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ABSTRACT.The purpose of this paper is to introduce a new concept of functions called Almost δPS- 

continuous functions. This class of functions is defined using new class of sets called δPS- open sets in 

topological spaces. Some propertiesand characterizations of this function areobtained. 

Keywords.𝛿𝑃𝑆-continuous, precontinuous, almost precontinuous functions. 

1. INTRODUCTION 

Velicko [23]was the first who introduced δ-open sets in 1968, which plays an important role in 

study of various topological spaces. Considering this many authorsdefined a new class of sets in 

topological spaces. Vidhyapriya et al [24] introduceda new concept called 𝛿𝑃𝑆-open sets in topological 

spaces. In this paper almost 𝛿𝑃𝑆-continuous functions isdefined by which various properties are obtained. 

2. PRELIMINARIES 

In a topological space X mean a topological space without anyseparation axiom. We recall the 

following definitions, notations and terminology.  

Definition 2.1.A subset A of X is said to be  

a) preopen[12] ifA⊆IntClA 

b) semi-open [10] ifA⊆ClIntA 

c) α-open [15] if A⊆IntClIntA 

d) β-open [1] if A⊆ClIntClA 

e) regular open [22]ifA=IntClA 

f) regular semi-open[5] if A = s IntsClA 

g) δ-preopen [20] if A ⊆  Int(δCl(A)) 

 The complement of a preopen (resp. semi-open, α-open, β-open, regular openand regular semi-

open) set is said to be preclosed(resp. semi-closed, α-closed, β-closed,regular closed, δ-

preclosed and regular semi-open).  

  The family of all preopen (resp. semi-open, α-open, regular open, regular semi-open, δ-

preopen and regular closed) subsets of a topological space X is 

denotedbyPO(X)(resp.SO(X),αO(X),RO(X),RSO(X), δPO(X)andRC(X)). 
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 The closure (resp. interior) of a subset A of X is denoted by Cl A (resp. Int A). 

Definition 2.2:Afunction𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is said to be  

a) precontinuous[12](resp., δ-precontinuous)if the inverse image of each open subset ofY is preopen 

(resp., δ-preopen) in X. 

b) super continuous [13] if the inverse image of each open subset of Y is δ-open in X.  

 A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is said to be almost precontinuous[14](resp. almost continuous in the sense 

of Singal and Singal[21]) if the inverse image of each regular open subset of Y is preopen (resp., 

opensets) in X.  

 A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is said to be δ-continuous [16](resp., almost strongly θ-continuous [18]) if 

for each x ∈ X and each open set V of Y containing f (x), there exists an open set U of X containing x 

such that f (IntClU) ⊆IntClV (resp., f(ClU) ⊆sClV).  

Definition 2.3.A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is said to be irresolute [7] if the inverse imageof each semi-open 

subset of Y is semi-open in X.  

Definition 2.4. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is said to be weakly quasi- continuous[8](resp.S-

continuous[26])ifforevery𝐹 ∈ 𝑅𝐶(𝑌), 𝑓−1(𝐹) ∈ 𝑆𝑂(𝑋) (resp 𝑓−1(𝐹)is the union of regular closed sets of X).  

Definition2.5[24].A δ- preopen subset A of a space X is called a 𝛿𝑃𝑆-open set if for each x ϵ A, there exists a 

semi-closed set F such that x ϵ F⊆ A. 

Definition2.6[23]. AsubsetAofaspaceXiscalledδ-open(resp.,θ-open)ifforeachx∈A, thereexistsanopensetG 

suchthat𝑥 ∈ 𝐺 ⊆ 𝐼𝑛𝑡𝐶𝑙(𝐺) ⊆ 𝐴(resp𝑥 ∈ 𝐺 ⊆ 𝐶𝑙𝐺 ⊆ 𝐴). 

 The intersection of all 𝛿𝑃𝑆-closed (resp. preclosed, semi-closed, α-closed, δ- 

preclosed and δ-closed) sets of X containing A is called the 𝛿𝑃𝑆-closure (resp. preclosure, semi-closure, α-

closure, δ-preclosure and δ-closure) of A and is denoted by 𝛿𝑃𝑆Cl A (resp. pCl A, sCl A, αCl A,δpcl(A) and Clδ 

A).  

 The union of all 𝛿𝑃𝑆-open (resp. preopen, semi-open, α-open, δ-preopen and δ-open) sets of X 

contained in A is called the 𝛿𝑃𝑆-interior (resp. preinterior, semi-interior, α-interior, δ-preinterior and δ-interior) 

of A and is denoted by 𝛿𝑃𝑆Int A (resp. p Int A, s Int A, αInt A,δpInt(A) and Intδ A). 

Proposition 2.7[24].A subset A of a space X is 𝛿𝑃𝑆-open if and only if A is a δ-preopen set and A is a union of 

semi-closed sets. 

Definition 2.8. A space X is s-regular[3](resp., semi-regular[19]) if for each𝑥 ∈ 𝑋 and each 

opensetGcontainingx,thereexistsasemi-open(resp.,regularopen)setHsuchthat𝑥 ∈ 𝐻 ⊆ 𝑠𝑐𝑙𝐻 ⊆ 𝐺 (resp., 𝑥 ∈ 𝐻 ⊆

𝐺). 

Theorem 2.9[21]. For a mapping 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎), the following statements are equivalent: 

a) 𝑓 is almost continuous at 𝑥 ∈ 𝑋 

b) For each regularly-open neighborhood𝑀 of 𝑓(𝑥), there is a neighborhood 𝑁 of 𝑥 such that 𝑓(𝑁) ⊆ 𝑀. 

c) For each net {𝑥𝜆}𝜆∈𝐷 converging to 𝑥, the net {𝑓(𝑥𝜆)}𝜆∈𝐷 is eventually in every regular open set 

containing 𝑓(𝑥). 

Definition 2.10. A space X is said to be: 

a) Hyperconnected [6] if every non-empty open subset of X is dense.  
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b) Locally indiscrete [6] if every open subset of X isclosed. 

c) Semi-T1[11] if to each pair of distinct points x, y of X, there exists a pair of semi-open sets, one 

containing x but not y and the other containing y butnot x. 

Proposition 2.11. The following statements are true: 

a) AspaceXissemi-T1ifandonlyifforanypointx∈X,thesingletonset{x}issemiclosed[11]. 

b) If a space X is semi-T1, then𝛿𝑃𝑆𝑂(𝑋) = 𝛿𝑃𝑂(𝑋)[24]. 

c) Ifatopologicalspace(X,τ) is locally indiscrete space, δPSO(X)= τ[24]. 

d) Ifatopologicalspace(X, τ) is s-regular, then𝜏 ⊆ 𝛿𝑃𝑆𝑂(𝑋)[24]. 

Lemma 2.12[6]. a). If R ∈ RO(X) and P ∈ PO(X), then R ∩P ∈ RO(P). 

b). Let 𝑌 be a dense subspace of 𝑋. If 𝑂 is regular open in 𝑌, then 𝑂 = 𝑌 ∩ 𝑖𝑛𝑡(𝑐𝑙(𝑂)). 

Proposition2.13[24]. The following properties are true: 

a) Let (Y, τY) be a subspace of a space (X, τ). If 𝐴 ∈ 𝛿𝑃𝑆𝑂(𝑋, 𝜏) and 𝑌 ∈ 𝑅𝑂(𝑋, 𝜏) then𝐴 ∈ 𝛿𝑃𝑆𝑂(𝑌, 𝜏𝑌). 

b) If either𝐵 ∈ 𝑅𝑆𝑂(𝑋) or B is an 𝛿-open subspace of a space X and𝐴 ∈ 𝛿𝑃𝑆𝑂(𝑋), then𝐴 ∩ 𝐵𝛿𝑃𝑆𝑂(𝐵). 

c) Let (Y,τY) be a subspace of a space (X,τ). If A ϵ δPSO(Y, τY) and Y ϵ RO(X, τ), then A ϵ δPSO(X, τ). 

d) Let A and B be any subsets of a space X. If A ϵ δPSO(X) and B ϵ RSO(X), then A ∩ B ϵ δPSO(B). 

Lemma 2.14. The following statements are true: 

a) LetAbeasubsetofaspace(X,τ).ThenA∈PO(X,τ)ifandonlyif sClA=IntClA[7]. 

b) AsubsetAofaspace(X,τ)isβ-openifandonlyifClAisregularclosed.[4]. 

Lemma 2.15. Let A be a subset of a topological space (X , τ), then the following  

statement are true: 

a) For each 𝐴 ∈ 𝑆𝑂(𝑋), 𝐶𝑙𝛿𝐴 = 𝐶𝑙(𝐴) = 𝛿𝑃𝑆𝐶𝑙(𝐴) = 𝑝𝐶𝑙(𝐴) = 𝛼𝐶𝑙(𝐴)[25]. 

b) If𝐴 ∈ 𝛽𝑂(𝑋), then 𝛼𝐶𝑙(𝐴) = 𝐶𝑙(𝐴)[2]. 

Definition 2.16[24].A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is called 𝛿𝑃𝑆- continuous at a point  𝑥 ∈ X  if for each 𝑥 ∈ X 

and each open set 𝑉 of 𝑌 containing 𝑓(𝑥), there exists a 𝛿𝑃𝑆-open set 𝑈 of 𝑋 containing 𝑥 such that𝑓(𝑈) ⊆ 𝑉. If 

𝑓 is δPS-continuous at every point of 𝑋, then it is called𝛿𝑃𝑆-continuous. Equivalently,a function 𝑓: (𝑋, 𝜏) →

(𝑌, 𝜎)is 𝛿𝑃𝑆-continuous if and only if 𝑓−1(𝑉)is 𝛿𝑃𝑆-open set in 𝑋 for each open set V in Y. 

Lemma 2.17[14].The following results can be proved easily: 

a) If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is almost precontinuous and 𝑌 is semi-regular, then 𝑓is precontinuous. 

b) If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is almost continuous and 𝑌 is semi-regular, then 𝑓 iscontinuous. 

c) A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is is almost precontinuous if and only if 𝑓−1(𝑉) is preopen set in X , for 

every δ-open set V in Y . 

Theorem 2.18 [24].If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is a continuous and open function and V is a 𝛿𝑃𝑆-open set of 𝑌, 

then𝑓−1(𝑉) is a 𝛿𝑃𝑆-open set of𝑋. 

Theorem 2.19 [7]. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is preopen if and only if𝑓−1(𝐶𝑙𝑉) ⊆ 𝐶𝑙(𝑓−1(𝑉)),for each 

semi-open set 𝑉 of 𝑌. 
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Definition 2.20[9]. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is called almost 𝑃𝑆-continuous at a point x ∈ X if for each 

open set V of Y containing f (x), there exists a 𝑃𝑆-open set U of X containing x such that f (U) ⊆IntClV. If f is 

almost 𝑃𝑆-continuous at every point of X, then it is called almost 𝑃𝑆-continuous. 

Lemma 2.21[21]. Let A be a subset of a topological space (X, τ). Then δ-sCl(δ-Int(A)) = Int(Cl(δ-Int(A)), or 

equivalently, δ-sCl(U) = Int(Cl(U)) for each δ-open set U of X. 

Proposition 2.22[9]: If a function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is 𝛿-continuous, then 𝑓 isalmost 𝑃𝑆-continuous. 

 

 

3.Almost δPs-Continuous Functions 

Definition 3.1: A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is called almost 𝛿𝑃𝑆-continuous function at a point 𝑥 ∈ X if for 

each open set V of Y containing 𝑓(𝑥), there exists a 𝛿𝑃𝑆-open set 𝑈 of X containing x such that f(U) ⊆

Int(Cl(V)). If f is almost 𝛿𝑃𝑆-continuous at every point of X, then it is called almost 𝛿𝑃𝑆-continuous. 

Note 3.2. For an open set 𝛿𝐶𝑙(𝑉) = 𝐶𝑙(𝑉) [23]. Hence in the definition 𝑓(𝑈) ⊆ 𝑖𝑛𝑡𝑐𝑙(𝑉).  

Proposition 3.3: The following results supervene from their definitions directly: 

a) Every 𝛿𝑃𝑆-continuous functionsis almost 𝛿𝑃𝑆-continuous. 

b) Every almost 𝑃𝑆-continuous function is almost 𝛿𝑃𝑆-continuous. 

Proof: (a) Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)  be 𝛿𝑃𝑆-continuous. Then for 𝑥 ∈ 𝑋 and 𝑉 ∈ 𝜎 containing 𝑓(𝑥) there exists a 

𝛿𝑃𝑆-open set 𝑈 in 𝑋 containing 𝑥 such that 𝑓(𝑈) ⊆ 𝑉   (1) 

Then 𝑉 ⊆ 𝛿𝑐𝑙(𝑉). Since 𝑉 is open, 𝑉 = 𝑖𝑛𝑡 𝑉 ⊆ 𝑖𝑛𝑡 𝛿 𝑐𝑙(𝑉)   (2) 

∴ From (1) & (2) 𝑉 ⊆ 𝑖𝑛𝑡(𝛿𝐶𝑙(𝑉)) 

Hence from definition 3.1, 𝑓 is almost 𝛿𝑃𝑆-continuous function. 

(b). Every almost 𝑃𝑆-continuous function is almost 𝛿𝑃𝑆-continuous function 

Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be almost 𝑃𝑆-continuous function. Then for 𝑥 ∈ 𝑋 and 𝑉 ∈ 𝜎 containing 𝑓(𝑥) there exists 

a 𝛿𝑃𝑆-open set 𝑈 in 𝑋 containing 𝑥 such that 𝑓(𝑈)𝑖𝑛𝑡𝑐𝑙(𝑉). Since every 𝑃𝑆-open set is 𝛿𝑃𝑆-open,from 

Definition 3.1, 𝑓 is almost 𝛿𝑃𝑆-continuous. 

Proposition 3.4: If a function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is δ-continuous, then 𝑓 is almost 𝛿𝑃𝑆-continuous. 

Proof.From Proposition 2.22, Every δ-continuous is almost 𝛿𝑃𝑆-continuous. From Proposition 3.3(b) every 

almost 𝛿𝑃𝑆-continuous functions is almost 𝛿𝑃𝑆-continuous. Therefore, every 𝛿-continuous function is almost 

𝛿𝑃𝑆-continuous functions. 

 

Almost 𝑃𝑆-continuous           𝑃𝑆-continuous        𝛿𝑃𝑆-continuous        Almost 𝛿𝑃𝑆-continuous 

 

 

 

Almost precontinuousPre-Continuous 𝛿-precontinuous 

 

And we have 
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𝑃𝑆 -Continuous                                      Almost 𝑃𝑆-continuous 

 

 

𝛿𝑃𝑆-Continuous                                    Almost 𝛿𝑃𝑆-continuous 

 

The following examples substantiate the converse of Proposition 3.3(a) is generally not true. 

Example 3.5.Let 𝑋 = {𝑎, 𝑏, 𝑐} with the two topologies𝜏 = {𝑋, ∅, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑐}} 

and 𝜎 = {𝑋, ∅, {𝑎}, {𝑎, 𝑏}}; then the 𝛿𝑃𝑆𝑂(𝑋) = {𝑋, ∅, {𝑏}, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}} with respect to 𝜏. Let𝑓: (𝑋, 𝜏) →

(𝑋, 𝜎)betheidentityfunction, with 𝑓(𝑎) = 𝑎, 𝑓(𝑏) = 𝑏 and 𝑓(𝑐) = 𝑐, for 𝑎 ∈ 𝑉 = {𝑎} or {𝑎, 𝑏}, then there exists 

𝑈 = {𝑎, 𝑐} such that 𝑓(𝑈) = {𝑎, 𝑐} = 𝑖𝑛𝑡(𝑐𝑙({𝑎, 𝑐}) = 𝑋.Then 𝑓 is almost 𝛿𝑃𝑆-continuous, but it is not 𝛿𝑃𝑆-

continuous, because 𝑓(𝑈) = {𝑎, 𝑐} = 𝑖𝑛𝑡𝑐𝑙 ⊆ 𝑋 but 𝑓(𝑈) ⊈ {𝑎} or {𝑎, 𝑏}. 

 The following example substantiate the Proposition 3.3(b) is not true in general. 

Example3.6.Let𝑋 = {𝑎, 𝑏, 𝑐, 𝑑} withthetwotopologies𝜏 = {X, ∅, {𝑎, b}, {𝑎, b, c}, {𝑎, b, d} andσ =

{X, ∅, {𝑎}, {c}, {𝑎, b}, {𝑎, c}, {𝑎, b, c}, {𝑎, c, d}}.Let𝑓: (𝑋, 𝜏) → (𝑋, 𝜎) be defined by 𝑓(𝑎) = 𝑓(𝑏) = 𝑓(𝑐) = 𝑐 and 

𝑓(𝑑) = 𝑑, there exists 𝛿𝑃𝑆𝑂(𝑋, 𝜏) = {𝑐} ⊆ 𝑥 such that 𝑓(𝑈) ⊆ 𝑖𝑛𝑡𝑐𝑙(𝑉).but there exists no𝑃𝑆𝑂(𝑋, 𝜏) in 𝜏, such 

that 𝑓(𝑈) ⊆ 𝑖𝑛𝑡𝑐𝑙(𝑉). Hence𝑓 is almost 𝛿𝑃𝑆-continuous but not almost 𝑃𝑆-continuous. 

 The following example shows that almost 𝛿𝑃𝑆-continuous but not 𝛿-continuous. 

Example3.7. Let𝑋 = {𝑎, 𝑏, 𝑐, 𝑑}withthetwotopologies 𝜏 = {X, ∅, {𝑎}, {𝑏}, {𝑎, 𝑏}}andσ =

{X, ∅, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑏, c}, {𝑎, 𝑏, d}};Let𝑓: (𝑋, 𝜏) → (𝑋, 𝜎)beidentityfunctions for 𝑏 ∈ 𝑋 and 𝑉 = {𝑏} ∈ 𝜎 there 

exists 𝑈 = {𝑎, 𝑏} containing b which is 𝛿𝑃𝑆-open in 𝑋 such that 𝑓(𝑈) = {𝑎, 𝑏} ⊆ 𝑖𝑛𝑡(𝛿𝐶𝑙(𝑉) = 𝑖𝑛𝑡(𝑋) = 𝑋. 

Here 𝑓 is almost 𝛿𝑃𝑆-continuous but not 𝛿-continuous.Since 𝑓(𝑖𝑛𝑡(𝐶𝑙(𝑈)) = 𝑓(𝑖𝑛𝑡(𝐶𝑙{𝑎, 𝑏}) = 𝑓(𝑋) = 𝑌 ⊈

𝑖𝑛𝑡(𝐶𝑙(𝑉)) = 𝑖𝑛𝑡(𝐶𝑙({𝑏}) = 𝑖𝑛𝑡{𝑏, 𝑐, 𝑑} = ∅. 

Lemma 3.8. Let 𝐴 be subset of a space (𝑋, 𝜏). Then 𝐴 ∈ 𝛿𝑃𝑂(𝑋, 𝜏) if and only if 𝛿 𝑠𝐶𝑙(𝐴) = 𝑖𝑛𝑡(𝛿𝐶𝑙(𝐴)). 

Proof: Let 𝐴 ∈ 𝛿𝑃𝑂(𝑋, 𝜏). Then 

𝐴 ⊆ 𝑖𝑛𝑡(𝛿𝐶𝑙(𝐴) ⇒ 𝛿𝑠𝐶𝑙(𝐴) ⊆ 𝛿𝑠𝐶𝑙(𝑖𝑛𝑡(𝛿𝐶𝑙(𝐴))                            (*) 

Claim: 𝑖𝑛𝑡(𝛿𝐶𝑙(𝐴)) ∈ 𝛿𝑆𝑐(𝑋, 𝜏) 

Proof: Let 𝐵 = 𝑖𝑛𝑡(𝛿𝐶𝑙(𝐴)) 

Then 𝑖𝑛𝑡(𝐵) = 𝑖𝑛𝑡(𝑖𝑛𝑡(𝛿𝐶𝑙(𝐴)) = 𝑖𝑛𝑡(𝛿𝐶𝑙(𝐴) = 𝐵   (1) 

Now 𝐵 ⊆ 𝛿𝐶𝑙(𝐵) = 𝛿𝐶𝑙(𝑖𝑛𝑡(𝐵))   [from (1)]. Hence 𝐵 ∈ 𝛿𝐶𝑐(𝑋, 𝜏). Hence the claim 

Substitute claim in (*), we get,  𝛿𝑠𝐶𝑙(𝐴) ⊆ 𝛿𝑠𝐶𝑙(𝑖𝑛𝑡(𝛿𝐶𝑙(𝐴)) = 𝑖𝑛𝑡(𝛿𝐶𝑙(𝐴)) 

In general, 𝑖𝑛𝑡(𝛿𝐶𝑙(𝐴) = 𝛿𝑠𝐶𝑙(𝐴). Hence 𝛿(𝑠𝐶𝑙(𝐴)) = 𝑖𝑛𝑡(𝛿𝐶𝑙(𝐴)). 

Proposition 3.9. For a function : (𝑋, 𝜏) → (𝑌, 𝜎) , the following statements are equivalent: 

a) 𝑓 is almost 𝛿𝑃𝑆-continuous. 

b) For each𝑥 ∈ 𝑋 and each 𝛿-open set 𝑉 of 𝑌 containing𝑓(𝑥)there exists a 𝛿𝑃𝑆-open set 𝑈 in 𝑋 

containingxsuchthat𝑓(𝑈) ⊆ 𝛿𝑠𝐶𝑙𝑉. 
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c) Foreach𝑥 ∈ 𝑋andeachregularopensetVofYcontaining𝑓(𝑥),thereexists a 𝛿𝑃𝑆-openset 𝑈 in 𝑋 

containing 𝑥 such that𝑓(𝑈) ⊆ 𝑉. 

d) For each 𝑥 ∈ 𝑋 and each 𝛿-open set V of Y containing 𝑓(𝑥), there exists a𝛿𝑃𝑆-open set U in X 

containing x such that𝑓(𝑈) ⊆ 𝑉. 

Proof. (a) ⇒ (b). Let 𝑥 ∈ 𝑋and let V be any 𝛿-open set of Y containing f (x). By (a), there exists a 𝛿𝑃𝑆-open set 

U of X containing x such that f (U) ⊆Int𝛿Cl V. Since V is 𝛿-open, hence V is 𝛿 -preopen set. Therefore, by 

Lemma 3.8, f (U) ⊆𝛿sClV. 

(𝑏) ⇒ (𝑐). Let𝑥 ∈ 𝑋 and let V be any regular open set of Y containing f (x). Then V is a𝛿-open set of Y 

containing f (x). By (b), there exists a 𝛿𝑃𝑆-open set U in X containing x such that𝑓(𝑈) ⊆

𝛿𝑠𝐶𝑙(𝑉).SinceVisregularopenandhenceis𝛿-openset.Therefore,byLemma 2.21,𝑓(𝑈) ⊆ 𝐼𝑛𝑡(𝐶𝑙(𝑉)). 

SinceVisregularopen,then𝑓(𝑈) ⊆ 𝑉. 

(𝑐) ⇒ (𝑑). Let 𝑥 ∈ 𝑋 and let V be any δ-open set of 𝑌containing 𝑓(𝑥). Then for each𝑓(𝑥) ∈ 𝑉, there exists an 

open set G containing 𝑓(𝑥)such that𝐺 ⊆ 𝐼𝑛𝑡(𝐶𝑙(𝐺)) ⊆ 𝑉. Since𝐼𝑛𝑡(𝐶𝑙(𝐺)) is a regular open set of Y 

containing f (x), by (c), there exists a 𝛿𝑃𝑆-open set U in X containing x such that𝑓(𝑈) ⊆ 𝐼𝑛𝑡(𝐶𝑙(𝐺)) ⊆ 𝑉. 

(𝑑) ⇒ (𝑎). Let 𝑥 ∈ 𝑋and let V be any open set of 𝑌 containing 𝑓(𝑥). Then𝐼𝑛𝑡(𝐶𝑙(𝑉)) is δ-open set of Y 

containing f (x). By (d), there exists a 𝛿𝑃𝑆-open set U in X containing x such that𝑓(𝑈) ⊆

𝐼𝑛𝑡(𝐶𝑙(𝑉)).But𝑖𝑛𝑡𝐶𝑙(𝑉) ⊆ 𝑖𝑛𝑡𝛿𝐶𝑙(𝑉)   [∵ 𝐶𝑙(𝑉) ⊆ 𝛿𝐶𝑙(𝑉)and𝐴 ⊆ 𝐵 ⇒ 𝑖𝑛𝑡(𝐴) ⊆ 𝑖𝑛𝑡(𝐵)]. Therefore, f is 

almost𝛿𝑃𝑆-continuous.  

Proposition3.10. For a function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎), the following statements are equivalent: 

a) 𝑓 is almost 𝛿𝑃𝑆-continuous. 

b) 𝑓−1(𝐼𝑛𝑡(𝐶𝑙(𝑉)) is 𝛿𝑃𝑆-open in 𝑋, for each open set 𝑉 in 𝑌. 

c) 𝑓−1(𝐶𝑙(𝐼𝑛𝑡(𝐹)) is 𝛿𝑃𝑆-closed set in 𝑋, for each closed set 𝐹 in 𝑌. 

d) 𝑓−1(𝐹) is 𝛿𝑃𝑆-closed set in 𝑋, for each regular closed set 𝐹 of𝑌. 

e) 𝑓−1(𝑉) is 𝛿𝑃𝑆-open set in 𝑋, for each regular open set 𝑉 of 𝑌. 

Proof. (a) ⇒ (b). Let 𝑉 be any open set in 𝑌. We have to show that𝑓−1(𝐼𝑛𝑡(𝐶𝑙(𝑉)) is a𝛿𝑃𝑆-open set in 𝑋. 

Let𝑥 ∈ 𝑓−1(𝐼𝑛𝑡(𝐶𝑙(𝑉))and 𝐼𝑛𝑡(𝐶𝑙(𝑉)) is a regular open set in 𝑌. Since 𝑓 is almost 𝛿𝑃𝑆-continuous, by 

Proposition 3.9, there exists a 𝛿𝑃𝑆-open set 𝑈 of 𝑋 containing 𝑥 such that𝑓(𝑈) ⊆ 𝐼𝑛𝑡(𝐶𝑙(𝑉)),which implies 

that𝑥 ∈ 𝑈 ⊆ 𝑓−1(𝐼𝑛𝑡(𝐶𝑙(𝑉)).  Therefore,𝑓−1(𝐼𝑛𝑡(𝐶𝑙(𝑉))is 𝛿𝑃𝑆-open set in 𝑋. 

(𝑏) ⇒ (𝑐). Let 𝐹 be any closed set of 𝑌. Then 𝑌 − 𝐹 is an open set of 𝑌. By (b),𝑓−1(𝐼𝑛𝑡(𝐶𝑙(𝑌\𝐹)) is 𝛿𝑃𝑆-open 

set in 𝑋 and𝑓−1(𝐼𝑛𝑡(𝐶𝑙(𝑌\𝐹)) = 𝑓−1(𝐼𝑛𝑡(𝑌\𝐹)) = 𝑓−1(𝑌\𝐶𝑙(𝐼𝑛𝑡(𝐹)) = 𝑋\𝑓−1(𝐶𝑙(𝐼𝑛𝑡(𝐹)) is𝛿𝑃𝑆-

opensetinXandhence𝑓−1(𝐶𝑙(𝐼𝑛𝑡(𝐹))is𝛿𝑃𝑆-closed set in𝑋. 

(𝑐) ⇒ (𝑑). Let𝐹beanyregularclosedsetof𝑌.Then𝐹isaclosedsetof𝑌.By (c),𝑓−1(𝐶𝑙(𝐼𝑛𝑡(𝐹))is 𝛿𝑃𝑆-closed set in 𝑋. 

Since 𝐹 is regular closed set, then𝑓−1(𝐶𝑙(𝐼𝑛𝑡(𝐹)) = 𝑓−1(𝐹). Therefore,𝑓−1(𝐹)is 𝛿𝑃𝑆 -closed set in 𝑋. 

(𝑑) ⇒ (𝑒). Let 𝑉 be any regular open set of 𝑌. Then𝑌\𝑉 is regular closed set of  

Y and by (d), wehave𝑓−1(𝑌\𝑉 = 𝑋\𝑓−1(𝑉) is 𝛿𝑃𝑆-closed set in 𝑋 and hence 𝑓−1(𝑉) is 𝛿𝑃𝑆-open in 𝑋. 

(𝑒) ⇒ (𝑎). Let 𝑥 ∈ 𝑋and let 𝑉 be any regular open set of 𝑌 containing 𝑓(𝑥). Then𝑥 ∈ 𝑓−1(𝑉).By (e), we 

have𝑓−1(𝑉) is a𝛿𝑃𝑆-open set in 𝑋. Therefore, we obtain𝑓(𝑓−1(𝑉)) ⊆ 𝑉. Hence by Proposition 3.9, 𝑓 is almost 
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𝛿𝑃𝑆-continuous.  

The following result can be proved easily from the above Proposition. 

Proposition 3.11. If𝑓 is almost 𝛿𝑃𝑆-continuous then 𝑓−1(𝐹) is a 𝛿𝑃𝑆-closed set for each clopen set F. 

Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be almost 𝛿𝑃𝑆-continuous and 𝐹 be a clopen set. By (c) of Proposition 

3.10,𝑓−1(𝐶𝑙(𝑖𝑛𝑡(𝐹))) is 𝛿𝑃𝑆-closed. Since every clopen set is open, 𝑖𝑛𝑡(𝐹) = 𝐹 and since 𝐹 is closed we get 

𝐶𝑙(𝑖𝑛𝑡(𝐹)) = 𝐶𝑙(𝐹) = 𝐹. 

∴ 𝑓−1(𝐹) is a 𝛿𝑃𝑆-closed in 𝑋. 

Proposition3.12. For a function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎), the following statements are equivalent: 

a) f is almost 𝛿𝑃𝑆-continuous. 

b) 𝑓(𝛿𝑃𝑆𝐶𝑙(𝐴)) ⊆ 𝐶𝑙𝛿𝑓(𝐴), for each 𝐴 ⊆ 𝑋. 

c) 𝛿𝑃𝑆𝐶𝑙𝑓−1(𝐵) ⊆ 𝑓−1𝐶𝑙𝛿(𝐵), for each 𝐵 ⊆ 𝑌. 

d) 𝑓−1(𝐹) is 𝛿𝑃𝑆-closed in 𝑋, for each 𝛿-closed set 𝐹 of 𝑌. 

e) 𝑓−1(𝑉) is 𝛿𝑃𝑆-open set in 𝑋, each 𝛿-open set 𝑉 of 𝑌. 

f) 𝑓−1(𝐼𝑛𝑡𝛿𝐵) ⊆ 𝛿𝑃𝑆𝑓−1(𝐵), for each 𝐵 ⊆ 𝑌. 

Proof. (a) ⇒ (b). Let 𝐴 be a subset of 𝑋. Since𝐶𝑙𝛿𝑓(𝐴) is 𝛿-closed set in 𝛿𝑃𝑆, so𝐶𝑙𝛿𝑓(𝐴) =∩ {𝐹𝛼: 𝐹𝛼 ∈

𝑅𝐶(𝑌), 𝛼 ∈ Λ},  where Λ is an index set.Then𝐴 ⊆ 𝑓−1(𝐶𝑙𝛿𝑓(𝐴)) = 𝑓−1(∩ {𝐹𝛼: 𝛼 ∈ Λ}) =∩ {𝑓−1(𝐹𝛼): 𝛼 ∈

Λ}.By (a) and Proposition 3.10,𝑓−1(𝐶𝑙𝛿𝑓(𝐴))is𝛿𝑃𝑆-closed setof X.Hence𝛿𝑃𝑆𝐶𝑙(𝐴) ⊆ 𝑓−1(𝐶𝑙𝛿𝑓(𝐴)).Therefore, 

we obtain that f (𝑓(𝛿𝑃𝑆𝐶𝑙(𝐴) ⊆ (𝐶𝑙𝛿𝑓(𝐴)). 

(b)⇒(c).LetBbeanysubsetofY.Thenf−1(B)isasubsetofX.By(b),wehave𝑓(𝛿𝑃𝑆𝐶𝑙𝑓−1(𝐵)) ⊆ 𝐶𝑙𝛿(𝑓(𝑓−1(𝐵)) =

𝐶𝑙𝛿(𝐵). Hence 𝛿𝑃𝑆𝐶𝑙(𝑓−1(𝐵) ⊆ 𝑓−1(𝐶𝑙𝛿(𝐵)). 

(c)⇒ (d). Let F be any δ-closed set of Y. By (c), we have 𝛿𝑃𝑆(𝐶𝑙𝑓−1(𝐹)) ⊆ 𝑓−1(𝐶𝑙𝛿𝐹) =

𝑓−1(𝐹)and hence𝑓−1(𝐹) is 𝛿𝑃𝑆-closed set in X. 

(d)⇒(e). Let V be any δ-open set of Y. Then Y \ Vis δ-closed set of Y and by (d), we have 

f −1(Y \ V) = X \ f −1(V) is 𝛿𝑃𝑆-closed set in X. Hence f −1(V) is 𝛿𝑃𝑆 -open set in X. 

(e)⇒ (f). For each subset B of Y. We have IntδB⊆ B. Then f −1(IntδB) ⊆ f −1(B). By(e), 

f −1(IntδB) is 𝛿𝑃𝑆-open set in X. Then f −1(IntδB) ⊆𝛿𝑃𝑆Int f −1(B). 

(f)⇒ (a).Let x ∈ X and V be any regular open set of𝑌 containing x.  Hence Vis δ-open. 

∴ 𝛿𝑖𝑛𝑡(𝑉) = 𝑉                                       (1) 

Moreover, by (𝑓), 𝑓−1(𝛿𝑖𝑛𝑡(𝑉)) ⊆ 𝛿𝑃𝑆𝑖𝑛𝑡(𝑓−1(𝑉)   (2) 

From (1) & (2), 𝑓−1(𝑉) ⊆ 𝛿𝑃𝑆𝑖𝑛𝑡𝑓−1(𝑉) 

∴ 𝑓−1(𝑉) is a𝛿𝑃𝑆-open set in 𝑋 which contains 𝑥 and we know 𝑓(𝑓−1(𝑉)) ⊆ 𝑉. Hence by Proposition 3.9 (c) 

we get 𝑓 is almost 𝛿𝑃𝑆-continuous. 

Proposition3.13. For a function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎), the following statements are equivalent: 

a) f is almost 𝛿𝑃𝑆-continuous. 

b) 𝛿𝑃𝑆Clf−1(V)⊆f −1(ClV),foreachβ-opensetV o f  Y .  

c) f −1(IntF)⊆𝛿𝑃𝑆Intf−1(F),foreachβ-closedset F of  Y. 

d) f−1(IntF)⊆𝛿𝑃𝑆Intf−1(F),foreachsemi-closedsetFofY. 
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e) 𝛿𝑃𝑆Clf−1(V)⊆f −1(ClV),foreachsemi-opensetVofY. 

Proof. (a) ⇒ (b). Let V be any β-open set of Y. It follows from Lemma 2.14(b) that Cl V is regular closed set 

in Y. Since f is almost𝛿𝑃𝑆 -continuous, by Proposition3.10(d), f −1(Cl V) is𝛿𝑃𝑆-closed set in X. Therefore, we 

obtain 𝑓−1(𝐶𝑙(𝑉) = 𝛿𝑃𝑆𝑓−1𝐶𝑙(𝑉)       (1) 

Now𝑉 ⊆ 𝐶𝑙(𝑉) ⇒ 𝑓−1(𝑉) ⊆ 𝑓−1(𝐶𝑙(𝑉)) ⇒ 𝛿𝑃𝑆𝐶𝑙(𝑓−1(𝑉)) = 𝛿𝑃𝑆𝐶𝑙(𝑓−1𝐶𝑙(𝑉)) = 𝑓−1𝐶𝑙(𝑉)) [ From (1)] 

Hence 𝛿𝑃𝑆𝐶𝑙(𝑓−1(𝑉) ⊆ 𝑓−1(𝐶𝑙(𝑉)). 

(b)⇒ (c). Let F be any β-closed set of Y. Then Y \ F is β-open set of Y and by (b), we have 𝛿𝑃𝑆Cl f −1(Y \ F) ⊆ 

f −1(Cl (Y \ F)) and 𝛿𝑃𝑆Cl (X \ f −1(F)) ⊆ f −1(Y \ Int F) and hence, X \ 

𝛿𝑃𝑆Intf−1(F)⊆X\f−1(IntF).Therefore,f−1(IntF)⊆𝛿𝑃𝑆Intf−1(F). 

(c)⇒ (d). Obvious since every semi-closed set isβ-closed. 

(d)⇒ (e). Let V be any semi-open set of Y. Then Y \ V is semi-closed set in Y and by (d), 

wehavef−1(Int(Y\V))⊆𝛿𝑃𝑆Intf−1(Y\V)andf−1(Y\ClV)⊆𝛿𝑃𝑆Int(X\f −1(V))andhence, 

X\f−1(ClV)⊆X\𝛿𝑃𝑆Clf−1(V).Therefore,𝛿𝑃𝑆Clf−1(V)⊆f−1(ClV). 

(e)⇒ (a). Let F be any regular closed set of Y. Then F is a semi-open set of Y. By (e), we have 𝛿𝑃𝑆Clf−1(F)⊆ 

f−1(ClF)=f−1(F)[Since every regular closed set is closed].Thisshowsthatf−1(F)isa𝛿𝑃𝑆-closedsetinX.Therefore,by 

Proposition3.10(d), f is almost𝛿𝑃𝑆-continuous. 

Corollary 3.14. For a function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎), the following statements are equivalent: 

a) f is almost 𝛿𝑃𝑆-continuous. 

b) 𝛿𝑃𝑆𝐶𝑙(𝑓−1(𝑉) ⊆ 𝑓−1(𝛼𝐶𝑙(𝑉)),foreachβ-opensetVofY. 

c) 𝛿𝑃𝑆𝐶𝑙(𝑓−1(𝑉) ⊆ 𝑓−1(𝐶𝑙𝛿(𝑉)), for each β-open set V of Y. 

d) 𝛿𝑃𝑆𝐶𝑙(𝑓−1(𝑉) ⊆ 𝑓−1(𝛿𝑃𝑆𝐶𝑙(𝑉)),foreachsemi-opensetVofY. 

e) 𝛿𝑃𝑆𝐶𝑙(𝑓−1(𝑉) ⊆ 𝑓−1(𝑝𝐶𝑙(𝑉)),foreachsemi-opensetVofY. 

Proof. (a) ⇒ (b). Follows from Proposition 3.13and Lemma 2.15[b] 

(b)⇒ (c). Follows from the fact that αCl V ⊆ClδV. 

(c)⇒ (d) and (d) ⇒ (e). Follows from Proposition 3.13and Lemma2.15[a]. 

(e) ⇒ (f). Follows from Proposition 3.13and Lemma 2.15[a]. 

The following result also can be concluded directly. 

Corollary 3.15. For a function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎), the following statements are equivalent: 

a) f is almost 𝛿𝑃𝑆-continuous. 

b) f −1(αIntF)⊆𝛿𝑃𝑆Intf−1(F),foreachβ-closedsetFofY. 

c) f−1(IntδF)⊆𝛿𝑃𝑆Intf−1(F),foreachβ-closedsetFofY. 

d) f−1(𝛿𝑃𝑆IntF)⊆𝛿𝑃𝑆Intf−1(F),foreachsemi-closedsetFofY. 

e) f−1(pIntF)⊆𝛿𝑃𝑆Intf−1(F),foreachsemi-closedsetFofY. 

Proposition3.16. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is almost 𝛿𝑃𝑆-continuous if and only if  

f −1(V) ⊆𝛿𝑃𝑆Int f −1(IntCl V)for each preopen set V of Y. 

Proof. Necessity. Let V be any preopen set of Y. Then V ⊆IntCl V and IntCl V is a regular open set in Y. Since 

f is almost 𝛿𝑃𝑆-continuous, by Proposition 3.10(e), f −1(IntCl V) is 𝛿𝑃𝑆-open set in X and hence we obtain that f 

−1(V) ⊆ f −1(IntCl V)= 𝛿𝑃𝑆Intf −1(IntCl V). 
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Sufficiency. Let V be any regular open set of Y. Then V is a preopen set of Y. By hypothesis, we have f −1(V) 

⊆𝛿𝑃𝑆Int f −1(IntClV) = 𝛿𝑃𝑆Int f −1(V). Therefore, f −1(V) is 𝛿𝑃𝑆-open set in X and hence by Proposition 

3.10(e), fis almost𝛿𝑃𝑆-continuous.  

We obtain the following corollary. 

Corollary 3.17. The following statements are equivalent for a function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎): 

a) f is almost 𝛿𝑃𝑆-continuous. 

b) f−1(V)⊆𝛿𝑃𝑆Intf−1(sClV)foreachpreopensetVofY 

c) 𝛿𝑃𝑆Clf−1(ClIntF)⊆f−1(F)foreachpreclosedsetFofY. 

d) 𝛿𝑃𝑆Clf−1(sIntF)⊆f −1(F)foreachpreclosedsetFofY. 

Corollary 3.18. For a function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎), the following statements are equivalent: 

a) f is almost 𝛿𝑃𝑆-continuous. 

b) For eachneighborhoodVof f(x),x∈𝛿𝑃𝑆Intf−1(sClV). 

c) For eachneighborhoodVoff(x), x∈𝛿𝑃𝑆Intf−1(IntClV). 

Proof. Follows from Proposition3.16 andCorollary3.17.  

Proposition3.19. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be an almost 𝛿𝑃𝑆-continuous function and let V be any open 

subset of Y. If x ∈𝛿𝑃𝑆Cl f −1(V) \ f −1(V), then f (x) ∈𝛿𝑃𝑆Cl V. 

Proof. Let x ∈ X be such that x ∈𝛿𝑃𝑆Cl f −1(V) \ f −1(V) and suppose 𝑓(𝑥) ∉ 𝛿𝑃𝑆𝐶𝑙(𝑉). Then there exists a 𝛿𝑃𝑆-

open set H containing f (x) such that H ∩ V = ∅. Then Cl H ∩ V =∅ implies IntClH ∩V = ∅ and IntClH is a 

regular open set. Since f is almost 𝛿𝑃𝑆-continuous, by Proposition3.9(c), there exists a 𝛿𝑃𝑆-open set U in X 

containing x such that f (U )⊆IntClH . Therefore, f (U) ∩ V = ∅. However, since 𝑥 ∈ 𝛿𝑃𝑆𝐶𝑙(𝑓−1(𝑉)), 𝑈 ∩

𝑓−1(𝑉) ≠ ∅for every 𝛿𝑃𝑆-open set U in X containing x, so that𝑓(𝑈) ∩ 𝑉 ≠ 𝜙. We have a contradiction. It 

follows that 𝑓(𝑥) ∈ 𝛿𝑃𝑆𝐶𝑙(𝑉). 

Proposition3.20. If a function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is almost precontinuous. Then the following statements are 

equivalent: 

a) f is almost 𝛿𝑃𝑆-continuous. 

b) For each x ∈ X and each open set V of Y containing f (x), there exists a semi-closed set F in X containing 

x such that f (F) ⊆Int𝛿ClV. 

c) For each x ∈ X and each open set V of Y containing f (x), there exists a semi-closed set F in X containing 

x such that f (F) ⊆sClV. 

d) Foreachx∈XandeachregularopensetVofYcontainingf(x),thereexistsasemi-closed set F in X containing x 

such that f (F) ⊆ V. 

e) For each x ∈ X and each δ-open set V of Y containing f (x), there exists a semi-closed set F in X 

containing x such that f (F) ⊆ V. 

Proof. (a) ⇒ (b). Let x ∈ X and let V be any open set of Y containing f (x).  By (a), there exists a 𝛿𝑃𝑆-open set 

U of X containing x such that f (U) ⊆Int𝛿Cl V. Since U is 𝛿𝑃𝑆-open set, so for each x ∈ U there exists a semi-

closed set F in X such that x ∈ F ⊆ U.Therefore, we havef (F)⊆Int𝛿ClV. 

(b)⇒ (c).Obvious as 𝑖𝑛𝑡𝐶𝑙(𝑉) ⊆ 𝑠𝐶𝑙(𝑉). 
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(c)⇒ (d). Let x ∈ X and let V be any regular open set of Y containing f (x). Then V is an open set of Y 

containing f (x).  By (c), there exists a semi-closed set F in X containing x such that f (F) ⊆sClV. Since V is 

regular open and hence is preopen.  Therefore, by Lemma 2.14[a],f (F)⊆IntClV.SinceVisregular open,thenf 

(F)⊆V. 

(d)⇒ (e). Let x ∈ X and let V be any δ-open set of Y containing f (x). Then for each f (x) ∈ V, there exists an 

open set G containing f (x) such that G ⊆IntClG⊆ V. Since IntClGis a regular open set of Y containing f (x), 

by (d), there exists a semi-closed set F in X containing x such that f (F) ⊆IntClG⊆V. This completes the proof. 

(e)⇒(a).LetVbeanyδ-opensetofY.Wehavetoshowthatf−1(V)is𝛿𝑃𝑆-opensetinX.Since f is almost precontinuous, by 

Proposition 2.17(c), f −1(V) is preopen set in X. Since every preopen set is 𝛿-preopen we get 𝑓−1(𝑉) is 𝛿-

preopen. Let x ∈ f −1(V), then f (x) ∈ V.  By (e), there exists a semi-closed set F of X containing x such that 

f(F)⊆V.Whichimpliesthatx∈F⊆f−1(V).Therefore,f−1(V)is𝛿𝑃𝑆-opensetinX.Henceby Proposition3.12(e), f is 

almost𝛿𝑃𝑆-continuous. 

Proposition3.21. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is almost 𝛿𝑃𝑆-continuous if and only if 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎𝑠)is𝛿𝑃𝑆-

continuous. 

Proof. Necessity. Let H ∈𝜎𝑠, then H is a regular open set in (Y, σ).  Since  𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is almost 𝛿𝑃𝑆-

continuous, by Proposition3.10(e), f −1(H) is 𝛿𝑃𝑆-open set in X. Therefore, 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎𝑠)is𝛿𝑃𝑆-continuous. 

Sufficiency. Let G be any regular open set in (Y, σ).  Then𝐺 ∈ 𝜎𝑠. Since 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎𝑠) is 𝛿𝑃𝑆-continuous, 

by Definition 2.16, f −1(G) is 𝛿𝑃𝑆-open set in X.  Therefore, by Proposition3.10(e), 𝑓: (𝑋, 𝜏) →

(𝑌, 𝜎)isalmost𝛿𝑃𝑆-continuous.  

Proposition3.22. Let X be a locally indiscrete space. Then the function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is almost 𝛿𝑃𝑆 -

continuous if and only if 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎𝑠)is continuous. 

Proof. Necessity. Let 𝐻 ∈ 𝜎𝑠, then H is a regular open set in (Y, σ). Since 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is almost 𝛿𝑃𝑆-

continuous, by Proposition3.10(e), f−1(H) is 𝛿𝑃𝑆 -open set in X. Since X is locally indiscrete space, by 

Proposition2.11(c), f−1(H) is open set in X. Therefore, 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎𝑠)is continuous. 

Sufficiency. Let G be any regular open set in (Y, σ).  Then G ∈σS .  Since  𝑓: (𝑋, 𝜏) → (𝑌, 𝜎𝑠)is continuous, so f 

−1(G) is open set in X. Since X is locally indiscrete space, by Proposition 2.11(c), f −1(G) is 𝛿𝑃𝑆-open set in 

X.Therefore, by Proposition 3.10(e),  𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is almost 𝛿𝑃𝑆-continuous. 

Corollary 3.23.If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is almost 𝛿𝑃𝑆-continuous function if and only if 𝑓 is almost continuous 

where 𝑋 is locally indiscrete space. 

The following is the pasting lemma for almost𝜹𝑷𝑺-continuity 

Proposition 4.7. Let X = R1∪ R2, where R1 and R2 are regular open sets in X. Let f : R1 → Y and g : R2 → Y be 

almost 𝛿𝑃𝑆-continuous. If f (x) = g (x) for each x ∈ R1 ∩ R2. Then h : R1∪ R2 → Y such that h(x) = f (x) for x ∈ 

R1 and h(x) = g (x) for x ∈ R2 is almost 𝛿𝑃𝑆-continuous. 

Proof. Let O be a regular open set of Y. Now h−1(O) = f −1(O) ∪ g −1(O). Since f and g are almost 𝛿𝑃𝑆-

continuous, by Proposition 3.10(e), f −1(O) and g −1(O) are 𝛿𝑃𝑆-open set in R1and R2respectively. But R1and 

R2are both regular open sets in X. Then by Lemma 2.13(c),f −1(O) and g −1(O) are 𝛿𝑃𝑆-open sets in X. Since 

union of two 𝛿𝑃𝑆-open sets is𝛿𝑃𝑆-open, so h−1(O) is a 𝛿𝑃𝑆-open set in X. Hence by Proposition 3.10(e), h is 

almost 𝛿𝑃𝑆-continuous.  
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Proposition 4.8. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be almost 𝛿𝑃𝑆-continuous surjection and A be either 𝛿-open or regular 

semi-open subset of X. If f is an open function, then the function g : A → f (A), defined by g (x) = f (x) for each 

x ∈ A, is almost 𝛿𝑃𝑆-continuous. 

Proof. Suppose that H = f (A). Let x ∈ A and V be any open set in H containing 𝑔(𝑥). Since 𝐻 is open in 𝑌 and 

𝑉 is open in 𝐻, so 𝑉 is open in 𝑌. Since 𝑓 is almost 𝛿𝑃𝑆-continuous, hence there exists a 𝛿𝑃𝑆-open set 𝑈 in 𝑋 

containing 𝑥 such that 𝑓(𝑈) ⊆ 𝐼𝑛𝑡(𝛿𝐶𝑙(𝑉)). Taking 𝑊 = 𝑈 ∩ 𝐴, since A is either open or regular semi-open 

subset of X, by Lemma 2.13(d), W is a 𝛿𝑃𝑆-open setinAcontainingx and 𝑔(𝑊) ⊆ 𝐼𝑛𝑡𝑌𝐶𝑙𝑌(𝑉) ∩ 𝐻 =

𝐼𝑛𝑡𝐻𝐶𝑙𝐻(𝑉). Then 𝑔(𝑊) ⊆ 𝐼𝑛𝑡𝐻𝐶𝑙𝐻(𝑉). This shows that 𝑔 is almost 𝛿𝑃𝑆-continuous. 

Proposition 4.9.  Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)Y be almost  𝛿𝑃𝑆-continuous.  If Y is a preopen subset of Z, then 

𝑓: (𝑋, 𝜏) → (𝑍, 𝜂)is almost𝛿𝑃𝑆-continuous. 

Proof. Let V be any regular open set of Z. Since Y is preopen, by Lemma 2.12(a), V ∩ Y is a regular open set in 

Y. Since f: X → Y is almost 𝛿𝑃𝑆-continuous, by Proposition 3.10(e), f −1(V ∩ Y) is a 𝛿𝑃𝑆-open set in X. But f 

(x) ∈ Y for each x ∈ X. Thus f −1(V) = f −1(V ∩ Y) is a 𝛿𝑃𝑆-open set of X. Therefore, by Proposition 3.10, 

𝑓: (𝑋, 𝜏) → (𝑍, 𝜂)is almost𝛿𝑃𝑆-continuous. 

Proposition 4.10. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)and  𝑔: (𝑌, 𝜎) → (𝑍, 𝜂)be functions.Then the composition function 𝑔 ∘

𝑓: (𝑋, 𝜏) → (𝑍, 𝜂) is almost 𝛿𝑃𝑆-continuous if f and g satisfy one of the followingconditions: 

a) f is 𝛿𝑃𝑆-continuous and g is almostcontinuous. 

b) f is almost 𝛿𝑃𝑆-continuous and g isδ-continuous. 

c) f is continuous and open and g is almost 𝛿𝑃𝑆-continuous. 

Proof. (a). Let W be any regular open subset of Z. Since g is almost continuous, (so g) −1(W ) is open subset of 

Y. Since f is 𝛿𝑃𝑆-continuous, by Definition 2.17, (gof )−1(W ) = f −1(g −1(W )) is 𝛿𝑃𝑆-open subset in X. 

Therefore, by Proposition 3.10(e), gof is almost 𝛿𝑃𝑆-continuous. 

(b). Let W be any δ-open subset of Z. Since g is δ-continuous, sog −1(W) is δ-open subset of Y. Since f is almost 

𝛿𝑃𝑆-continuous, by Proposition 3.12(e), (gof )−1(W ) = f −1(g −1(W )) is 𝛿𝑃𝑆-open subset in X . Therefore, by 

Proposition 3.12(e), gof is almost 𝛿𝑃𝑆-continuous. 

(c). Let W be any regular open subset of Z. Since g is almost 𝛿𝑃𝑆-continuous, by Proposition 3.10(e), g −1(W) is  

𝛿𝑃𝑆-open subset of Y. Since f is continuous and open, by Proposition 2.22, f −1(g −1(W)) = (gof)−1(W) is a 𝛿𝑃𝑆-

open set in X . Hence by Proposition 3.10(e),𝑔 ∘ 𝑓 is almost 𝛿𝑃𝑆- continuous. 
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