



## **VOLUME X**

ISBN No.: 978-81-953602-6-0

**Physical Science** 

# **NALLAMUTHU GOUNDER MAHALINGAM COLLEGE**

An Autonomous Institution, Affiliated to Bharathiar University, An ISO 9001:2015 Certified Institution,

Pollachi-642001



## **SUPPORTED BY**







**Dairy Division** 







# **PROCEEDING**

**One day International Conference EMERGING TRENDS IN SCIENCE AND TECHNOLOGY (ETIST-2021)** 27th October 2021

**Jointly Organized by** 

Department of Biological Science, Physical Science and Computational Science

## NALLAMUTHU GOUNDER MAHALINGAM COLLEGE

An Autonomous Institution, Affiliated to Bharathiar University
An ISO 9001:2015 Certified Institution, Pollachi-642001.



## Proceeding of the

One day International Conference on

EMERGING TRENDS IN SCIENCE AND TECHNOLOGY (ETIST-2021)

27<sup>th</sup> October 2021

Jointly Organized by

Department of Biological Science, Physical Science and Computational Science

Copyright © 2021 by Nallamuthu Gounder Mahalingam College All Rights Reserved

ISBN No: 978-81-953602-6-0



978-81-953602-6-0

Nallamuthu Gounder Mahalingam College

An Autonomous Institution, Affiliated to Bharathiar University

An ISO 9001:2015 Certified Institution, 90 Palghat Road, Pollachi-642001.

www.ngmc.org

#### **ABOUT THE INSTITUTION**

A nations's growth is in proportion to education and intelligence spread among the masses. Having this idealistic vision, two great philanthropists late. S.P. Nallamuthu Gounder and Late. Arutchelver Padmabhushan Dr.N.Mahalingam formed an organization called Pollachi Kalvi Kazhagam, which started NGM College in 1957, to impart holistic education with an objective to cater to the higher educational needs of those who wish to aspire for excellence in knowledge and values. The College has achieved greater academic distinctions with the introduction of autonomous system from the academic year 1987-88. The college has been Re-Accredited by NAAC and it is ISO 9001: 2015 Certified Institution. The total student strength is around 6000. Having celebrated its Diamond Jubilee in 2017, the college has blossomed into a premier Post-Graduate and Research Institution, offering 26 UG, 12 PG, 13 M.Phil and 10 Ph.D Programmes, apart from Diploma and Certificate Courses. The college has been ranked within Top 100 (72nd Rank) in India by NIRF 2021.

#### ABOUT CONFERENCE

The International conference on "Emerging Trends in Science and Technology (ETIST-2021)" is being jointly organized by Departments of Biological Science, Physical Science and Computational Science - Nallamuthu Gounder Mahalingam College, Pollachi along with ISTE, CSI, IETE, IEE & RIYASA LABS on 27th OCT 2021. The Conference will provide common platform for faculties, research scholars, industrialists to exchange and discust the innovative ideas and will promote to work in interdisciplinary mode.

#### **EDITORIAL BOARD**

#### Dr. V. Inthumathi

Associate Professor & Head, Dept. of Mathematics, NGM College

#### Dr. J. Jayasudha

Assistant Professor, Dept. of Mathematics, NGM College

#### Dr. R. Santhi

Assistant Professor, Dept. of Mathematics, NGM College

#### Dr. V. Chitra

Assistant Professor, Dept. of Mathematics, NGM College

#### Dr. S. Sivasankar

Assistant Professor, Dept. of Mathematics, NGM College

#### Dr. S. Kaleeswari

Assistant Professor, Dept. of Mathematics, NGM College

#### Dr. N.Selvanayaki

Assistant Professor, Dept. of Mathematics, NGM College

#### Dr. M. Maheswari

Assistant Professor, Dept. of Mathematics, NGM College

#### Mrs. A. Gnanasoundari

Assistant Professor, Dept. of Mathematics, NGM College

#### Dr. A.G. Kannan

Assistant Professor, Dept. of Physics, NGM College

| S. No. | Article ID | Title of the Article                                                                                                                                                                           | Page No. |
|--------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1      | P3005T     | Fuzzy rpsI-Closed Sets And Fuzzy gprI-Closed Sets InFuzzy Ideal Topological Spaces -V.Chitra and R.Kalaivani                                                                                   | 1-11     |
| 2      | P3006T     | Soft $\pi$ g *s closed set in Soft Topological Spaces<br>- V.Chitra and R.Kalaivani                                                                                                            | 12-18    |
| 3      | P3007T     | Regular Generalized Irresolute Continuous Mappings in BipolarPythagorean Fuzzy Topological Spaces - Vishalakshi.K, Maragathavalli.S, Santhi.R                                                  | 19-24    |
| 4      | P3008T     | Perfectly Regular Generalized Continuous Mappings in Bipolar PythagoreanFuzzy Topological Spaces  - Vishalakshi.K, Maragathavalli.S, Santhi.R                                                  | 25-30    |
| 5      | P3009T     | Interval Valued Pythagoran Fuzzy Soft Sets and Their Properties - P. Rajarajeswari, T. Mathi Sujitha and R. Santhi                                                                             | 31-38    |
| 6      | P3010OR    | Computational Approach for Transient Behaviour of Finite Source RetrialQueueing Model with Multiple Vacations and Catastrophe  - J. Indhumathi, A. Muthu Ganapathi Subramanian and Gopal Sekar | 39-51    |
| 7      | P3011T     | Bipolar Pythagorean Fuzzy Contra Regular α Generalized ContinuousMappings  - Nithiyapriya.S, Maragathavalli.S, Santhi.R                                                                        | 52-57    |
| 8      | P3012T     | Almost Regular α Generalized Continuous Mappings in Bipolar Pythagorean Fuzzy Topological Spaces - Nithiyapriya.S, Maragathavalli.S, Santhi.R                                                  | 58-63    |
| 9      | P3013T     | Topologized Graphical Method for Pentagonal Fuzzy Transportation Problems - E. Kungumaraj, V. Nandhini and R.Santhi                                                                            | 64-71    |
| 10     | P3014OR    | Biofuel Crop Selection Using Multi-Criteria Decision Making - V. Sree Rama Krishnan and S. Senpagam                                                                                            | 72-77    |
| 11     | P3015T     | Nano generalized α** closed sets in Nano Topological Spaces - Kalarani.M, Nithyakala.R, Santhi.R                                                                                               | 78-84    |
| 12     | P3016T     | Weakly delta ps- Continuous Functions - ShanmugapriyaH, Vidhyapriya P and Sivakamasundari K                                                                                                    | 85-99    |
| 13     | P3017T     | Novel approach to Generate Topologies by using Cuts Of Neutrosophic Sets - E. Kungumaraj and R.Santhi                                                                                          | 100-107  |
| 14     | P3018T     | Irresolute topological simple ring - U.Jerseena, S. Syed Ali Fathima, K.Alli and J. Jayasudha                                                                                                  | 108-113  |
| 15     | P3019T     | Exemplification of a MATLAB program to certain aspects of fuzzycodewords in fuzzy logic  - A. Neeraja, B. Amudhabigai and V. Chitra                                                            | 114-119  |
| 16     | P3020T     | Intuitionistic Fuzzy Soft Strongly Irresolvable Spaces in Intuitionistic Fuzzy Soft Topological Spaces - Smitha M. G, J. Jayasudha, Sindhu G.                                                  | 120-124  |
| 17     | P3021T     | Contra delta I-semi-continuous functions in ideal topological spaces - V. Inthumathi, M. Maheswari, A. Anis Fathima                                                                            | 125-131  |
| 18     | P3022T     | Stronger form of delta ps Continuous Functions - ShanmugapriyaH,Vidhyapriya P and Sivakamasundari K                                                                                            | 132-143  |
| 19     | P3023T     | Delta I semi connected in Ideal Topological Spaces - V. Inthumathi, M. Maheswari, A. Anis Fathima                                                                                              | 144-151  |
| 20     | P3062T     | On ng*α -normal and ng*α -regular spaces in nano Topological spaces - V. Rajendran, P. Sathishmohan, M. Amsaveni, M. Chitra                                                                    | 152-162  |
| 21     | P1-005     | Nonlinear Optical Properties of Superalkali–Metal Complexes: A DFT Study - Mylsamy Karthika, Murugesan Gayathri                                                                                | 163-170  |
| 22     | P1-006     | Coordination of Metal (M=Ni, Cu) with Triazolopyrimidine and Auxillary Ligands and Formation of Hydrogen Bond Network: A Theoretical Study  - Mylsamy Karthika                                 | 171-179  |

ISBN No.: 978-81-953602-6-0

Bipolar Pythagorean Fuzzy Contra Regular α Generalized

**Continuous Mappings** 

S.NITHIYAPRIYA<sup>1</sup>, S.MARAGATHAVALLI<sup>2</sup>, R.SANTHI<sup>3</sup>

<sup>1</sup>Research Scholar, Government Arts College, Udumalpet, Tamilnadu, INDIA, Email: <u>nithiyapriya87@gmail.com</u>

<sup>2</sup>Assistant Professor, Department of Mathematics, Government Arts College, Udumalpet, Tamilnadu, INDIA.

<sup>3</sup>Assistant Professor, Department of Mathematics, NGM College, Pollachi, Tamilnadu, INDIA.

**ABSTRACT:** The impact factor of this paper is to introduce and study the concept of Contra Regular  $\alpha$  Generalized Continuous Mappings in Bipolar Pythagorean Fuzzy Topological spaces. Further, we study some of their properties and inter relationship with other existing Bipolar Pythagorean Fuzzy Topological Spaces.

**KEYWORDS:** Bipolar Pythagorean Fuzzy Sets, Bipolar Pythagorean Fuzzy Topology, Bipolar Pythagoren Fuzzy Regular  $\alpha$  Generalized Closed sets, Bipolar Pythagorean Fuzzy Regular  $\alpha$  generalized continuous mappings, Bipolar Pythagorean Fuzzy Contra Regular  $\alpha$  generalized continuous mappings.

#### 1.INTRODUCTION

In 1965, Zadeh[12] introduced the concept of Fuzzy set which has a framework to encounter uncertainity, vagueness and partial truth and it represents a degree of membership for each member of the universe of discourse to a subset of it. After the extensions of fuzzy set theory, a new concept called intuitionistic Fuzzy set[2] was introduced. In intuitionistic Fuzzy set with elements comprising membership and non membership degree. Yager[3] familiarized the model of Pythagorean fuzzy sets. After the Pythagorean fuzzy sets, it was widely used in the field of decision making and was applied for the real life applications. Zhang [11] introduced the extension of fuzzy set with Bipolarity, called Bipolar value fuzzy sets. Chen et.al[10] develops extension of bipolar fuzzy sets.

In this paper, we introduce Bipolar Pythagorean Fuzzy Contra Regular  $\alpha$  Generalized Continuous Mappings.

#### 2. PRELIMINARIES

**Definition 2.1:** Let X be a non empty set. A Bipolar Pythagorean Fuzzy Set(BPFS in short) $A = \{(x, \mu_A^+, \mu_A^-, \nu_A^+, \nu_A^-): x \in X\}$  where  $\mu_A^+: X \to [0,1], \nu_A^+: X \to [0,1], \mu_A^-: X \to [-1,0], \nu_A^-: X \to [-1,0]$  are the mappings such that  $0 \le (\mu_A^+(x))^2 + (\nu_A^+(x))^2 \le 1$  and  $-1 \le (\mu_A^-(x))^2 + (\nu_A^-(x))^2 \le 0$  where  $\mu_A^+(x)$  denote the positive

<sup>1</sup>Research Scholar, Government Arts College, Udumalpet, Tamilnadu, INDIA, nithiyapriya87@gmail.com

<sup>2</sup>Assistant Professor, Department of Mathematics, Government Arts College, Udumalpet, Tamilnadu, INDIA.

<sup>3</sup>Assistant Professor, Department of Mathematics, NGM College, Pollachi, Tamilnadu, INDIA.

# Bipolar Pythagorean Fuzzy Contra Regular $\alpha$ Generalized

## **Continuous Mappings**

membership degree.  $v_A^+(x)$  denote the positive non membership degree.  $\mu_A^-(x)$  denote the negative membership degree.  $v_A^-(x)$  denote the negative non membership degree.

**Definition 2.2:** Let  $X \neq \emptyset$  be a set and  $\tau_p$  be a family of Bipolar Pythagorean Fuzzy subsets of X. If

- (a)  $0_X, 1_X \in \tau_{v}$ .
- (b) For any  $P_1, P_2 \in \tau_p$ , we have  $P_1 \cap P_2 \in \tau_p$ .
- (c)  $\cup P_i \in \tau_p$  for an arbitrary family  $\{P_i : i \in J\} \subseteq \tau_p$ .

Then  $\tau_p$  is called Bipolar Pythagorean Fuzzy Topology(BPFT) on X and the pair  $(X, \tau_p)$  is said to be Bipolar Pythagorean Fuzzy Topological space. Each member of  $\tau_p$  is called Bipolar Pythagorean Fuzzy open set (BPFOS). The complement of a Bipolar Pythagorean Fuzzy open set is called a Bipolar Pythagorean Fuzzy closed set (BPFCS).

**Definition 2.3:** If BPFS  $A = \{(x, \mu_A^+(x), \nu_A^+(x), \mu_A^-(x), \nu_A^-(x)): x \in X\}$  in a BPFTS  $(X, \tau_p)$  is said to be

- (a) Bipolar Pythagorean Fuzzy Semi closed set (BPFSCS) if  $int(cl(A)) \subseteq A$
- (b) Bipolar Pythagorean Fuzzy Pre-closed set(BPFPCS) if  $cl(int(A)) \subseteq A$
- (c) Bipolar Pythagorean Fuzzy  $\alpha$  closed set (BPF $\alpha$ CS) if  $cl(int(cl(A)) \subseteq A$
- (d) Bipolar Pythagorean Fuzzy  $\gamma$  closed set (BPF $\gamma$ CS) if  $A \subseteq int(cl(A)) \cup cl(int(A))$
- (e) Bipolar Pythagorean Fuzzy regular closed set (BPFRCS) if A = cl(int(A))
- (f) If BPF set A of a BPFTS  $(X, \tau_p)$  is a Bipolar Pythagorean Fuzzy Regular Generalized closed set(BPFRGCS), if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is BPFROS in X.
- (g) If BPF set A of a BPFTS  $(X, \tau_p)$  is a Bipolar Pythagorean Fuzzy Regular  $\alpha$  Generalized closed set(BPFRGCS), if  $\alpha cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is BPFROS in X.

**Definition 2.4:** A function  $\phi : (X, \tau_p) \to (Y, \sigma_p)$  is called BPFR $\alpha$ G continuous mapping if the inverse image of every BPF closed set in Y is BPFR $\alpha$ G closed set in X.

**Definition 2.5:** A mapping  $\phi: (X, \tau_p) \to (Y, \sigma_p)$  is said to be

- (i) BPF semi continuous mapping if  $\phi^{-1}(A) \in BPFSO(X)$  for every  $A \in (Y, \sigma_p)$ .
- (ii) BPF $\alpha$  continuous mapping if  $\phi^{-1}(A) \in BPF\alpha O(X)$  for every  $A \in (Y, \sigma_p)$ .
- (iii) BPF Pre continuous mapping if  $\phi^{-1}(A) \in BPFPO(X)$  for every  $A \in (Y, \sigma_p)$ .
- (iv) BPFy continuous mapping if  $\phi^{-1}(A) \in BPFyO(X)$  for every  $A \in (Y, \sigma_n)$ .

*Definition 2.6:* A mapping  $\phi$ :  $(X, \tau_p)$  →  $(Y, \sigma_p)$  is said to be Bipolar Pythagorean Fuzzy ConratαG continuous mapping (BPF contraαG continuous mapping) if  $\phi^{-1}(A) \in BPF\alpha GOS(X)$  for every BPFCS A in  $(Y, \sigma_p)$ .

#### 3. BIPOLAR PYTHAGOREAN FUZZY CONTRA REGULAR @ GENERALIZED CONTINUOUS MAPPINGS

In this section we introduce Bipolar Pythagorean Fuzzy Contra Regular  $\alpha$  Generalized continuous mappings and study some of its properties.

**Definition 3.1:** A mapping  $\phi: (X, \tau_p) \to (Y, \sigma_p)$  is called Bipolar phythagorean fuzzy contra regular  $\alpha$  generalized continuous (BPFCR $\alpha$ G continuous in short) mapping if  $\phi^{-1}(\omega)$  is a BPFR $\alpha$ GCS in X for every BPFOS  $\omega$  of Y.

Example 3.2: Let X={a,b} and Y={u,v}. Then  $\tau_p = \{0_p, T_1, T_2, 1_p\}$  and  $\sigma_p = \{0_p, T_3, 1_p\}$  are BPFTs on X and Y respectively, where  $T_1$ = (x, (0.7, 0.6), (0.5, 0.3), (-0.6, -0.7), (-0.4, -0.3)),  $T_2$  = (x, (0.3, 0.2), (0.7, 0.6), (-0.2, -0.1), (-0.8, -0.7)) and  $T_3$  = (y, (0.4, 0.2), (0.8, 0.7), (-0.5, -0.3), (-0.8, -0.7)). Define a mapping  $\phi$ : (X,  $\tau_p$ )  $\rightarrow$  (Y,  $\sigma_p$ ) by  $\phi(a) = u$  and  $\phi(b) = v$ . Here  $T_3$  = (y, (0.4, 0.2), (0.8, 0.7), (-0.5, -0.3), (-0.8, -0.7)) is BPFOS in Y and  $T_1, T_2$  are BPFROS in X. Now  $\phi^{-1}(T_3)$  = (x, (0.4, 0.2), (0.8, 0.7), (-0.5, -0.3), (-0.8, -0.7)) is a BPFRαGCS in X, as  $\alpha cl(\phi^{-1}(T_3)) = T_1^c \subseteq T_1$  whenever  $(\phi^{-1}(T_3)) \subseteq T_1$  and  $T_1$  is BPFROS in X. Therefore,  $\phi$  is BPFCRαG continuous mapping in X.

**Remark 3.3:** Every BPFC continuous mapping, BPFaC continuous mapping, BPFCR continuous mapping and BPFCaG continuous mapping are BPFCRaG continuous mapping but the converses are .not true. This can be seen from the following examples.

**Example 3.4:** From Example 3.2,  $\phi$  is BPFCR $\alpha$ G continuous mapping but not BPFC continuous mapping, as  $cl(\phi^{-1}(T_3)) = T_1^c \neq \phi^{-1}(T_3)$ .

**Example 3.5:** From Example 3.2,  $\phi$  is BPFCR $\alpha$ G continuous mapping but not BPF $\alpha$ C continuous mapping, as  $\alpha cl(\phi^{-1}(T_3)) = cl(int(cl(\phi^{-1}(T_3))) = T_1^c \subseteq \phi^{-1}(T_3)$ .

*Example:* 3.6: From Example 3.2,  $\phi$  is BPFCR $\alpha$ G continuous mapping but not BPFCR continuous mapping, as  $\alpha cl(\phi^{-1}(T_3)) = cl(int(cl(\phi^{-1}(T_3))) = T_1^c \subseteq \phi^{-1}(T_3)$ .

**Example:** 3.7: From Example 3.2,  $\phi$  is BPFCR $\alpha$ G continuous mapping but not BPFCG continuous mapping, as  $cl(\phi^{-1}(T_3)) = T_2^c \nsubseteq U$ .

*Example:* 3.8: From Example 3.2,  $\phi$  is BPFCR $\alpha$ G continuous mapping but not BPFC $\alpha$ G continuous mapping, as  $acl(\phi^{-1}(T_3)) = cl(int(cl(\phi^{-1}(T_3))) = T_2^c \nsubseteq U$ .

Remark 3.9: Every BPFCP continuous mapping and BPFCR@G continuous mapping are independent of each other.

Example 3.10: Let X={a,b} and Y={u,v}. Then  $\tau_p = \{0_p, T_1, T_2, 1_p\}$  and  $\sigma_p = \{0_p, T_3, 1_p\}$  are BPFTs on X and Y respectively, where  $T_1 = (x, (0.7, 0.6), (0.5, 0.3), (-0.6, -0.7), (-0.4, -0.3))$ ,  $T_2 = (x, (0.3, 0.2), (0.7, 0.6), (-0.2, -0.1), (-0.8, -0.7))$  and  $T_3 = (y, (0.4, 0.2), (0.5, 0.6), (-0.5, -0.3), (-0.8, -0.7))$ . Define a mapping  $\phi : (X, \tau_p) \to (Y, \sigma_p)$  by  $\phi(a) = u$  and  $\phi(b) = v$ . Here  $T_3 = (y, (0.4, 0.2), (0.8, 0.7), (-0.5, -0.3), (-0.8, -0.7))$  is BPFOS in Y and  $T_1, T_2$  are BPFROS in X. Then  $\phi^{-1}(T_3) = (x, (0.4, 0.2), (0.8, 0.7), (-0.5, -0.3), (-0.8, -0.7))$  is a BPFR $\alpha$ GCS in X but  $(\phi^{-1}(T_3))$  is not BPFPCS, as  $cl(int((\phi^{-1}(T_3)))) = T_1^c \nsubseteq \phi^{-1}(T_3)$ . Therefore,  $\phi$  is not a BPFCP continuous mapping in X.

Example 3.11: Let X={a,b} and Y={u,v}. Then  $\tau_p = \{0_p, T_1, T_2, 1_p\}$  and  $\sigma_p = \{0_p, T_3, 1_p\}$  are BPFTs on X and Y respectively, where  $T_1 = (x, (0.7, 0.6), (0.5, 0.3), (-0.6, -0.5), (-0.4, -0.3)), T_2 = (x, (0.3, 0.2), (0.7, 0.6), (-0.3, -0.1), (-0.7, -0.6))$  and  $T_3 = (y, (0.1, 0.2), (0.8, 0.8), (-0.1, -0.2), (-0.6, -0.6))$ . Define a mapping  $\phi : (X, \tau_p) \to (Y, \sigma_p)$  by  $\phi(a) = u$  and  $\phi(b) = v$ . Here  $T_3 = (y, (0.1, 0.2), (0.8, 0.8), (-0.1, -0.2), (-0.6, -0.6))$  is BPFOS in Y and  $T_1, T_2$  are BPFROS in X. Then  $\phi^{-1}(T_3) = (x, (0.1, 0.2), (0.8, 0.8), (-0.1, -0.2), (-0.6, -0.6))$  is a BPFPCS in X but  $(\phi^{-1}(T_3))$  is not BPFRαGCS, as  $\alpha cl(\phi^{-1}(T_3)) = T_1^c \subseteq T_1 \nsubseteq T_2$ . Therefore,  $\phi$  is not a BPFCRαG continuous mapping in X.

54 ETIST 2021

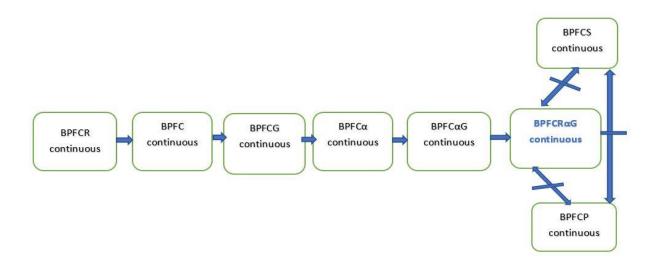
# Bipolar Pythagorean Fuzzy Contra Regular $\alpha$ Generalized Continuous Mappings

**Remark 3.12:** Every BPFCS continuous mapping and BPFCR aG continuous mapping are independent of each other.

*Example 3.13:* From Example 3.10,  $\phi^{-1}(T_3) = (x, (0.4, 0.2), (0.8, 0.7), (-0.5, -0.3), (-0.8, -0.7))$  is a BPFR $\alpha$ GCS in X but  $(\phi^{-1}(T_3))$  is not BPFSCS, a s  $int(cl((\phi^{-1}(T_3))) = T_1^c \nsubseteq \phi^{-1}(T_3)$ . Therefore,  $\phi$  is not a BPFCS continuous mapping in X.

Example 3.14: Let X={a,b} and Y={u,v}. Then  $\tau_p = \{0_p, T_1, T_2, 1_p\}$  and  $\sigma_p = \{0_p, T_3, 1_p\}$  are BPFTs on X and Y respectively, where  $T_1$ = (x, (0.5, 0.3), (0.6, 0.7), (-0.4, -0.2), (-0.5, -0.6)),  $T_2$  = (x, (0.2, 0.2), (0.7, 0.7), (-0.2, -0.1), (-0.5, -0.6)) and  $T_3$  = (y, (0.5, 0.3), (0.6, 0.7), (-0.4, -0.2), (-0.5, -0.6)). Define a mapping  $\phi$ : (X, τ<sub>p</sub>) → (Y, σ<sub>p</sub>) by  $\phi(\alpha) = u$  and  $\phi(b) = v$ . Here  $T_3$  = (y, (0.1, 0.2), (0.8, 0.8), (-0.1, -0.2), (-0.6, -0.6)) is BPFOS in Y and  $T_1$  is BPFROS in X. Then  $\phi^{-1}(T_3)$  = (x, (0.1, 0.2), (0.8, 0.8), (-0.1, -0.2), (-0.6, -0.6)) is a BPFSCS in X but ( $\phi^{-1}(T_3)$ ) is not BPFRαGCS, as  $\alpha cl(\phi^{-1}(T_3)) = T_1^c \nsubseteq T_1$ . Therefore,  $\phi$  is not a BPFCRαG continuous mapping in X.

Figure 1: The relation between various types of BPFCRG continuous are given in the following diagram



**Theorem 3.15:** A mapping  $\phi: (X, \tau_p) \to (Y, \sigma_p)$  is BPFCR $\alpha$ G continuous mapping if and only if the inverse image of each BPFCS in Y is a BPFR $\alpha$ GOS in X.

**Proof:** Necessity: Let  $\omega$  be BPFCS in Y. This implies  $\omega^c$  is BPFOS in Y. Since  $\phi$  is BPFCR $\alpha$ G continuous mapping,  $\phi^{-1}(\omega^c)$  is BPFR $\alpha$ GCS in X. Since  $\phi^{-1}(\omega^c) = (\phi^{-1}(\omega))^c$ . Thus,  $\phi^{-1}(\omega)$  is BPFR $\alpha$ GOS in X.

*Sufficiency:* Suppose that  $\omega$  is BPFOS in Y. This implies  $\omega^c$  is BPFCS in Y. By hypothesis,  $\phi^{-1}(\omega^c)$  is BPFR $\alpha$ GOS in X. Since  $\phi^{-1}(\omega^c) = (\phi^{-1}(\omega))^c$ , where  $(\phi^{-1}(\omega))^c$  is BPFR $\alpha$ GOS in X,  $\phi^{-1}(\omega)$  is BPFR $\alpha$ GCS in X. Hence  $\phi$  is BPFCR $\alpha$ G continuous mapping.

**Theorem 3.16:** Let  $\phi: (X, \tau_p) \to (Y, \sigma_p)$  be a mapping and let  $\phi^{-1}(\omega)$  be a BPFROS in X for every BPFCS  $\omega$  in Y. Then  $\phi$  is a BPFCR $\alpha$ G continuous mapping.

**Theorem 3.17** Let  $\phi: (X, \tau_p) \to (Y, \sigma_p)$  be BPFCR $\alpha$ G continuous mapping and  $\psi: (Y, \sigma_p) \to (Z, \gamma_p)$  be BPF continuous mapping, then  $(\psi \circ \phi): (X, \tau_p) \to (Z, \gamma_p)$  is BPFCR $\alpha$ G continuous mapping.

**Theorem 3.18:** Let  $\phi: (X, \tau_p) \to (Y, \sigma_p)$  be a mapping. Suppose that one of the following properties hold:

- (i)  $\phi(\alpha cl(\omega)) \subseteq int(\phi(\omega))$  for each BPFS  $\omega$  in X.
- (ii)  $acl(\phi^{-1}(\delta)) \subseteq \phi^{-1}(int(\delta))$  for each BPFS  $\delta$  in Y.
- (iii)  $\phi^{-1}(cl(\delta)) \subseteq aint(\phi^{-1}(\delta))$  for each BPFS  $\delta$  in Y.

Then  $\phi$  is a BPFCR $\alpha$ G continuous mapping.

**Proof:** (i)  $\Rightarrow$  (ii) Suppose that  $\delta$  is a BPFS in Y. Then,  $\phi^{-1}(\delta)$  is a BPFS in X. By hypothesis,  $\phi\left(\alpha cl(\phi^{-1}(\delta))\right) \subseteq int\left(\phi(\phi^{-1}(\delta))\right) \subseteq int(\delta)$ .

Now  $\alpha cl(\phi^{-1}(\delta)) \subseteq \phi^{-1}(\phi(\alpha cl(\phi^{-1}(\delta)))) \subseteq \phi^{-1}(int(\delta)).$ 

 $(ii) \Rightarrow (iii)$  is obvious by taking complement in (ii).

Suppose (iii) holds: Let  $\omega$  be a BPFCS in Y. Then,  $cl(\omega) = \omega$  and  $\phi^{-1}(\omega)$  is a BPFS in X. Now  $\phi^{-1}(\omega) = \phi^{-1}(cl(\omega)) \subseteq \alpha int(\phi^{-1}(\omega)) \subseteq \phi^{-1}(\omega)$ , by hypothesis. This implies,  $\phi^{-1}(\omega)$  is a BPF $\alpha$ OS in X and hence  $\phi^{-1}(\omega)$  is a BPFR $\alpha$ GOS in X. Thus  $\phi$  is a BPFCR $\alpha$ G continuous mapping.

**Theorem 3.19:** A mapping  $\phi: (X, \tau_p) \to (Y, \sigma_p)$  is a BPFCR $\alpha$ G continuous mapping if  $\phi^{-1}(\alpha cl(\delta)) \subseteq int(\phi^{-1}(\delta))$  for every BPFS  $\delta$  in Y.

**Theorem 3.20:** A mapping  $\phi: (X, \tau_p) \to (Y, \sigma_p)$  is a BPFCR $\alpha$ G continuous mapping, where X is a BPFR $\alpha T_{1/2}$  space if and only if  $\phi^{-1}(\alpha cl(\delta)) \subseteq \alpha int(\phi^{-1}(cl(\delta)))$  for every BPFS  $\delta$  in Y.

**Proof:** Necessity: Let  $\delta \subseteq Y$  be a BPFS. Then  $cl(\delta)$  is a BPFCS in Y. By hypothesis  $\phi^{-1}(cl(\delta))$  is a BPFR $\alpha$ GOS in X. Since X is a BPFR $\alpha T_{1/2}$  space,  $\phi^{-1}(cl(\delta))$  is a BPF $\alpha$ OS in X. This implies,  $\phi^{-1}(cl(\delta)) = \alpha int(\phi^{-1}(cl(\delta)))$ . Therefore,  $\phi^{-1}(\alpha cl(\delta)) \subseteq \phi^{-1}(cl(\delta)) = \alpha int(\phi^{-1}(cl(\delta)))$ .

Sufficiency: Let  $\delta \subseteq Y$  be a BPFS. Then  $cl(\delta)$  is a BPFCS in Y. By hypothesis,  $\phi^{-1}(\alpha cl(\delta)) \subseteq \alpha int(\phi^{-1}(cl(\delta))) = \alpha int(\phi^{-1}(\delta))$ . But  $\alpha cl(\delta) = \delta$ . Therefore,  $\phi^{-1}(\delta) = \phi^{-1}(\alpha cl(\delta)) \subseteq \alpha int(\phi^{-1}(\delta)) \subseteq \phi^{-1}(\delta)$ . This implies,  $\phi^{-1}(\delta)$  is a BPF $\alpha$ OS in X and hence  $\phi^{-1}(\delta)$  is a BPFF $\alpha$ GOS in X. Hence  $\delta$  is a BPFCR $\alpha$ G continuous mapping.

**Theorem 3.21:** A BPF continuous mapping  $\phi: (X, \tau_p) \to (Y, \sigma_p)$  is a BPFCR $\alpha$ G continuous mapping, if BPFR $\alpha$ GO(X) = BPFR $\alpha$ GC(X).

#### REFERENCES

- [1] Coker, D., An introduction to intuitionistic topological spaces, Busefal, 81(2000), 5. Chen, S. Li, S. Ma and X. Wang, m-Polar Fuzzy Sets: An Extension of Bipolar Fuzzy Sets, The Scientific World Journal, 2014.
- [2] K.T. Atanassov, Intuitionisticfuzzysets, FuzzySetsSyst20(1986), 87-96.
- [3] Yager RR Pythagorean fuzzy subsets in Proceedings of the joint IFSA world congress NAFIPS annual meeting(2013), 57-61.
- [4] T.Fukutake, R.K.Saraf, M.Caldas, M.Mishra, Mappings via Fgp BPFclosed Sets, Bull. of Fukuaka Univ. of Edu., 52 (2003),11-20.
- [5] K.J.Lee, Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI- Algebras, Bull.Malays.

56 ETIST 2021

### Bipolar Pythagorean Fuzzy Contra Regular α Generalized

## **Continuous Mappings**

- [6] C.L.Chang, Fuzzy Topological Spaces, J.Math.Anal.Appl., 24(1968),182-190.
- [7] Sakthivel, K., Intuitionistic Fuzzy Alpha Generalized Continuous Mappings and Intuitionistic Generalized Irresolute Mappings, Applied Mathematical Sciences, Vol. 4, 2010, no. 37, 1831 -1842
- [8] Santhi, R and Sakthivel, K., Intuitionistic fuzzy almost generalized continuous mapping, Advances in Fuzzy Mathematics, 2(2010), 209-219.
- [9] Xindong peng. Yong Yan, some results for Pythagorean Fuzzy sets, International Journal of Intelligent Systems, 30(2015), 1133-1160.
- [10] Chen.J, Li.S, Ma.S and Wang.X, m-polar Fuzzy sets: An extension of Bipolar Fuzzy Sets. The Scientific World Journal, (2014).
- [11] W-R. Zhang, Bipolar fuzzy sets, Proc. of IEEE(1998) 835-840.
- [12] L. A. Zadeh Fuzzy sets, Information and Control 8(1965), 338-353.

#### **BIOGRAPHY**



**S.Nithiyapriya** is a Research Scholar in the Department of Mathematics Government Arts College, Udumalpet at Bharathiar University, India since June 2019. She worked as an Assistant Professor and has 2 years of experience in Sree Saraswathi Thyagaraja College, Pollachi. Her research is Topology, Bipolar Pythagorean Fuzzy Topological spaces. She Published one article. Email ID: <a href="mailto:nithiyapriya87@gmail.com">nithiyapriya87@gmail.com</a>



**Dr. S. Maragathavalli** received her Ph.D., degree in 2011 from Bharathiar University, Tamilnadu, India. She is working as an Assistant Professor in the Department of Mathematics, Government Arts College, Udumalpet (Bharathiar University), India. Her research interests include General Topology, Intuitionistic Fuzzy Topological spaces, Bipolar Pythagorean Fuzzy Topological spaces, etc. She Published more than 50 articles in reputed Journals and conferences. Email ID: <a href="mailto:smvalli@rediffmail.com">smvalli@rediffmail.com</a>



**Dr.R.Santhi** working as an Assistant Professor, Department of Mathematics in Nallamuthu Gounder Mahalingam College, Pollachi, Tamilnadu, India. She has 19 years of teaching experience and wide Research experience. She has guided 22 M.Phil and 3 Ph.D. students. She has published more than 39 research articles in National and International journals. Her Research area is Topology and Operation Research. Email ID: <a href="mailto:santhir2004@yahoo.co.in">santhir2004@yahoo.co.in</a>