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Contra δI-semi-continuous functions in ideal topological spaces

V. Inthumathi1, M. Maheswari2, A. Anis Fathima3,

Abstract - In this paper, we apply the notion of δI-semi-open sets in ideal topological spaces and a new class of

functions namely contra δI-semi-continuous and contra δI-semi-irresolute functions are introduced and investigated in ideal

topological spaces. Also, relationships between this new class and other classes of functions are established.

Keywords Ideal topological spaces, δI-semi-open sets, δI-semi-closed sets, Contra δI-semi-continuous functions and

Contra δI-semi-irresolute functions.

2010 Subject classification: 54A05

1 Introduction

A new class of functions called contra-continuous functions is introduced by Dontchev [5] in 1996. He
defined a function f : X → Y to be contra-continuous if the preimage of every open set of Y is closed in
X. Dontchev and Noiri [6] introduced and investigated a new weaker form of this class of functions called
contra-semi-continuous functions. In this direction, the concept of contra semi-I-continuous functions
via the notion of semi-I-open sets, is introduced by Jamal M. Mustafa [9] in 2010.Throughout this paper,
(X, τ, I) and (Y, σ, I) (or simply X and Y), always mean ideal topological spaces on which no separation
axiom is assumed. For a subset A of a space (X, τ, I), cl(A) and intδ(A) denote closure and δ-interior of
A respectively.

2 Preliminaries

Definition 2.1. [1] A subset A of an ideal topological space (X, τ, I) is said to be δI-semi-open if A ⊆
cl∗(intδ(A)).

A subset A of an ideal topological space (X, τ, I) is said to be δI-semi-closed if its complement is
δI-semi-open.

Definition 2.2. [2] A function f : (X, τ, I) → (Y, σ) is said to be δI-semi-continuous if f−1(V ) is δI-
semi-open in X for each open set V of Y.

1Associate Professor, Department of Mathematics,Nallamuthu Gounder Mahalingam College, Pollachi-642001,
Coimbatore, Tamilnadu, India. E.mail: inthumathi65@gmail.com

2Assistant Professor, Department of Mathematics,Nallamuthu Gounder Mahalingam College, Pollachi-642001,
Coimbatore, Tamilnadu, India. E.mail: mahimrk@gmail.com

3Assistant Professor, Department of Mathematics,Gobi Arts & Science College, Gobichettipalayam-638456,
Erode, Tamilnadu, India. E.mail: anisnazer2009@gmail.com
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Definition 2.3. [2] A function f : (X, τ, I) → (Y, σ) is said to be δI-semi-irresolute if inverse image of
every δI-semi-open set in Y is δI-semi-open set in X.

Definition 2.4. A function f : (X, τ)→ (Y, σ) is said to be

1. contra continuous [5] if f−1(V ) is a closed in X for every open set V of Y,

2. contra semi-continuous [6] if f−1(V ) is a semi-closed in X for every open set V of Y,

3. contra pre-continuous [7] if f−1(V ) is a pre-closed in X for every open set V of Y,

4. contra α-continuous [8] if f−1(V ) is a α-closed in X for every open set V of Y,

5. contra β-continuous [4] if f−1(V ) is a β-closed in X for every open set V of Y,

6. contra b-continuous [10] if f−1(V ) is a b-closed in X for every open set V of Y.

Definition 2.5. A function f : (X, τ, I)→ (Y, σ) is said to be

1. contra I-continuous [9] if f−1(V ) is a I-closed in X for every open set V of Y,

2. contra semi-I-continuous [9] if f−1(V ) is a semi-I-closed in X for every open set V of Y,

3. contra pre-I-continuous [11] if f−1(V ) is a pre-I-closed in X for every open set V of Y,

4. contra α-I-continuous [12] if f−1(V ) is a α-I-closed in X for every open set V of Y,

5. contra b-I-continuous [13] if f−1(V ) is a b-I-closed in X for every open set V of Y,

6. contra β-I-continuous [3] if f−1(V ) is a β-I-closed in X for every open set V of Y,

7. contra δ-I-continuous [11] if f−1(V ) is a δ-I-closed in X for every open set V of Y.

3 Contra δI-semi-continuous functions

Definition 3.1. A function f : (X, τ, I) → (Y, σ) is said to be contra δI-semi-continuous if f−1(V ) is
δI-semi-closed in (X, τ, I) for each open set V of (Y, σ).

Example 3.2. Let X={a, b, c} with topology τ={∅, {a}, {b}, {a, b}, {b, c}, X}, and an ideal I={∅, {a}, {b}, {a, b}}
and let Y={p, q, r} with topology σ={∅, {r}, {p, q}, Y }. Let f : (X, τ, I)→ (Y, σ) be a function defined by
f(a) = r, f(b) = p, and f(c) = q. Then f is Contra δI-semi-continuous.

Proposition 3.3. For a function f : (X, τ, I)→ (Y, σ) the following hold.

1. Every contra δI-semi-continuous funtion is contra semi-continuous, contra β-continuous and contra
b-continuous.

2. Every contra δI-semi-continuous funtion is contra δ-I-continuous, contra semi-I-continuous and
contra b-I-continuous.

Proof. Obvious from the Theorem 3.3 [1].
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Remark 3.4. The converses of the above proposition need not be true as seen from the following example.

Example 3.5. Let X={a, b, c} with topology τ={∅, {a}, {b}, {a, b}, {b, c}, X} and an ideal I={∅, {a}, {b}, {a, b}}
and let Y = {p, q, r} with topology σ={∅, {q}, {r}, {q, r}, Y }. Let f : (X, τ, I) → (Y, σ) be a function
defined by f(a) = q, f(b) = p and f(c) = r. Then f is contra semi-continuous, contra β-continuous,
contra b-continuous, contra semi- I-continuous, contra b-I-continuous, contra β-I-continuous, contra δ-
I-continuous but not contra δI-semi-continuous.

Theorem 3.6. For a function f : (X, τ, I)→ (Y, σ),the following are equivalent:

1. f is contra δI-semi-continuous.

2. For every closed subset F of Y, f−1(F ) is δI-semi-open in X.

3. For each x ∈ X and each closed subset F of Y with f(x) ∈ F, there exists a δI-semi-open subset U
of X with x ∈ U such that f(U) ⊆ F.

Proof. 1 ⇒ 2. Obvious.
2 ⇒ 3. Let x ∈ X and F be any closed set in Y with f(x) ∈ F. By (2), f−1(F ) is δI-semi-open in X. Put
U = f−1(F ). Then there is a δI-semi-open set U in X containing x such that f(U) ⊆ F.
3 ⇒ 2. Let F be any closed subset of Y. If x ∈ f−1(F ) then f(x) ∈ F, and there exists a δI-semi-open
subset Ux of X with x ∈ Ux such that f(Ux) ⊆ F. Therefore, we obtain f−1(F ) =

⋃
{Ux|x ∈ f−1(F )}. By

Theorem 3.13 [1] we have that f−1(F ) is δI-semi-open in X.

Remark 3.7. From the following examples,

1. The notions of contra I-continuity and contra δI-semi-continuity are independent.

2. The notions of semi-I-continuity and contra δI-semi-continuity are independent.

3. The notions of δI-semi-continuity and contra δI-semi-continuity are independent.

4. The notions of contra δI-semi-continuity and contra pre-continuity(resp. contra pre-I-continuity
)are independent.

5. The notions of contra δI-semi-continuity and contra α-continuity(resp. contra α-I-continuity )are
independent.

Example 3.8. The function in Example 3.2 is contra δI-semi-continuous but not contra I-continuous.

Example 3.9. Let X={a, b, c} with topology τ={∅, {c}, {a, b}, X} and an ideal I={∅, {a}} and let Y={p, q, r}
with topology σ={∅, {q}, {r}, {q, r}, Y }. Let f : (X, τ, I) → (Y, σ) be a function defined as f(a) = q,
f(b) = p and f(c) = r. Then f is contra I-continuous but not contra δI-semi-continuous.

Example 3.10. Let f : (X, τ, I) and (Y, σ) be the same spaces as in Example 3.2. Let f : (X, τ, I)→ (Y, σ)
be a function defined as f(a) = q, f(b) = p and f(c) = r. Then f is semi-I-continuous but not contra
δI-semi-continuous.

Example 3.11. Let X={a, b, c, d} with topology τ={∅, {d}, {a, c}, {a, c, d}, X}, and an ideal I={∅, {a}, {d}, {a, d}}
and let Y={p, q, r, s} with topology σ={∅, {p}, {r}, {p, r}, Y }. Let f : (X, τ, I) → (Y, σ) be a function
defined as f(a) = q, f(b) = p, f(c) = s and f(d) = r. Then f is contra δI-semi-continuous but not
semi-I-continuous.
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Example 3.12. Let X={a, b, c, d} with topology τ={∅, {a}, {c}, {a, c}, X}, and an ideal I={∅, {a}}
and let Y={p, q, r, s} with topology σ={∅, {q}, {s}, {q, s}, Y }. Let f : (X, τ, I) → (Y, σ) be a function
defined by f(a) = q, f(b) = p, f(c) = s and f(d) = r. Then f is δI-semi-continuous but not contra
δI-semi-continuous.

Example 3.13. The function in Example 3.11 is contra δI-semi-continuous but not δI-semi-continuous.

Example 3.14. The function in Example 3.5 is contra pre-continuous, contra α-continuous, contra pre-
I-continuous and contra α-I-continuous but not contra δI-semi-continuous.

Example 3.15. Let X={a, b, c} with topology τ={∅, {b}, {c}, {b, c}, X} and an ideal I={∅, {a}} and let
Y={p, q, r} with topology σ={∅, {p}, {q}, {p, q}, {q, r}, Y }. Let f : (X, τ, I)→ (Y, σ) be a function defined
by f(a) = q, f(b) = p and f(c) = r. Then f is contra δI-semi-continuous but not contra pre-continuous,
contra α-continuous, contra pre-I-continuous and contra α-I-continuous.

Proposition 3.16. If a function f : (X, τ, I) → (Y, σ) is contra δI-semi-continuous and Y is regular,
then f is δI-semi-continuous.

Proof. Let x ∈ X and let V be an open subset of Y with f(x) ∈ V. Since Y is regular, there exists an
open set W in Y such that f(x) ∈ W ⊆ cl(W ) ⊆ V. Since f is contra δI-semi-continuous, by Theorem
3.6. there exists a δI-semi-open set U in X with x ∈ U such that f(U) ⊆ cl(W ). Then f(U) ⊆ cl(W ) ⊆ V.
Hence by Theorem 3.10 of [2], f is δI-semi-continuous.

Theorem 3.17. For a function f : (X, τ, I)→ (Y, σ),the following are equivalent:

1. f is contra δI-semi-continuous.

2. f−1(A) ⊆ cl∗(intδ(f
−1(cl(A)))) for every suset A in Y.

3. B ⊆ cl∗(intδ(f
−1(cl(f(B))))) for every suset B in X.

Proof. 1 ⇒ 2. Let A ⊆ Y. We have cl(A) is closed in Y, by assumption f−1(cl(A)) is δI-semi-open in X.
Therefore f−1(cl(A)) ⊆ cl∗(intδ(f

−1(cl(A)))) and so f−1(A) ⊆ cl∗(intδ(f
−1(cl(A)))).

2 ⇒ 3. Let B ⊆ X. Then f(B) ⊆ Y, by assumption f−1(f(B)) ⊆ cl∗(intδ(f
−1(cl(f(B))))). This implies

B ⊆ cl∗(intδ(f
−1(cl(f(B))))).

3⇒ 1. LetA be a closed set in Y. Then f−1(A) ⊆ X, by assumption f−1(A) ⊆ cl∗(intδ(f
−1(cl(f(f−1(A)))))) ⊆

cl∗(intδ(f
−1(cl(A)))) = cl∗(intδ(f

−1(A))). This implies f−1(A) is δI-semi-open in X and hence f is contra
δI-semi-continuous.

Proposition 3.18. Let f : (X, τ, I) → (Y, σ) and g : (Y, σ,J ) → (Z, µ). Then the following properties
are hold:

1. If f is contra δI-semi-continuous and g is continuous, then g ◦ f is contra δI-semi-continuous.

2. If f is contra δI-semi-continuous and g is contra continuous, then g ◦ f is δI-semi-continuous.

3. If f is δI-semi-continuous and g is contra continuous, then g ◦ f is contra δI-semi-continuous.
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Proof.1 Let V be any closed set in Z. Since g is continuous, g−1(V ) is closed in Y. Since f is contra
δI-semi-continuous, f−1(g−1(V )) = (g ◦ f)−1(V ) is δI-semi-open in X. Therefore g ◦ f is contra δI-semi-
continuous.
2. Let V be any closed set in Z. Since g is contra continuous, g−1(V ) is open in Y. Since f is contra δI-
semi-continuous, f−1(g−1(V )) = (g ◦ f)−1(V ) is δI-semi-closed in X. Therefore g ◦ f is δI-semi-continuous.
3. Let V be any closed set in Z. Since g is contra continuous, g−1(V ) is open in Y. Since f is δI-semi-
continuous, f−1(g−1(V )) = (g ◦f)−1(V ) is δI-semi-open in X. Therefore g ◦ f is contra δI-semi-continuous.

Definition 3.19. A function f : (X, τ, I)→ (Y, σ,J ) is said to be contra δI-semi-irresolute if f−1(V ) is
δI-semi-closed in (X, τ, I) for every δI-semi-open set V of (Y, σ,J ).

Remark 3.20. The concept of contra δI-semi-irresolute and δI-semi-irresolute functions are independent
of each other.

Example 3.21. Let X={a, b, c, d} with topology τ={∅, {d}, {a, c}, {a, c, d}, X} and an ideal I={∅, {a}, {d}, {a, d}}
and let Y={p, q, r, s} with topology σ={∅, {p}, {q, s}, {p, q, s}, Y } and an ideal J={∅, {a}}. Let f :
(X, τ, I) → (Y, σ,J ) be a function defined as f(a) = q, f(b) = r, f(c) = s and f(d) = p. Then f is
δI-semi-irresolute but not contra δI-semi-irresolute.

Example 3.22. Let X= Y = {a, b, c, d} with topologies τ={∅, {a}, {c}, {a, c},
X} and σ={∅, {p}, {q, s}, {p, q, s}, Y } and ideals I = {∅, {a}} and J = {∅, {a}} respectively. Let f :
(X, τ, I) → (Y, σ,J ) be an identity function. Then f is contra δI-semi-irresolute but not δI-semi-
irresolute.

Proposition 3.23. Let f : (X, τ, I) → (Y, σ) and g : (Y, σ,J ) → (Z, µ). Then the following properties
are hold:

1. g ◦ f is contra δI-semi-irresolute if g is δI-semi-irresolute and f is contra δI-semi-irresolute.

2. g ◦ f is contra δI-semi-irresolute if g is contra δI-semi-irresolute f is δI-semi-irresolute.

Proof.1 Let V be a δI-semi-open subset of Z. Then V c is δI-semi-closed subset of Z. Since g is δI-semi-
irresolute, we have g−1(V c) is δI-semi-closed set in Y. Also g−1(V c) = [g−1(V )]c is δI-semi-closed set in Y
which implies g−1(V ) is δI-semi-open in Y. Since f is contra δI-semi-irresolute, we have f−1(g−1(V )) =
(g ◦ f)−1(V ) is δI-semi-closed in X. Hence g ◦ f is contra δI-semi-irresolute.
2. Similar to 1.
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