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ON Ng∗α -NORMAL AND  Ng∗α -REGULAR SPACES IN NANO 

TOPOLOGICAL SPACES 

  

 V. Rajendran
1
 – P. Sathishmohan

2
 – M. Amsaveni

3   
– M. Chitra

4   
 

 

©NGMC 2021 

 

ABSTRACT:  In this paper, we introduced a class of space called Ng∗α -normal and Ng∗α -regular spaces 

and analyzed few of its properties. We have observed some preservation theorem. Also we define Ng∗α -   

space, Ng∗α -   space, and Ng∗α -   space, and investigated their properties.  Also we have obtain some of 

their basic results and give have an appropriate examples to understand the abstract concept clearly. 

 

Keywords: Ng∗α -continuous functions, Ng∗α -normal space, Ng∗α -regular space, Ng∗α  -   space, Ng∗α  

-   space, and Ng∗α -   space. 

 

 

1. INTRODUCTION 

In 1971 Viglino[8]  introduced generalized Normal space. Singal and Arya[5] introduced almost 

normal space and proved that a space is normal if and only if it is both a semi Normal and an almost Normal 

space. In 1987 Gongulay and Chandel R.S[2] generalized the usual notion of regularity and normality by 

replacing closed with g-closed set and obtained g -regularity and g -normality. Ganster et.al[3] studied semi g -

regularity and semi g -normality. M. Bhuvaneswari and N. Nagaveni[1] introduced Nwg -normal and Nwg -

regular in nano topological spaces and P. Sathishmohan et.al[7] Introduced Nano Pre -regular and strongly 

Nano Pre -regular spaces in nano topological spaces. Further P. S a t h i s h mo h a n  et.al[6]  introduced 

and investigated the further properties of nano -T0 space, nano semi -T0 space, nano pre -T0  space, nano -T1 

space, nano semi -T1 space, nano pre -T1 space, nano -T2 space , nano semi -T2 space, nano pre T2 space and 

obtain some of its basic results. The main purpose of this paper is to bring up the idea about Ng∗α -T0  

space, Ng∗α -T1 space, and Ng∗α -T2 -space and obtain some of its basic results. Further we introduced 

Ng∗α -normal and Ng∗α -regular spaces and investigated some of their properties. 

The structure of this manuscript as follows: 
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In section 2, some basic definitions and results in nano topological spaces are recalled which are useful to 

prove the main results. 

In section 3, we introduced Ng∗α -normal and Ng∗α -regular spaces and investigated some of their             properties. 

In section 4, we define and study the notions of Ng∗α -T0 space in nano topological spaces and   obtained  

some of its basic results. 

In section 5, we define and study the notions of Ng∗α -T1 space in nano topological spaces and some    of the 

properties has been investigated. 

In section 6, we define and study the notions of Ng∗α -T2 space in nano topological spaces and some    of the 

properties has been investigated. 

  

2. PRELIMINARIES 

In this section, some basic definitions and results in nano topological spaces are given, which are   useful 

to prove the main results. 

Definition:2.1 [4] Let U be a non-empty finite set of objects called the universe and R be an equivalence relation 

on U named as the indiscernibility relation. Elements belonging to the same equivalence class are said to be 

indiscernible with one another. The pair (U, R) is said to be the approximation space. Let X ⊆ U. 

1. The Lower approximation of X with respect to R is the set of all objects, which can be for certain 

classified as X with respect to R and it is denoted by LR(X). 

That is, LR(X) = {     {R(x) : R(x) ⊆ X}}, where R(x) denotes the equivalence class 

determined by x   U. 

2. The Upper approximation of X with respect to R is the set of all objects, which can be certain 

classified as X with respect to R and it is denoted by UR(X). 

That is, UR(X) = {     {R(x) : R(x) X   }} 

3. The Boundary region of X with respect to R is the set of all objects which can be classified as 

neither as X nor as not X with respect to R and it is denoted by BR(X).  

That is, BR(X) = UR(X) - LR(X).  

Definition:2.2. [4] Let U be the universe, R be an equivalence relation on U and τR(X) = {U, ϕ, LR(X), UR(X), 

BR(X)} where X ⊆ U.  Then τR(X) satisfies the following axioms: 

(i) U and ϕ   τR(X) 

(ii) The union of elements of any sub collection of τR(X) is in τR(X) 

(iii) The intersection of the elements of any finite sub collection of τR(X) is in τR(X). 
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That is, τR(X) is a topology on U is called the nano topology on U with respect to X. We call {U, τR(X)} is 

called the nano topological space. Elements of the nano topology are known as nano open sets in U. Elements of 

[τR(X)]
c
 are called nano closed sets. 

Remark: 2.3. [4]  If [τR(X)] is the nano topology on U with respect to X. Then the set B = {U, τR(X), BR(X)} is 

the basis for [τR(X)].   

Definition: 2.4. [1] A nano topological space (U, τR(X)) is said to be nano normal space if for any pair of 

disjoint nano closed sets A and B, there exists disjoint nano open sets M and N such that A ⊂ M   and 

B ⊂ N. 

Definition:2.5. [1] A nano topological space (U, τR(X)) is said to be nano regular space, if for each nano  

closed  set  F and each point  x  / F , there  exists  disjoint  nano  open  sets  G  and  H  such  that  x   G and F ⊂ 

H. 

Definition: 2.6.  [1]  The  map  f  : (U, τR(X)) → (V,    (Y))  is  called 

1. Nano continuous on U, if the inverse image of every nano -closed set in V is nano -

closed in U. 

2. Nano closed on U, if the image of every nano -closed set in U is nano -closed set in V. 

3. Ng∗α -closed on U, if the image of every nano -closed set in U is Ng∗α -closed set in V. 

Definition:2.7. [6]  A  space  U  is  called  nano  -T0   space  for  x, y     U  and      , there exist a nano  -open set  G  

such  that  x   G and  y  / G. 

Definition:2.8. [6] A space U is called nano pre -T0 space for x, y   U and    , there  exists  a  nano  pre  -open  set  

G  such  that  x   G and  y  / G. 

Definition:2.9. [6] A space U is called Nα -T0 space for x, y   U and      there exists a Nα -open         set G  

such  that  x   G,  y  / G. 

Definition:2.10.[6] A space U is called nano -T1 space for x, y   U and    ,  there exists a nano -open  

sets  G  and  H  such  that  x   G and  y  / G and  y   H,  x  / H. 

Definition:2.11.[6] A space U is called nano pre -T1 space for x, y   U and       there exists a nano              pre -

open  sets  G  and  H  such  that  x   G and  y  / G and  y   H,  x  / H. 

Definition:2.12.[6] A space U is called Nα -T1 space for x, y   U and        there exists a Nα -open                           sets  

G  and  H  such  that  x   G and  y  / G and  y   H,  x  / H. 

Definition:2.13.[6] A space U is called nano -T2 space for x, y   U and       there exists a disjoint      nano  -open sets 

G and H such that x   G and y   H. 
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Definition: 2.14. [6] A space U is called nano pre -T2 space for x, y   U and        there exists a   disjoint nano pre 

-open sets G and H such that x   G and y   H. 

Definition: 2.15. [6] A space U is called Nα -T2 space for x, y   U and        t h e r e  e x i s t s  a  a d j o i n t  Nα -open sets 

G and H such that x   G and y   H. 

 

3. Nano
 
  ∗   -normal and regular spaces 

 

In this section we introduced a new space called Ng∗α -normal and Ng∗α -regular spaces and investigated some 

of their characteristics. 

Definition: 3.1. A nano topological space (U, τR(X)) is said to be Ng∗α -normal space, if for every pair of 

disjoint nano closed sets A and B, there exists disjoint Ng∗α -open sets M and N such that A ⊂ M    and B 

⊂ N. 

Definition: 3.2. A nano topological space (U, τR(X)) is said to be Ng∗α -regular space, if for each nano -closed sets F 

and each point x  / F , there exists disjoint Ng∗α -open sets G and H such that x   G and F ⊂ H. 

Theorem: 3.3. Every nano normal space is Ng∗α -normal. 

 
Proof. Let (U, τR(X)) is nano normal space and A and B are two disjoint pair of nano -closed sets. Since  

(U, τR(X)) is nano -normal there exists disjoint nano -open sets M and N such that A ⊂ M and B ⊂ N. 

Since every nano -open set is Ng∗α -open. Therefore M and N are Ng∗α -open sets. Hence (U, τR(X)) is 

Ng∗α -normal space. 

The converse of the above theorem need not be true as seen from the following example. □ 

 

Example: 3.4. Let U = {a, b, c, d} with U/R = {{a, b}, {c}, {d}} and X = {a, b}. Then τR(X) = {U, ϕ, {a, 

b}}. 

 Then (U, τR(X)) is Ng∗α -normal space but not nano -normal space. 

Remark: 3.5. Let U be the universe, X ⊆ U and if UR(X) = X and LR(X) = ϕ then (U, τR(X)) is   not 

Ng∗α -normal. 

Remark: 3.6. Let U be the universe, X ⊆ U and if UR(X) = X and LR(X) = U then (U, τR(X)) is    not 

Ng∗α -normal. 

Theorem: 3.7. If A nano topological space U is Ng∗α -normal then for every pair of nano -open M and N 

whose union is U, there exist Ng∗α -closed sets A and B such that A ⊂ M , B ⊂ N and A ∪ B = U. 

Proof. Let M and N be a pair of nano open sets in a Ng∗α -normal space U such that M ∪ N = U, then 

U − M, U − N are disjoint nano -closed sets. Since U is Ng∗α -normal space, there exists two Ng∗α   -open 

sets M1 and N1 such that U − M ⊂ M1 and U − N ⊂ N1. Then A and B are Ng∗α -closed sets   such that 
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 A ⊂ M , B ⊂ N and A ∪ B = U. 

Theorem: 3.8.  If f : (U, τR(X)) → (V,    (Y)) is nano -continuous, injective, Ng∗α open function and U is 

nano normal space then V is Ng∗α -normal. 

Proof. Let E and F be disjoint nano -closed set in V. Since f is nano -continuous bijective, f 
−1

(E) and f  
−1

(F ) 

are disjoint nano -closed in U. Now U is nano -normal space, there exist disjoint nano -open sets G and H such 

that f 
−1

(E) ⊂ G and f 
−1

(F ) ⊂ H. That is E ⊂ f (G) and F  ⊂ f (H). Since f is Ng∗α -open function, f (G), f 

(H) are Ng∗α -open sets in V and f is injective, f (G) ∩ f (H) = f (G ∩ H) = f (ϕ).      Therefore V is Ng∗α -normal 

space.  

Remark:  3.9.  If  f  : (U, τR(X)) →(V,   (Y))  is  nano  -continuous,  injective,  nano  -open  function  and  U is nano -

normal space then V is Ng∗α -normal. 

Theorem:  3.10.  If  f : (U, τR(X)) → (V,   (Y))    is  Ng∗α –continuous,  nano  -closed,  injective  and  V  is a 

nano normal space then U is Ng∗α -normal. 

Proof. Let E and F be disjoint nano -closed sets in U. Since f is nano -continuous, bijective, f (E) and       

f(E)  are disjoint nano -closed in V. Now V is nano -normal space, there exist disjoint nano -open sets G 

and H such that f (E) ⊂ G and f (F ) ⊂ H. That is E ⊂ f 
−1

(G) and F  ⊂ f (H) since f is Ng∗α - function, 

continuous f 
−1

(G), f 
−1

(H) are Ng∗α -open sets in U. f 
−1

(G) ∩ f 
−1

(H) = ϕ. Therefore U is Ng∗α -normal 

space.                                                                                                              

Remark:  3.11.  If  f  : (U, τR(X))  → (V,   (Y))  is  nano  -continuous,  nano  -closed,  injective  and  V   is 

nano -normal space then U is Ng∗α -normal. 

Theorem: 3.12. Every nano -regular space is Ng∗α -regular space but not conversely.  

Proof.  Let F be a nano closed set and x  / F  be a point of a nano regular space (U, τR(X)). Since U is 

nano -regular space there exist two disjoint nano open sets G and H such that x   G and F ⊂ H. Since 

every nano open set is Ng∗α -open set, G and H are Ng∗α -open sets such that x   G and F ⊂ H. Hence  

(U, τR(X)) is Ng∗α -regular space.  

There converse of the above theorem need not be true as seen from the following example.  

Example: 3.13. Let U = {a, b, c, d} with U/R = {{a}, {b, d}, {c}} and X = {b, d}.  Then τR(X) = {U, ϕ, {b, 

d}}. Then (U, τR(X)) is Ng∗α -regular space but not nano regular space. 

Theorem 3.14. Let τR (X) be a nano topology on U with respect to X. consider the following statements 

1. U is nano Regular. 

2. For each x   U and each A   τR(X) with x   A, there exists B   τR(X) such that x 

  B ⊆ Cw (B) ⊆ A. Then the implication (1) ⇒ (2) holds if Nint(A)   τR(X) for every 

nano closed A   of U, then the statements are equivalent. 

156



Dr.V.Rajendran et al. 

 

 

6  ETIST 2021 

 

Proof. (1) ⇒ (2) 

Let x  / (U − A), where A   τR(X). Then there exist disjoint G, B   τR(X) such that (U − A) ⊆ G  and x   

B. Thus B ⊆ U − G and hence x   B ⊆ Ncl(B) ⊆ Ncl(U − G) ⊆ A. 

(2) ⇒ (1) Let F be a nano closed and x  / F. Then x   U − F    τR(X) and hence there exists B   τR(X) such that x   B 

⊆ Ncl(B) ⊆ U − F. Therefore F ⊆ U − Ncl(B) = Nint(U − B)   τR(X). 

Theorem:  3.15.  If  f : (U, τR(X)) → (V, τR
′ (Y))   is  nano  -continuous,  bijective,  Ng∗α  -open  function and 

U is a nano - regular space then V is Ng∗α -regular. 

Proof.  Let  F  be  nano  -closed  set  in  V  and  y   /  F . Let  y  =  f(x)  for  some  x     U .   Since  f  is  nano  -

continuous, f 
−1

(F)  is  nano  -closed  in  U  such  that  x  /  f 
−1

(F ).  Now  U  is  nano  -regular  space,  there exist 

disjoint nano -open sets G and H such that x   G and f 
−1

(F ) ⊂ H. That is y = f (x)   f (G) and  F    f (H).  

Since  f is Ng∗α -open  function,  f (G) and  f (H) are Ng∗α -open  sets in  V.  f (G) ∩ f (H) = f (G ∩ H) = ϕ. 

Therefore V is Ng∗α -regular space. 

Remark:  3.16. If f : (U, τR(X)) → (V, τR
′ (Y))   is  nano  -continuous,  bijective,  Ng∗α  -open  function and U is a 

Ng∗α -regular space then V is Ng∗α -regular. 

Theorem: 3.17. If f : (U, τR(X)) → (V, τR
′ (Y))    is  nano  -continuous,  nano  -closed,  injective  and  V  is a 

nano -regular space then U is Ng∗α -regular. 

Proof.  Let F be nano -closed set in U and x  / F .  Since f is nano -closed injective, f(F ) is nano -closed set  

in  V  such  that  f(x)  / f(F ).  Now  V  is  nano  regular,  there  exist  disjoint  nano  -open  sets  G  and  H such 

that f (x) ⊂ G and f (F ) ⊂ H. Thus x   f 
−1

(G) and F ⊂ f 
−1

(H). Since f is Ng∗α -continuous function 

f
−1

(G) and f 
−1

(H) are Ng∗α -open sets in U, f (G)∩f (H) = ϕ. Hence U is Ng∗α -regular.  

Remark: 3.18.  If  f : (U, τR(X)) → (V, τ
R

,(Y))  is  nano  -continuous,  nano  -closed,  injective  and  V  is  a 

nano -regular space then U is Ng∗α -regular. 

  

                                                                        4.  Nano g∗α -T0 Spaces 

 

In this section, we define and study the notions of Ng∗α -T0 spaces, in nano topological spaces and    

obtain some of their basic results. 

Definition: 4.1. A space U is called Ng∗α -T0 spaces for x, y   U and      there exists a Ng∗α -open   set  

G  such that   x   G and  y  / G. 

Theorem:4.2. Let (U, τR(X)) be a nano topological space, then for every nano -T0 space is Ng∗α -T0 

spaces. 

Proof. Let U be nano T0 space, x and y be two distinct points of  U, as U is nano T0 there exists nano 

open set G such that x   G and y  / G, since every nano open set is Ng∗α -open and hence G is nano 

Ng∗α -open set such that x   G and y  / G. Which implies U is Ng∗α -T0  spaces. 
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The converse of the above theorem need not be true in general. 

Example 4.3. Let U = {a, b, c, d} with U/R = {{a}, {b, c}, {d}} and X = {b, d}. Then  

τR(X) = {U, ϕ, {d}, {b, c}, {b, c, d}} be nano topology on U. We have 

NPO(U, X) = {U, ϕ, {b}, {c}, {d}, {b, c}, {b, d}, {c, d}, {a, b, d}, {b, c, d}, {a, c, d}}  

NαO(U, X) = {U, ϕ, {d}, {b, c}, {b, c, d}} 

Ng∗αO(U, X) = {U, ϕ, {b, c, d}, {c, d}, {b, d}, {b, c}, {d}, {c}, {b}} 

Here x = {b, d} and y = {a} then it is Ng∗α -T0 space but not nano -T0 space. 

Theorem: 4.4. Every Ng∗α -T0 space is nano pre -T0 space but not conversely. 

Proof. Let U be Ng∗α -T0 space, x and y be two distinct points of U, as U is Ng∗α -T0 space there    exists 

Ng∗α -open set G such that x   G and y  / G, since every Ng∗α -T0 -open set is nano pre-open and hence 

G is nano pre -open set such that x   G and y  / G.  Which implies U is nano pre -T0  space. 

The converse of the above theorem need not be true in general. 

 

Example: 4.5. From the example (4.3), Let x = {a, c, d} and y = {a} then it is a nano pre -T0 space   but 

not Ng∗α  -T0 space. 

Theorem: 4.6. Every Nα -T0 space is Ng∗α -T0 but not conversely. 

Proof. Let U be Nα -T0 space and x and y be two distinct points of U, as U is Nα -T0 there exists Nα -open set 

G such that x   G and y  / G, since every Nα -open set is Ng∗α -open and hence G is nano Ng∗α -open set 

such that x   G and y  / G. Which implies U is Nα -T0  space. 

The converse of the above theorem need not be true in general.  

 

Example 4.7. From the example(4.3), Let x = {c} and y = {a} then it is Ng∗α -T0  space but not Nα -T0  

space. 

 

Theorem 4.8. If P   Ng∗αO(X) and Q   Ng∗αO(X) then Q   Ng∗αO(X) 

Theorem: 4.9. A space U is Ng∗α -T0 iff for each x   U, there exists a Ng∗α -open set X of U containing x 

such that the subspace X is Ng∗α -T0. 

Proof. If U is nano Ng∗α –T0, take U as X. Then X is a Ng∗α -open set containing x such that the subspace 

X is Ng∗α -T0 , for every x   U. 

Next suppose that x1, x2 be any two distinct points of U. By hypothesis, there exists Xj   Ng∗α O(U ) such 

that xj   Xj and the subspace Xj   is Ng∗α -T0, for j = 1, 2. If x2   X1 then the proof is completed. If x2   / 

X1  then as X1  is Ng∗α -T0, there exists W1   Ng∗αO(X1) such that x1   w1 and  x2  / W1 or  there  exists  
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W2   Ng∗αO(X1)  such  that  x2   W2  and  x1     W2.  Since   X1   Ng∗α O(U ), it follows from 

theorem(4.8), Wj   Ng∗αO(U ) for j = 1, 2. This means that the space U is Ng∗α -T0. 

 

                                                                     5.    Nano g∗α -T1 Spaces 

In this section, we define and study the notions of Ng∗α - T1 spaces, in nano topological spaces and     obtain 

some of their basic results. 

Definition: 5.1. A space U is called Ng∗α -T1 space for x, y   U and    , there exists a Ng∗α -open               set  

G  and  H  such  that  x   G and  y  / G. and  y   H,  x  / H. 

Theorem: 5.2. Every nano-T1 space is Ng∗α -T1 spaces. 

Proof. Let U be nano-T1 space and let      in U. Then there exists distinct nano open sets G and H such 

that x   G and y   H. Since every nano open set is Ng∗α -open set. Hence G and H are distinct   Ng∗α -

open sets such that x   G and y   H. 

The converse of above theorem is need not be true in general. 

Example 5.3. Let U = {a, b, c, d} with U/R = {{a}, {b, c}, {d}} and X = {b, d}.  

Then τR(X) = {U, ϕ, {d}, {b, c}, {b, c, d}} be nano topology on U. We have 

NPO(U, X) = {U, ϕ, {b}, {c}, {d}, {b, c}, {b, d}, {c, d}, {a, b, d}, {b, c, d}, {a, c, d}}. 

NαO(U, X) = {U, ϕ, {d}, {b, c}, {b, c, d}}. 

Ng∗αO(U, X) = {U, ϕ, {b, c, d}, {c, d}, {b, d}, {b, c}, {d}, {c}, {b}}. 

Let V = {a, b, c, d} with V/R2 = {{b}, {c}, {a, d}} and Y = {b, d}. 

Then τR(Y ) = {V, ϕ, {b}, {a, d}, {a, b, d}} be a nano topology on V, we have 

NPO(V, Y ) = {V, ϕ, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}}  

NαO(V, Y ) = {V, ϕ, {b}, {a, d}, {a, b, d}}. 

Ng∗αO(V, Y ) = {V, ϕ, {a, b, d}, {b, d}, {a, d}, {a, b}, {d}, {a}, {b}}. 

Here x = {c} and y = {a} then it is Ng∗α -T1 space but not nano T1 space. 

Theorem 5.4.  Every Nα -T1 space is Ng∗α -T1 space. 

Proof. Let U be Nα -T1 space and let     in U. Then there exists distinct nano open sets G and H  such that 

x   G and y   H. Since every nano open set is Ng∗α -open set. Here G and H are distinct  Ng∗α -open sets 

such that x   G and y   H. 

The converse of above theorem is need not be true in general. 

 

Example 5.5. From the example 5.3, Let x = {c} and y = {a} then it is Ng∗α -T1 space but not Nα 

-T1 space. 

Theorem 5.6. Every Ng∗α -T1 space is nano pre -T1 space. 
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Proof. Let U be Ng∗α -T1 space and let     in U. Then there exists distinct nano- open sets G and   H 

such that x ∈ G and y ∈ H. Since every nano open set is nano -open set. Hence G and H are distinct pre-open 

sets such that x ∈ G and y ∈ H. 

The converse of above theorem is need not be true in general.                 

 

Example: 5.7. From the example 5.3, Let x = {a, b, c} and y = {a, c, d} then it is clear that x   G and y  / G. 

Then we  can  say  that  it  is  Ng∗α -T0  space. 

 

Theorem: 5.8. Let (U, τR(X)) be a nano topological space, then for each Ng∗α -T1 space is Ng∗α -T0 space. 

Proof. Let U be Ng∗α -T1 space and x and y be two distinct points of U, as U is Ng∗α -T1 space there exists 

Ng∗α -open set G such that x   G and y  / G, since every nano open set is Ng∗α-open and hence G is Ng∗α-open 

set such that x   G and y  / G ⇒ U is Ng∗α -T0.  

                                                                                                                                 

Example: 5.9. From the example 5.3, Let x = {b, c, d} and y = {a, d} then it is clear that x   G and y  / G.  

Then  we  can  say  that  it  is  Ng∗α -T0  space. 

 

Lemma 5.10. Union of Ng∗α -open sets is Ng∗α -open. 

 

Theorem: 5.11. A space U is Ng∗α -T1 space iff for any point x   U, the singleton set {x} is Ng∗α -closed 

set. 

Proof. Let every singleton set {x}   U of U be Ng∗α -closed.  Therefore U − {x} is Ng∗α -open.  Now 

we show that  U  is  Ng∗α  -T1   space.  Let x, y   U with     .  Then {x} and {y} are Ng∗α  -closed sets. 

Therefore U − {x} is a Ng∗α -open set containing y but not x and U − {y} is a Ng∗α -open set containing 

x but not y. Thus U is Ng∗α -T1 space. 

Conversely, let U be a Ng∗α -T1 space. Assume that x   U be an arbitrary point. Now, we show that {x} is 

Ng∗α -closed or U − {x} is nano Ng∗α -open. Let z   ∪ − {x} then clearly      .   Now, U   is Ng∗α -T1 

and z is a point different from x so there exists a Ng∗α -open set Gz such that z   Gz but x  / Gz .  Hence z   

Gz  ⊂ U − {x}.  Therefore U − {x} = ∪{Gz /z    x}.  So U − {x}  being the union of Ng∗α-open sets is 

Ng∗α-open. Hence {x} is Ng∗α- closed set. 

Theorem 5.12. A space U is Ng∗α -T1 space iff for each point x   U, there exists a Ng∗α-open set X of 

U containing x such that the subspace X is Ng∗α -T1. 

Proof. Proof is similar to theorem 4.9. 
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6. Nano g∗α - T2 Spaces 

 

In this section, we define and study the notions of Ng∗α -T2 spaces, in nano topological spaces and obtained 

some of their basic results. 

Definition: 6.1. A space U is called Ng∗α - T2 spaces for x, y   U and     there exists disjoint  Ng∗α -open 

set G and H such that x   G and y   H. 

 

Theorem: 6.2. Every nano -T2  space is Ng∗α -T2  space. 

Proof. Let U be nano -T2 space and let       in U. Then there exists disjoint nano open sets G and H   such 

that x   G and y   H. Since every nano open set is Ng∗α -open set. Here G and H are disjoint Ng∗α -open sets 

such that x   G and y   H. 

The converse of above theorem is need not be true in general. 

 

Example 6.3. Let U = {a, b, c, d} with U/R = {{a, b}, {c}, {d}} and X = {a, b}. 

Then τR(X) = {U, ϕ, {a, b}} be nano topology on U. We have 

NαO(U, X) = {U, ϕ, {a, b}, {a, b, c}, {a, b, d}}. 

Ng∗αO(U, X) = {U, ϕ, {a, b, d}, {a, b, c}, {a, b}, {a}, {b}}. 

Let V = {a, b, c} with V/R2 = {{a}, {b, c}} and Y = {a, c}. 

Then τR(Y ) = {V, ϕ, {a}, {b, c}} be a nano topology on V, we have 

NαO(V, Y ) = {V, ϕ, {a}, {b, c}}. 

Ng∗αO(V, Y ) = {V, ϕ, {a}, {b, c}}. 

Here x = {a} and y = {b, c} then it is Ng∗α -T2 space but not nano T2 space. 

 

Theorem: 6.4. Every Nα -T2 space is Ng∗α -T2 space. 

Proof. Let U be Nα -T2 space and let     in U. Then there exists disjoint nano open sets G and H such that x 

  G and y   H. As every nano open set is Ng∗α -open set G and H are disjoint Ng∗α -open sets such that x 

  G and y   H. 

The converse of above theorem is need not be true in general. 

 

Example 6.5. From the example 6.3, Let x = {a} and y = {b, c} then it is clear that x   G and y   H.  

Then we can say that it is Ng∗α -T2 space but not Nα -T2 space. 

 

Theorem:6.6. Let (U, τR(X)) be a nano topological space, then for each Ng∗α -T2 space is Ng∗α -T0 space. 
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Proof. Let U be Ng∗α -T2 space and x and y be two distinct points of U, as U is Ng∗α -T2 space there 

exists Ng∗α -open set G such that x   G and y  / G, since every nano open set is Ng∗α-open and hence G 

is Ng∗α-open set such that x   G and y  / G which implies U is Ng∗α -T0. □ 

Example: 6.7. From the example (6.3), Let x = {a, b} and y = {b, c} then it is clear that it is Ng∗α -T0 space 

but not Ng∗α -T2 space. 

Lemma: 6.8. Every Nα -open subspace of a Ng∗α -T2  space is Ng∗α -T2 space. 

Proof. Let X be a Nα -open subspace of a Ng∗α -T2 space. Let x and y be any two distinct points of  X. Since 

U is Ng∗α -T2 space and x ⊂ U , there exists two disjoint Ng∗α- open sets G and H in U such that x   G and y   

H. Let A = G ∩ X and B = H ∩ X. Then A and B are nano g∗α open sets in X containing x and y respectively. 

Also, A ∩ B = (G ∩ X) ∩ (H ∩ X) = ϕ. Hence X is Ng∗α -T2 space.                                                                   

CONCLUSION 

In the above work we have look into the characterization of Ng∗α -Normal space, Ng∗α -Regular space, Ng∗α -

T0  -space, Ng∗α -T1 -space, Ng∗α -T2 -space and obtain some relationship between the existing sets. 
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