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δI-Semi-Connected and Compact Spaces in Ideal Topological

Spaces

V. Inthumathi1, M. Maheswari2, A. Anis Fathima3,

Abstract - In this paper, we introduce δI-semi-separated sets, δI-semi-connected and δI-semi-compact spaces also study

some of its properties in topological spaces via ideals.

Keywords δI-semi-separated sets, δI-semi-connected spaces, δI-semi-disconnected spaces and δI-semi-compact spaces.

2010 Subject classification: 54A05

1 Introduction

The notion of ideal in topological spaces was studied by Kuratowski [8] & Vaidyanathaswamy [12]. Appli-
cations to various fields in ideal topological spaces were investigated by Jankovic and Hamlett [7], Dontchev
et al. [3], Mukherjee et al. [9], Arenas et al. [2], Navaneethakrishnan et al. [11], Nasef and Mahmoud [10],
etc. In 2008, Ekici and Noiri [4] introduced the notion of connectedness in ideal topological spaces.

2 Preliminaries

Throughout this paper, (X, τ, I) and (Y, σ, I) (or simply X and Y), always mean ideal topological spaces
on which no separation axioms are assumed.

Definition 2.1. [1] A subset A of an ideal topological space (X, τ, I) is said to be δI-semi-open if A ⊆
cl∗(intδ(A)).

The complement of δI-semi-open set is called δI-semi-closed set.

Definition 2.2. [1] Let A be a subset of an ideal topological space (X, τ, I) and x be a point of X. Then

1. x is called a δI-semi-cluster point of A if A ∩ U 6= ∅ for every U ∈ δISO(X),

2. the family of all δI-semi-cluster points of A is called δI-semi-closure of A and is denoted by sclδI(A).

1Associate Professor, Department of Mathematics,Nallamuthu Gounder Mahalingam College, Pollachi-642001,
Coimbatore, Tamilnadu, India. E.mail: inthumathi65@gmail.com

2Assistant Professor, Department of Mathematics,Nallamuthu Gounder Mahalingam College, Pollachi-642001,
Coimbatore, Tamilnadu, India. E.mail: mahimrk@gmail.com

3Assistant Professor, Department of Mathematics,Gobi Arts & Science College, Gobichettipalayam-638456,
Erode, Tamilnadu, India. E.mail: anisnazer2009@gmail.com
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Definition 2.3. [5] A function f : (X, τ, I)→ (Y, σ, I) is said to be δI-semi-irresolute if inverse image of
every δI-semi-open set in Y is δI-semi-open set in X.

Definition 2.4. [6] A function f : (X, τ, I)→ (Y, σ) is said to be contra δI-semi-continuous if f−1(V ) is
δI-semi-closed in X for each open set V of Y.

3 δI-semi-separated

Definition 3.1. Let (X, τ, I) be an ideal topological space. Two non-empty subsets M and N are said to
be δI-semi-separated if and only if M ∩ sclδI(N) = ∅ and sclδI(M) ∩N = ∅.
i.e.,[M ∩ sclδI(N)] ∪ [sclδI(M) ∩N ] = ∅.

Definition 3.2. If X = M ∪N such that M and N are non-empty δI-semi-separated sets in (X, τ, I) then
M, N form a δI-semi-separation of X.

Example 3.3. Let X={a, b, c, d} with topology τ={∅, {a}, {b, d}, {a, b, d}, X} and I={∅, {a}}. Consider
P={a}, Q={b} and R={d}. Then the sets P and Q are δI-semi-separated but the sets Q and R are not
δI-semi-separated.

Definition 3.4. A point x ∈ X is said to be an δI-semi-adherent point of a subset A of an ideal topological
space (X, τ, I) if every δI-semi-open set containing x, contains atleast one point of A.

Remark 3.5. Two δI-semi-separated sets are always disjoint. But two disjoint sets need not be δI-semi-
separated. In Example 3.3, the sets Q and R are disjoint but not δI-semi-separated.

Theorem 3.6. Two sets are δI-semi-separated if and only if they are disjoint and neither of them contains
δI-semi-cluster point of the other.

Proof. Let A and B be δI-semi-separated. Now, A∩ sclδI(B) = ∅ ⇔ A∩ (B ∪Bl) = ∅, where the set Bl

denotes the set of all δI-semi-cluster points of B ⇔ A and B are disjoint and A contains no δI-semi-cluster
point of B. Similaly, sclδI(A)∩B = ∅ if and only if A and B are disjoint and B contains no δI-semi-cluster
point of A.

Theorem 3.7. Subsets of δI-semi-separated sets are δI-semi-separated.

Proof. Let C and D be subsets of two δI-semi-separated sets A and B respectively. Then A∩ sclδI(B) =
∅ and sclδI(A)∩B = ∅. Then we have C ∩ sclδI(D) ⊆ A∩ sclδI(B) = ∅ and sclδI(C)∩D ⊆ sclδI(A)∩B=
∅. Thus C and D are δI-semi-separated.

Theorem 3.8. Two δI-semi-closed subsets of X are δI-semi-separated if and only if they are disjoint.

Proof. By Remark 3.5 δI-semi-closed separated sets are disjoint.
Conversely, let A and B be two δI-semi-closed disjoint sets. Then we have sclδI(A) = A, sclδI(B) = B and
A ∩B = ∅. Consequently, A ∩ sclδI(B) = ∅ and sclδI(A) ∩B = ∅. Hence A and B are δI-semi-separated.

Theorem 3.9. Two δI-semi-open subsets of X are δI-semi-separated if and only if they are disjoint.
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Proof. By Remark 3.5 δI-semi-open separated sets are disjoint.
Conversely, let P and Q be two δI-semi-open disjoint sets. Suppose that P ∩ sclδI(Q) 6= ∅ and let
x ∈ P ∩ sclδI(Q). Then x ∈ P and x is a δI-semi-adherent point of Q. Since P is a δI-semi-open set
containing x and x is a δI-semi-adherent point of Q, therefore P must contain atleast one point of Q.
Thus we have P ∩Q 6= ∅ which is a contradicton. Therefore P ∩ sclδI(Q) = ∅. Similarly, sclδI(P ) ∩Q =
∅. Hence P and Q are δI-semi-separated.

Theorem 3.10. If the union of two δI-semi-separated sets is a δI-semi-closed set then the individual sets
are δI-semi-closures of themselves.

Proof. Let M and N be two δI-semi-separated sets such that M ∪N is δI-semi-closed. Now, M ∪N =
sclδI(M ∪N) ⊇ sclδI(M)∪ sclδI(B). Therefore sclδI(M) = sclδI(M)∩ [sclδI(M)∪ sclδI(N)] ⊆ sclδI(M)∩
[M ∪N ] = M. Thus we have sclδI(M) = M. Similarly, sclδI(M) = M.

Theorem 3.11. If the union of two δI-semi-separated sets is δ-open, then the individual sets are δI-semi-
open.

Proof. Let M and N be two δI-semi-separated sets such that M ∪N is δ-open. Therefore we have M ∪N
∩ [sclδI(N)]c is δI-semi-open and so M ∪N ∩ [sclδI(N)]c = M. This implies M is δI-semi-open. Similarly,
we can prove N is δI-semi-open.

4 δI-semi-connected

Definition 4.1. A space (X, τ, I) is δI-semi-connected if and only if X has no δI-semi-separation.
If X is not δI-semi-connected then it is δI-semi-disconnected.

Definition 4.2. A subset of (X, τ, I) is δI-semi-connected if it is δI-semi-connected as a subspace.

Theorem 4.3. An ideal topological space (X, τ, I) is δI-semi-disconnected if and only if there exist a
non-empty proper subset of X which is both δI-semi-open and δI-semi-closed.

Proof. Necessity: Let (X, τ, I) be δI-semi-disconnected. Then there exist non-empty δI-semi-separated
subsets M and N of X such that M ∪ N = X. Therefore sclδI(M) ∪ N = X, M ∪ sclδI(N) = X and
M ∩N = ∅. Thus we have M = X −N, M = X − sclδI(N) and N = X − sclδI(M). This shows that, M
is non-empty proper subset of X which is both δI-semi-open and δI-semi-closed.

Sufficiency: Let M be a non-empty proper subset of X which is both δI-semi-open and δI-semi-
closed. Then, M c is a non-empty proper subset of X which is both δI-semi-closed and δI-semi-open. Thus
M ∩ M c = ∅, sclδI(M) = M and sclδI(M c) = M c and therefore sclδI(M) ∩ M c = M ∩ M c = ∅ and
M ∩ sclδI(M c) = M ∩M c = ∅. Also X = M ∪M c. Hence X is δI-semi-disconnected.

Theorem 4.4. An ideal topological space (X, τ, I) is δI-semi-disconnected if and only if X is the union of
non-empty disjoint δI-semi-open sets.

Proof. Necessity Let X be δI-semi-disconnected. Then there exist a non-empty proper subset M of X
which is both δI-semi-open and δI-semi-closed. Therefore M c is a non-empty proper subset of X which is
both δI-semi-open and δI-semi-closed. This shows that X = M ∪M c and M ∩M c = ∅. This implies that
X is the union of two non-empty disjoint δI-semi-open sets.
Sufficiency , let X be the union of two non-empty disjoint δI-semi-open sets M and N . Then N c = M.

146 ETIST 2021



δI-Semi-Connected and Compact Spaces in Ideal Topological Spaces

Now N is δI-semi-open, it follows that M is δI-semi-closed. Since N 6= ∅, it implies that M is a non-
empty proper subset of X which is both δI-semi-open and δI-semi-closed. This shows that X is δI-semi-
disconnected.

Theorem 4.5. An ideal topological space (X, τ, I) is δI-semi-connected if and only if X cannot be
written as the union of non-empty disjoint δI-semi-open sets.

Proof. Obvious.

Corollary 4.6. A space (X, τ, I) is δI-semi-connected (resp. δI-semi-disconnected) if and only if X cannot
be written as (resp. can be written as) the union of non-empty disjoint δI-semi-closed sets.

Theorem 4.7. An ideal topological space (X, τ, I) is δI-semi-connected if and only if the only subsets of
X which is δI-semi-open and δI-semi-closed are ∅ and X.

Proof. Let F be a δI-semi-open and δI-semi-closed subset of X. Then X − F is both δI-semi-open and
δI-semi-closed. Since X is δI-semi-connected, X can not be expressed as union of two disjoint non empty
δI-semi-open sets F and X − F, which implies X − F is empty.
Conversely, suppose X = U ∪ V where U and V are disjoint non-empty δI-semi-open sets of X. Then U
is both δI-semi-open and δI-semi-closed. Therefore by assumption, either U = ∅ or X, which contradicts
the assumption that U and V are disjoint non-empty δI-semi-open subsets of X. Therefore X is δI-semi-
connected.

Corollary 4.8. If f : (X, τ, I) → (Y, σ,J ) is a δI-semi-irresolute surjective function and X is δI-semi-
connected, then Y is δ-semi-connected.

Theorem 4.9. If the sets P and Q form a δI-semi-separation of (X, τ, I) and if (Y, σ, I) is δI-semi-
connected subspace of X, then Y lies entirely within either P or Q.

Proof. Since P and Q form a δI-semi-separation of X. If P ∩ Y and Q ∩ Y were both non-empty, they
would form a δI-semi-separation of Y, which is a contradiction. Therefore one of them is empty. Hence Y
must lie entirely in P or in Q.

Theorem 4.10. A contra δI-semi-continuous image of a δI-semi-connected space is connected.

Proof. Let f : (X, τ, I) → (Y, σ) be a contra δI-semi-continuous function of a δI-semi-connected space
(X, τ, I) onto a topological space (Y, σ). Suppose Y is disconnected. Let A and B form a separation of Y.
Then A and B are clopen and Y = A ∪ B where A ∩ B = ∅. Since f is contra δI-semi-continuous, X=
f−1(Y ) = f−1(A∪B) = f−1(A)∪ f−1(B), where f−1(A) and f−1(B) are non-empty δI-semi-open sets in
X. Also f−1(A) ∩ f−1(B) = ∅. Hence X is not δI-semi-connected. This is a contradiction. Therefore Y is
connected.

Theorem 4.11. If A is δI-semi-connected and A ⊆ B ⊆ sclδI(A), then B is δI-semi-connected.

Proof. Let A be δI-semi-connected and let A ⊆ B ⊆ sclδI(A). Suppose that B is not δI-semi-connected,
then C and D form a δI-semi-seperation of B. By Theorem 4.9, A must lie entirely in C or in D. Suppose
that A ⊆ C implies sclδI(A) ∩ D ⊆ sclδI(C) ∩ D =∅. Also, D ⊆ B ⊆ sclδI(A) implies sclδI(A) ∩ D =
D. This shows that D = ∅, which is a contradiction. Similarly, we will have a contradiction for A ⊆ D.
Therefore B is δI-semi-connected.
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Corollary 4.12. The δI-semi-closure of a δI-semi-connected set is δI-semi-connected.

Theorem 4.13. The union of any family of δI-semi-connected sets having a non-empty intersection is
δI-semi-connected.

Proof. Let {Eα} be any family of δI-semi-connected sets such that
⋂
αEα 6= ∅. Let E =

⋃
αEα. Suppose

that E is not δI-semi-connected, then A and B constitute a δI-semi-seperation of E. Since
⋂
αEα 6= ∅,

let x ∈
⋂
αEα. Then x belongs to each Eα and so x ∈ E. Consequently, x ∈ A or x ∈ B. Suppose that

x ∈ A, Eα ∩ A 6= ∅ for every α. From Theorem 4.9, Eα ⊆ A or Eα ⊆ B. Since A and B are disjoint and
Eα ∩ A 6= ∅ for every α. we must have Eα ⊆ A for each α. Consequently,

⋃
αEα ⊆ A or E ⊆ A. This

shows that B = ∅, which is a contradiction. Hence E is δI-semi-connected.

Corollary 4.14. Let {Eα|α ∈ Λ} be a family of δI-semi-connected subsets of (X, τ, I) such that one of
the members of this family intersects every other member. Then

⋃
{Eα|α ∈ Λ} is δI-semi-connected.

Proof. Let Eαo be a member of the given family such that Eαo ∩ Eα 6= ∅ for every α ∈ Λ. Then
By Theorem 4.13, Cα = Eαo ∪ Eα is δI-semi-connected for each α. Now,

⋃
{Cα|α ∈ Λ} =

⋃
{Eαo ∪

Eα|α ∈ Λ} = Eαo ∪ (
⋃
{Eα|α ∈ Λ}) =

⋃
{Eα|α ∈ Λ} and

⋂
{Cα|α ∈ Λ} =

⋂
{Eαo ∪ Eα|α ∈ Λ} =

Eαo ∪ (
⋂
{Eα|α ∈ Λ}) 6= ∅. Thus

⋃
{Cα|α ∈ Λ} is the union of δI-semi-connected sets having a non-empty

intersection is δI-semi-connected. Therefore
⋃
{Eα|α ∈ Λ} is δI-semi-connected.

5 δI-semi-Compact

Definition 5.1. A collection {Aα|α ∈ Λ} of δI-semi-open sets in an ideal topological space (X, τ, I)
is called δI-semi-open cover of a subset B of X if B ⊆

⋃
{Aα|α ∈ Λ} holds.

Definition 5.2. An ideal topological space (X, τ, I) is said to be δI-semi-compact if every δI-semi-open
cover of X has a finite subcover.

Definition 5.3. A subset B of an ideal topological space (X, τ, I) is called δI-semi-compact relative
to X if for every collection {Aα|α ∈ Λ} of δI-semi-open subsets of X such that B ⊆

⋃
{Aα|α ∈ Λ}, there

exists a finite subset Λo of Λ such that B ⊆
⋃
{Aα|α ∈ Λo}

Proposition 5.4. A δI-semi-closed subset of a δI-semi-compact space (X, τ, I) is δI-semi-compact
relative to (X, τ, I).

Proof. Let A be any δI-semi-closed subset of an ideal topological space (X, τ, I). Then Ac is δI-semi-open
in (X, τ, I). Let S = {Ai|i ∈ Λ} be a δI-semi-open cover of A. Then S∗=S ∪ Ac is a δI-semi-open cover
of X. That is X = (

⋃
i∈ΛAi) ∪ Ac. By assumption, X is δI-semi-compact and hence S∗ is reducible to a

finite subcover of X say X = Ai1 ∪Ai2 ∪ ....∪Ain ∪Ac where Aik ∈ S∗. But A and Ac are disjoint. Hence
A ⊆ Ai1 ∪ Ai2 ∪ .... ∪ Ain ∈ S. Thus δI-semi-open cover S of A contains a finite subcover. Hence A is
δI-semi-compact relative to X.

Proposition 5.5. If a map f : (X, τ, I)→ (Y, σ,J ) is δI-semi-irresolute and a subset B of X is δI-semi-
compact relative to X, then f(B) is δ-semi-compact relative to Y .

Proof. Let {Aα|α ∈ Λ} be a collection of δ-semi-open sets in Y such that f(B) ⊆
⋃
α∈ΛAα. Then

B ⊆
⋃
α f−1(Aα), where {f−1(Aα) | α ∈ Λ} is δI-semi-open set in X. Since B is δI-semi-compact

relative to X, there exists finite subcollection {f−1(A1), f−1(A2), ..., f−1(An)} such that B ⊆
⋃n
α=1 f

−1(Aα).
That is f(B) ⊆

⋃n
α=1Aα. Hence f(B) is δ-semi-compact relative to Y.

148 ETIST 2021



δI-Semi-Connected and Compact Spaces in Ideal Topological Spaces

Proposition 5.6. Every finite union of δI-semi-compact sets is δI-semi-compact.

Proof. Let U and V be any δI-semi-compact subsets of (X, τ, I). Let F be a δI-semi-open cover of U ∪V.
Then F will also be a δI-semi-open cover of both U and V. By assumption, there exists a finite subcollection
of F of δI-semi-open sets, say {U1, U2, ..., Un} and {V1, V2, ..., Vn} covering U and V respectively. Then
the collection {U1, U2, ..., Un, V1, V2, ..., Vn} is a finite collection of δI-semi-open sets covering U ∪V.
By induction, every finite union of δI-semi-compact sets is δI-semi-compact.

Proposition 5.7. Let A be a δI-semi-compact subset of a space (X, τ, I) and B be a δI-semi-closed subset
of X. Then A ∩B is δI-semi-compact in X.

Proof. Let {Gα} be a δI-semi-open cover of A ∩ B. Since B is δI-semi-closed, {Gα, B
c} is δI-semi-

open. Then {Gα, B
c} is a δI-semi-open cover of A. By assumption A is δI-semi-compact, there exists

a finite subcollection, say, {Gk, B
c}. Then {Gk} is a finite δI-semi-open subcover of A ∩ B. Thus A ∩ B

is δI-semi-compact in X.

Theorem 5.8. An ideal topological space (X, τ, I) is δI-semi-compact if and only if every family of δI-
semi-closed subsets of X having finite intersection property has a non-empty intersection.

Proof. Suppose (X, τ, I) is δI-semi-compact. Let {Aα|α ∈ Λ} be a family of δI-semi-closed sets with
finite intersection property. Suppose

⋂
α∈Λ{Aα} = ∅. Then [

⋂
α∈Λ{Aα}]c = X. This implies

⋃
α∈Λ{Acα}

= X. Thus the cover {Acα|α ∈ Λ} is a δI-semi-open cover of (X, τ, I). Then by assumption, the δI-semi-
open cover {Acα|α ∈ Λ} has a finite subcover, say {Acα|α = 1, 2, ...n}. This implies X =

⋃n
α=1{Acα} =

[
⋂n
α=1{Aα}]c and so ∅ =

⋂n
α=1{Aα}. This contradicts the assumption. Hence

⋂
α∈Λ{Aα} 6= ∅.

Conversely, suppose (X, τ, I) is not δI-semi-compact. Then there exists a δI-semi-open cover of (X, τ, I)
say {Gα|α ∈ Λ} having no finite subcover. This implies for any finite subfamily {Gα|α = 1, 2, ..., n} of
{Gα|α ∈ Λ} we have

⋃n
α=1 Gα 6= X. Now, ∅ 6= [

⋃n
α=1{Gα}]c = [

⋂n
α=1{Gc

α}]. Then the family {Gc
α|α ∈ Λ}

of δI-semi-closed sets has a finite intersection property. Also by assumption
⋂
α∈Λ{Gc

α} 6= ∅ and so⋃
αGα 6= X. This implies {Gα|α ∈ Λ} is not a δI-semi-cover of (X, τ, I). This contradicts the

fact that {Gα|α ∈ Λ} is a δI-semi-cover for (X, τ, I). Therefore δI-semi-open cover {Gα|α ∈ Λ} of X
has a finite subcover {Gα|α = 1, 2, ..., n}. Hence (X, τ, I) is δI-semi-compact.

Corollary 5.9. An ideal topological space (X, τ, I) is δI-semi-compact if and only if every family of
δI-semi-closed sets of X with empty intersection has a finite sub-family with empty intersection.

Proposition 5.10. The image of a δI-semi-compact space under δI-semi-irresolute surjective function is
δ-semi-compact.

Proof. Let f : (X, τ, I)→ (Y, σ, I) is a δI-semi-irresolute function from δI-semi-compact space (X, τ, I)
onto an ideal topological space (Y, σ, I). Let {Aα|α ∈ Λ} be a δ-semi-open cover of Y. Then {f−1(Aα)|α ∈
Λ} is a δI-semi-open cover of X, since f is δI-semi-irresolute. As X is δI-semi-compact, δI-semi-open
cover {f−1(Aα)|α ∈ Λ} of X has a finite subcover, say, {f−1(Aα)|α = 1, 2, ..., n}. Therefore X =⋃n
α=1{f−1(Aα)|α = 1, 2, ..., n}. Then f(X) =

⋃n
α=1{Aα|α = 1, 2, ..., n}, that is Y =

⋃n
α=1{Aα|α =

1, 2, ..., n}. Thus {A1, A2, ...An} is a finite subcover for Y. Hence Y is δ-semi-compact.

Definition 5.11. An ideal toplogical space (X, τ, I) is called locally δI-semi-compact if every point in
X has atleast one δI-semi-neighborhood whose closure is δI-semi-compact.

Proposition 5.12. Every δI-semi-compact space is locally δI-semi-compact.

Proof. Let (X, τ, I) be a δI-semi-compact space. Let x ∈ X. Then X is a δI-semi-neighborhood
of x such that cl(X) = X is δI-semi-compact. Hence X is locally δI-semi-compact.
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