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Soft πg∗s closed set in Soft Topological Spaces

Dr. V. Chitra1, R.Kalaivani2,

Abstract - The objective of this paper is define a new soft set namely soft πg∗s closed set in soft topological spaces and

to discuss some of their basic properties. Also relationship with other soft sets are investigated.

Keywords soft gs closed, soft g∗s closed, soft g∗β closed, soft πgs closed, soft πg∗s closed.

2010 Subject classification: 54A20, 06D72

1 Introduction

Soft set theory is a generalization of fuzzy set theory, that was proposed by Molodtsov [6] in 1999 to deal
with uncertainty in a parametric manner. Soft set theory is a new mathematical tool which is applied in
several directions such as smoothness of functions, Game theory, Riemann Integration, Operation Research
and theory of measurement.
Muhammad shabir [9] et al introduced soft topology in 2011. Several authors established the concepts of
soft topological space and this concept is used to solve many real life problems. Gnanambal Ilango and
Mrudula Ravindran[2] introduced soft pre open sets and proved some of its properties in soft topological
spaces in 2013.
In 2014, Mahanta J and Das P.K [4] introduced soft semi open sets and discussed some of their properties.
Soft α -open sets was introduced by Metin Akdag and Alken Ozkan[5] in 2014. They investigated and
discussed the concepts of soft α - continuous and soft α - functions. The same authors introduced soft β-
open set in 2014.
K.Kannan[3] defined generalized soft closed set and he also discussed the concepts of this set in soft
topological spaces. In 2013, A.Selvi and Arockiarani [8] were introduced soft πg closed set and M. Suraiya
begam and M. Sheik john[10] were defined a new soft set namely soft g∗s closed set in soft topological
spaces.
In this paper we introduced soft πg∗s closed set in soft topological spaces and we discussed some of its
properties. Also we investigated relationship between this set and some soft sets.

2 Preliminaries

This section contains basic definition and result of soft sets. These are used to extend and investigate the
properties of soft sets.

Definition 2.1. [6] Let U be a universe set, E be a set of parameters and P(U) be the power set of U. For
A⊂E, (F,A) is called a soft set over U, where F: A→P(U).
In other words, a soft set over U is a parameterized family of subsets of U i.e, for a∈A, F(a) may be
considered as the set of a approximate elements of the soft set (F,A).

1Assistant Professor, Department of Mathematics,Nallamuthu Gounder Mahalingam College, Pollachi-642001,
Coimbatore, Tamilnadu, India. E.mail: chitrangmc@gmail.com@gmail.com

2Research scholar, Department of Mathematics,Nallamuthu Gounder Mahalingam College, Pollachi-642001,
Coimbatore, Tamilnadu, India. E.mail: vanimaths123@gmail.com
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Soft πg∗s closed set in Soft Topological Spaces

Definition 2.2. [6] Let F and G be two soft sets over X. Then , we have
(i) F is a null soft set, ϕ if F(e)= ϕ for every e∈ E.
(ii) F is an absolute soft set, X, if F(e)= X, for every e∈E.
(iii) F is a soft subset of G, F⊆G, if F(e) ⊆ G(e) for every e∈ E.
(iv) F and G are soft equal, F=G, if F⊆G and G⊆F.
(v) The soft union of F and G, F∪G , is a soft over X and defined by F∪G: E→P(X)
such that F∪G(e)=F(e)∪G(e) for every e∈E.
(vi) The soft intersection of F and G, F∩G, is a soft over X and defined by F∩G: E→P(X)
such that F∩G(e)=F(e)∩G(e) for every e∈E.
(vii) The soft complement (X-F) of a soft set F, Fc and defined be
Fc: E→P(X) such that F c(e)=X F(e) for every e∈E.

Definition 2.3. [9] Let FA ∈ S(U). A soft topology on FA, denoted by τ , is collection of subsets of FA

having the following properties:
(i) Fϕ, FA ∈ τ .
(ii){FAi

⊆ FA : i ∈ I ⊆ N} ⊆ τ ⇒ ∪i∈I FAi
∈ τ .

(iii) {FAi
⊆ FA : 1 ≤ i ≤ n, n∈ N} ⊆ τ ⇒ ∩i=I FAi

∈ τ .
The pair (FA, τ) is called a soft topological space. Then every element of τ is called a soft open set. Fϕ

and FA are soft open sets.

Definition 2.4. [9] (i) Let (FA, τ) be a soft topological space and FB ⊆ FA. Then, the soft interior of
FB, denoted F0

B, is defined as the soft union of all soft open subsets of FB.
(ii) Let (FA, τ) be a soft topological space and FB ⊆ FA. Then, the soft closure of FB, denoted FB, is
defined as the soft intersection of all soft closed supersets of FB.

Definition 2.5. A soft subset (A,E) of a soft topological space (X,τ ,E) is called
i) a soft pre open set[2] if (A,E) ⊆ sint(scl(A,E)).
ii) a soft semi open set[4] if (A,E) ⊆ scl(sint(A,E)).
iii) a soft α open set[5] if (A,E) ⊆ sint(scl(sint(A,E))).
iv) a soft β open set[5] if (A,E) ⊆ scl(sint(scl(A,E))).
v) a soft regular open set[3] if (A,E) = sint(scl(A,E)).
vi) a soft π open set[8] if (A,E) is the finite union of soft regular open sets.
The complement of the soft pre open, soft semi open, soft α open, soft β open, soft regular open and soft
π open sets are called soft pre closed, soft semi closed, soft α closed, soft β closed, soft regular closed and
soft π closed sets.
The intersection of all soft semi closed (resp.soft pre closed,soft α closed, soft β closed, soft regular closed
and soft π closed)sets containing a subset (A,E) of (X,τ ,A) is called the soft semi closure (resp. soft pre
closure, soft α closure, soft β closure, soft regular closure and soft π closure) of (A,E) and is denoted by
sscl(A,E) (resp. spcl(A,E), sαcl(A,E), sβcl(A,E), srcl(A,E) and sπcl(A,E) ).

Definition 2.6. A soft subset (A,E) of a soft topological space (X,τ ,E) is called
i) a soft generalized closed set[3] (briefly soft g set) if cl(A)⊆(U,E) whenever (A,E)⊆(U,E) and (U,E) is
soft open in (X,τ ,A).
ii) a soft generalized semi closed set[3] (briefly soft gs closed) if sscl(A,E)⊆(U,E) whenever (A,E)⊆(U,E)
and (U,E) is soft open in (X,τ ,A).
iii) a soft π generalized closed set[8] (briefly soft πg closed) if scl(A,E)⊆(U,E) whenever (A,E)⊆(U,E) and
(U,E) is soft π open in (X,τ ,A).
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iv) a soft π generalized semi closed set [1](briefly soft πgs closed) if sscl(A,E)⊆(U,E) whenever (A,E)⊆(U,E)
and (U,E) is soft π open in (X,τ ,A).
v) a soft g∗β closed set[7] (briefly soft g∗β closed) if sβcl(A,E)⊆(U,E) whenever (A,E)⊆(U,E) and (U,E)
is soft g open in (X,τ ,A).
vi) a soft g∗s closed set [10](briefly soft g∗s closed) if sscl(A,E)⊆(U,E) whenever (A,E)⊆(U,E) and (U,E)
is soft g open in (X,τ ,A).

3 Soft πg∗s closed sets

Definition 3.1. A subset (A,E) of a soft topological space (X,τ ,E) is called soft πg∗s closed set if sscl(A,E)⊆(U,E)
whenever (A,E)⊆(U,E) and (U,E) is soft πg open in (X,τ ,E).

Theorem 3.2. Every soft closed set is soft πg∗s closed.
Proof: Let (A,E) be any soft closed set in (X,τ ,E). Let (A,E)⊆(U,E) where (U,E) is soft πg open.
Then scl(A,E)= (A,E)⊆(U,E). Since every soft closed set is soft semi closed, sscl(A,E)⊆scl(A,E)⊆(U,E).
Therefore (A,E) is soft πg∗s closed.

Theorem 3.3. Every soft semi closed set is soft πg∗s closed.
Proof: Let (A,E) be any soft semi closed set in (X,τ ,E) and let (A,E)⊆(U,E) where (U,E) is soft πg open.
By assumption, sscl(A,E)= (A,E). Since Since sscl(A,E)=(A,E)⊆(U,E). Hence (A,E) is soft πg∗s closed.

Theorem 3.4. Every soft α closed set is soft πg∗s closed.
Proof: Let (A,E) be any soft α closed set in (X,τ ,E) and let (A,E)⊆(U,E) where (U,E) is soft πg open.
By assumption, sαcl(A,E)= (A,E). We have
sscl(A,E)⊆sαcl(A,E)=(A,E)⊆(U,E). Therefore (A,E) is soft πg∗s closed.

Theorem 3.5. Every soft r closed set is soft πg∗s closed.
Proof: Let (A,E) be a soft r closed set in (X,τ ,E) and let (U,E) is soft πg open such that (A,E)⊆(U,E).
Since (A,E) is soft r closed, we have srcl(A,E)=(A,E)⊆(U,E). But sscl(A,E)⊆srcl(A,E)⊆(U,E). Therefore
(A,E) is soft πg∗s closed.

Theorem 3.6. Every soft πg∗s closed set is soft πg closed.
Proof: Let (A,E) be any soft πg∗s closed set in (X,τ ,E). Let (A,E)⊆(U,E) where (U,E) is soft π open.
Since (A,E) is soft πg∗s closed, sscl(A,E)⊆(U,E). Since every soft π open is soft πg open. Hence sscl(A,E)⊆scl(A,E)⊆(U,E).
Therefore (A,E) is soft πg closed.

Theorem 3.7. Every soft πg∗s closed set is soft πgs closed.
Proof: Let (A,E) be any soft πg∗s closed set in (X,τ ,E). Let (A,E)⊆(U,E) where (U,E) is soft π open.
Since every soft π open is soft πg open. Hence sscl(A,E)⊆(U,E). Therefore (A,E) is soft πgs closed.

Example 3.8. Let X={h1,h2,h3}, E={e1,e2}. Then τ={ϕ, X, (F1,E),(F2,E),(F3,E)} is a soft topological
space over X and τ c={ϕ, X, (G1,E),(G2,E),(G3,E)}. Here, (F1,E),(F2,E) and (F3,E) are soft sets defined
as, (F1,E)={(e1,{h1}),(e2,{h2,h3})}, (F2,E)={(e1,{h1}),(e2,{h2})} and (F3,E)={(e1,{h2,h3}),(e2,{h1,h3})}
and the soft sets (G1,E),(G2,E) and (G3,E) are defined as (G1,E)={(e1,{h2,h3}),(e2,{h1})}, (G2,E)={(e1,{h2,h3}),(e2,{h1,h3})}
and (G3,E)={(e1,{h1}),(e2,{h2})}.
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1. The soft set (A,E)= {(e1,{h3}),(e2,{h1})} is soft πg∗s closed but not soft closed.
2. The soft set (B,E)= {(e1,{h2}),(e2,{h1},{h3})} is soft πg∗s closed but not soft semi closed.
3. The soft set (C,E)= {(e1,{h3}),(e2,{h1},{h3})} is soft πg∗s closed but not soft α closed.
4. The soft set (D,E)= {(e1,{h2})} is soft πg∗s closed but not soft r closed.
5. The soft set (F,E)= {(e1,{h1})} is soft πg closed but not softπg∗s closed.
6. The soft set (G,E)= {(e1,{h2}),(e1,{h2})} is soft πgs closed but not softπg∗s closed.

Theorem 3.9. Every soft πg∗s closed set is soft g∗s closed.
Proof: Let (A,E) be any soft πg∗s closed set in (X,τ ,E). Let (A,E)⊆(U,E) where (U,E) is soft g open.
Since every soft g open is soft πg open, (U,E) is soft πg open. Since (A,E) is soft πg∗s closed implies
sscl(A,E)⊆(U,E). Hence (A,E) is soft g∗s closed.

Theorem 3.10. Every soft πg∗s closed set is soft g∗β closed.
Proof: Let (A,E) be any soft πg∗s closed set in (X,τ ,E). Let (A,E)⊆(U,E) where (U,E) is soft g open.
Since every soft g open is soft πg open, (U,E) is soft πg open. Then sscl(A,E)⊆sβcl(A,E)⊆(U,E). Hence
(A,E) is soft g∗β closed.

Theorem 3.11. Every soft πg∗s closed set is soft gs closed.
Proof: Let (A,E) be any soft πg∗s closed set in (X,τ ,E). Let (U,E) be soft open such that (A,E)⊆(U,E).
Since every soft open is soft πg open we have sscl(A,E)⊆(U,E). Hence (A,E) is soft gs closed.

Example 3.12. Let X={x1,x2}, E={e1,e2}. Then τ={ϕ, X, (F1,E),(F2,E)} is a soft topological space over
X and τ c={ϕ, X, (G1,E),(G2,E)}. Here, (F1,E),(F2,E) are soft sets defined as, (F1,E)={(e1,{x2}),(e2,{x1})},
(F2,E)={(e1,{x1}),(e2,{x2})} and the soft sets (G1,E),(G2,E) are defined as (G1,E)={(e1,{x1}),(e2,{x2})},
(G2,E)={(e1,{x2}),(e2,{x1})}.

1. The soft set (B,E)= {(e2,{x1})} is soft g∗s closed but not soft πg∗s closed.
2. The soft set (C,E)= {(e1,{x2}),(e2,{x2})} is soft g∗β closed but not soft πg∗s closed.
3. The soft set (D,E)= {(e1,{x1})} is soft gs closed but not soft πg∗s closed.

Summing up the above implications, we get the following diagram.
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Soft closed set

Soft r-closed
Soft semi closed

Soft α closed

Soft πg closed

Soft πgs closed

Soft gs closed

Soft g∗β closed

Soft πg∗s closed

Soft g∗s closed

However, the converse implications are not true as seen by the above examples.

4 Characterization of soft πg∗s closed sets

Theorem 4.1. If (A,E) is both soft πg open and soft πg∗s closed set in X, then (A,E) is soft semi closed.
Proof: Let (A,E) be soft πg open and soft πg∗s closed. Therefore sscl(A,E)⊆(A,E). But (A,E)⊆sscl(A,E).
We have (A,E)= sscl(A,E). Hence (A,E) is soft semi closed.

Theorem 4.2. A subset (A,E) of X is soft πg∗s closed iff sscl(A,E)-(A,E) contains no non-empty soft
closed set in X.
Proof: Let (A,E) be a soft πg∗s closed set. Assume that (B,E) is a non empty softπg closed set,
(B,E)⊆sscl(A,E)-(A,E). Then we have (B,E)⊆sscl(A,E)∩ (A,E)c, since sscl(A,E)-(A,E)= sscl(A,E)∩
(A,E)c. Therefore (B,E)⊆sscl(A,E) and (B,E)⊆(A,E)c. Since (B,E)c is soft πg open. Now, by the
definition of soft πg∗s closed set, sscl(A,E)⊆(B,E)c, ie) (B,E)⊆ (sscl(A,E))c. Hence (B,E)⊆sscl(A,E)
∩ (sscl(A,E))c =ϕ, which is a contradiction. Therefore sscl(A,E)-(A,E) contains no non empty soft closed
set in X.
Conversely, assume that sscl(A,E)-(A,E) contains no non empty soft closed set. Let (A,E)⊆(U,E) , (U,E)
is soft πg open. Suppose that sscl(A,E) is not contained in (U,E), then sscl(A,E)∩ (U,E)c is a non empty
closed subset of sscl(A,E)-(A,E) which is a contradiction. Therefore sscl(A,E)⊆ (U,E) and hence (A,E) i
soft πg∗s closed set.

Theorem 4.3. If (A,E) is a soft πg∗s closed set in X and (A,E)⊆(B,E)⊆sscl(A,E) then (B,E) is soft πg∗s
closed set in X.
Proof: Let (B,E)⊆(U,E) and (U,E) be soft π open. Given (A,E)⊂(B,E). Since (A,E) is soft πg∗s closed
then (A,E)⊂(B,E) implies sscl(A,E)⊆(U,E). Now sscl(B,E)⊆sscl(sscl(A,E))= sscl(A,E)⊆(U,E). Hence
(B,E) is soft πg∗s closed set.
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Soft πg∗s closed set in Soft Topological Spaces

Theorem 4.4. If (A,E)⊂X is soft πg∗s closed then sscl(A,E)-(A,E) is soft πg open.
Proof: Let (A,E) be a soft πg∗s closed in X. Let (F,E) be a soft πg closed set such that (F,E)⊆sscl(A,E)-
(A,E). Then sscl(A,E)-(A,E) does not contain any non empty soft πg closed set. Therefore (F,E)=ϕ, so
(F,E)⊆int(sscl(A,E)-(A,E)). This shows that (F,E)⊆sscl(A,E)-(A,E) is soft πg open.

Remark 4.5. Finite union of soft πg∗s closed set need not be πg∗s closed set.

Example 4.6. From Example 3.13, (A,E)= {(e2,{x2})} and (B,E)= {(e1,{x2}),(e2,{x1})} then union
(A,E)∪(B,E)= {(e1,{x2}),(e2,{x1,x2})} is not soft πg∗s closed set .

Remark 4.7. Finite intersection of soft πg∗s closed set need not be πg∗s closed set.

Example 4.8. From Example 3.8, (A,E)= {(e1,{h2,h3}),(e2,{h1,h3})} and (B,E)= {(e1,{h2}),(e2,{h1,h3})}
then intersection (A,E)∩ (B,E)= {(e2,{h1,h3})} is not soft πg∗s closed set .

Definition 4.9. A set (A,E) is called soft πg∗s open set if its complement is soft πg∗s closed set.

Theorem 4.10. If (A,E)⊆X is soft πg∗s open iff (F,E)⊆ssint(A,E) whenever (F,E) is contained in (A,E)
and (F,E) is soft πg closed.
Proof: Let (A,E) be soft πg∗s open. Let (F,E)⊆(A,E) and (F,E) is soft πg closed. Then X - (A,E)⊆ X -
(F,E). X - (F,E) is soft πg open. Therefore sscl (X - (A,E))⊆ X - (F,E).
ie) X - ssint(A,E)⊆ X - (F,E).
Thus, (F,E)⊆ssint(A,E).

Conversely, assume that (F,E) is soft πg closed and (F,E)⊆(A,E) such that (F,E)⊆ssint(A,E). Let X
- (A,E)⊆(U,E) where (U,E) is soft πg open. Then X - (U,E)⊆(A,E) and X - (U,E) is soft πg closed.
By hypothesis, X - (U,E)⊆ssint(A,E). ie) X - ssint(A,E)=sscl(X - (A,E))⊆(U,E). Thus X - (A,E) is soft
πg∗s closed and (A,E) is soft πg∗s open.

Theorem 4.11. int(B,E)⊆(B,E)⊆(A,E) and (A,E) is soft πg∗s open in X, then (B,E) is soft πg∗s open
in X.
Proof: Suppose that int(B,E)⊆(B,E)⊆(A,E) and (A,E) is soft πg∗s open in X then (A,E)c ⊆(B,E)c

⊆cl(A,E)c. Since (A,E)c is soft πg∗s closed in X. We have (B,E) is soft πg∗s open in X.
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