) = 0, 𝑓𝜗(𝑈) = 0. Hence 𝑓 is Neutrosophic basis. Thus, every crisp 

basis is a Neutrosophic basis 
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