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ABSTRACT:  In this paper, the concept of Almost Regular  Generalized Continuous Mappings was 

introduced and investigated some of their properties. Also, We have provided some characterization of Bipolar 

Pythagoren Fuzzy Almost Regular  Generalized Continuous Mappings. 

KEYWORDS:  Bipolar Pythagorean Fuzzy sets, Bipolar Pythagorean Fuzzy Topology, Bipolar Pythagoren 

Fuzzy Regular  Generalized Closed sets, Bipolar Pythagorean Fuzzy Regular  generalized continuous 

mappings,Bipolar Pythagorean Fuzzy Almost Regular  generalized continuous mappings. 

1. INTRODUCTION 

Atanassov [7] proposed an intuitionistic fuzzy set using the notion of fuzzy sets. On the other hand Coker [1] 

introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets.  Yager [2] 

proposed another class of nonstandard fuzzy sets, called Pythagorean Fuzzy sets.  Zhang [4] introduced the 

extension of fuzzy sets with Bipolarity, called Bipolar value fuzzy sets.  In this paper we introduced the notion 

of Bipolar Pythagorean Fuzzy Almost Regular  Generalized Continuous Mappings and studied their behaviour 

and properties in Bipolar pythagorean fuzzy topological spaces. Also we obtained some interesting theorems. 

 

2.  PRELIMINARIES 

Definition 2.1: Let X be a non-empty set. A Bipolar Pythagorean Fuzzy Set(BPFS in short) 

where are the 

mappings such that 0 1 and -1 0 where ) denote the 

positive membership degree, ) denote the positive non membership degee, ) denote the negative 

membership degree, ) denote the negative non membership degree. 



Almost Regular  Generalized Continuous Mappings in Bipolar 

Pythagorean Fuzzy Topological Spaces 

__________________________________________________________________________________________

__ 

ETIST 2021     59 

Definition 2.2:  Let  be a set and  be a family of Bipolar Pythagorean fuzzy subsets of X. If 

 . 

For any , we have . 

  for an arbitrary family  : .  

Then  is called Bipolar Pythagorean Fuzzy Topology(BPFT) on X and the pair  is said to be Bipolar 

Pythagorean Fuzzy Topological space. Each member of  is called Bipolar Pythagorean fuzzy open set 

(BPFOS). The complement of a Bipolar Pythagorean Fuzzy open set is called a Bipolar Pythagorean fuzzy 

Closed set (BPFCS). 

Definition 2.3: Let  be a BPFTS and 𝑃=  be a BPFS over X. 

Then the Bipolar Pythagorean Fuzzy Interior, Bipolar Pythagorean Fuzzy Closure of  P are defined by:  

(i) BPF int(P) = ∪{𝐺 /𝐺 𝑖𝑠 𝑎 𝐵𝑃𝐹𝑂𝑆 𝑖𝑛  𝑎𝑛𝑑 𝐺⊆𝑃}.  

(ii) BPF cl(P) = ∩{𝐾 /𝐾 𝑖𝑠 𝑎 𝐵𝑃𝐹𝐶𝑆 𝑖𝑛  𝑎𝑛𝑑 𝑃⊆𝐾}.  

It is clear that  

a. BPF int(P) is the biggest Bipolar Pythagorean Fuzzy Open set contained in P.  

b. BPF cl(P) is the smallest Bipolar Pythagorean Fuzzy Closed set containing P. 

Definition 2.4: If BPFS  in a BPTS  is said to be  

(a) Bipolar Pythagorean Fuzzy Semi closed set (BPFSCS) if  

(b) Bipolar Pythagorean Fuzzy Pre-closed set(BPFPCS) if  

(c) Bipolar Pythagorean Fuzzy  closed set (BPF CS) if  

(d) Bipolar Pythagorean Fuzzy  closed set (BPF CS) if  

(e) Bipolar Pythagorean Fuzzy regular closed set (BPFRCS) if  

(f) If BPF set  of a BPFTS  is a Bipolar Pythagorean Fuzzy Regular Generalized closed set(BPFRGCS), 

if whenever  and  is BPFROS in X. 

Definition 2.5: A Bipolar Pythagorean Fuzzy Set A of a Bipolar Pythagorean Fuzzy Topological Space  

is called Bipolar Pythagorean Fuzzy Regular  Generalized closed set (BPFR GCS in short), if  

whenever  and  is BPF regular open set in X. 

Definition 2.6: A function  is called BPFR G continuous mapping if the inverse image of 

every BPF closed set in Y is BPFR G closed set in X. 

Definition 2.7: A mapping  is said to be 

(i) BPF semi continuous mapping if  for  every ). 

 (ii) BPF  continuous mapping if  for every ). 

(iii) BPF Pre continuous mapping if  for every ). 

(iv) BPF  continuous mapping if  for every ). 
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3.  BIPOLAR PYTHAGOREAN FUZZY ALMOST REGULAR  GENERALIZED CONTINUOUS 

MAPPINGS 

          In this section we introduced Almost Regular  Generalized continuous mappings in Bipolar Pythagorean 

Fuzzy Topological Spaces and investigated some of its properties. 

Definition 3.1: A mapping  is said to be a Bipolar Pythagorean Fuzzy Almost Regular  

Generalized Continuous (BPFaR G continuous in short) mapping if  is a BPFR GCS in X for every 

BPFRCS  in Y. 

Example 3.2: Let X={a,b} and Y={u,v}. Then  and  are BPFTs on X 

and Y respectively, where = (x, (0.6, 0.5), (0.2, 0.2), (-0.6, -0.7), (-0.2, -0.1)),  = (x, (0.3, 0.2), (0.7, 0.5), (-

0.3, -0.2), (-0.7, -0.5)),  = (y, (0.4, 0.4), (0.2, 0.2), (-0.4, -0.4), (-0.2, -0.1)) and  = (y, (0.3, 0.2), (0.6, 0.6), (-

0.3, -0.2), (-0.6, -0.6)). Define a mapping  by  and . Here  = (y, (0.6, 

0.6), (0.3, 0.2), (-0.6, -0.6), (-0.3, -0.2)) is BPFRCS in Y and  = (x, (0.6, 0.6), (0.3, 0.2), (-0.6, -0.6), (-

0.3, -0.2)) is BPFS in X. Then  as . Therefore,  is BPFR GCS 

in X. Thus  is BPFaR G continuous mapping in X. 

Proposition 3.3: Every BPF continuous mapping and BPF  continuous mapping are  BPFaR G continuous 

mapping but not conversely. 

Example 3.4: From Example 4.2,  is BPFaR G continuous mapping but not BPF continuous mapping, as 

. 

Example 3.5: From Example 4.2,  is BPFaR G continuous mapping but not BPF continuous mapping, as 

. 

Proposition 3.6:  Every BPFR continuous mapping is a BPFaR G continuous mapping but not conversely. 

Example 3.7:  From Example 4.2,  is BPFaR G continuous mapping but not BPFR continuous mapping, as 

. 

Proposition 3.8:  Every BPFG continuous mapping and BPF G continuous mapping are BPFaR G continuous 

mapping but not conversely. 

Example 3.9: From Example 4.2,  is BPFaR G continuous mapping but not BPFG continuous mapping, as 

. 

Example 3.10:  From Example 4.2,  is BPFaR G continuous mapping but not BPF G continuous mapping, as 

. 

Remark: 3.11:  Every BPFP continuous mapping and BPFaR G continuous mapping are independent to each 

other. 

Example 3.12:  Let X={a,b} and Y={u,v}. Then  and  are BPFTs on X 

and Y respectively, where = (x, (0.6, 0.5), (0.6, 0.4), (-0.6, -0.4), (-0.6, -0.3)),  = (x, (0.2, 0.3), (0.7, 0.6), (-

0.4, -0.3), (-0.6, -0.6)),  = (y, (0.6, 0.6), (0.3, 0.3), (-0.6, -0.5), (-0.3, -0.2)) and  = (y, (0.1, 0.1), (0.9, 0.9), (-

0.1, -0.1), (-0.9, -0.9)). Define a mapping  :  by  and . Here  = (y, (0.3, 

0.3), (0.6, 0.6), (-0.3, -0.2), (-0.6, -0.5)) is BPFRCS in Y and  are BPFROS in X. Now,  = (x, (0.3, 

0.3), (0.6, 0.6), (-0.3, -0.2), (-0.6, -0.5)) is a BPFPCS in X but  is not a BPFR GCS, as 
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. Therefore,  is BPFP continuous mapping but not a BPFaR G continuous mapping 

in X. 

Example 3.13:  Let X={a,b} and Y={u,v}. Then  and  are BPFTs on X 

and Y respectively, where = (x, (0.7, 0.5), (0.1, 0.1), (-0.7, -0.4), (-0.1, -0.1)),  = (x, (0.1, 0.2), (0.5, 0.5), (-

0.1, -0.2), (-0.4, -0.4)),  = (y, (0.6, 0.7), (0.2, 0.1), (-0.6, -0.5), (-0.1, -0.2)) and  = (y, (0.1, 0.1), (0.8, 0.8), (-

0.1, -0.1), (-0.8, -0.7)). Define a mapping  :  by  and . Here  = (y, (0.8, 

0.8), (0.1, 0.1), (-0.8, -0.7), (-0.1, -0.1)) is BPFRCS in Y and  is BPFROS in X. Now,  = (x, (0.8, 

0.8), (0.1, 0.1), (-0.8, -0.7), (-0.1, -0.1)) is a BPFR GCS in X but  is not a BPFPCS, as 

. Therefore,  is a BPFaR G continuous mapping but not a BPFP 

continuous mapping in X. 

Remark 3.14: Every BPFS continuous mapping and BPFaR G continuous mapping are independent to each 

other. 

Example 3.15:  Let X={a,b} and Y={u,v}. Then  and  are BPFTs on X 

and Y respectively, where = (x, (0.5, 0.5), (0.3, 0.2), (-0.5, -0.4), (-0.3, -0.1)),  = (x, (0.1, 0.2), (0.7, 0.6), (-

0.1, -0.2), (-0.6, -0.6)),  = (y, (0.5, 0.5), (0.3, 0.1), (-0.5, -0.4), (-0.3, -0.1)) and  = (y, (0.3, 0.3), (0.8, 0.8), (-

0.3, -0.2), (-0.5, -0.6)). Define a mapping  :  by  and . Here  = (y, (0.8, 

0.8), (0.3, 0.3), (-0.5, -0.6), (-0.3, -0.2)) is BPFRCS in Y and ,  are BPFROS in X. Now  = (x, (0.8, 

0.8), (0.3, 0.3), (-0.5, -0.6), (-0.3, -0.2)) is a BPFR GCS in X but  is not BPFSCS, as 

. Therefore,  is BPFaR G continuous mapping but not a BPFS 

continuous mapping in X. 

Example 3.16: Let X={a,b} and Y={u,v}. Then  and  are BPFTs on X 

and Y respectively, where = (x, (0.6, 0.7), (0.2, 0.2), (-0.6, -0.5), (-0.3, -0.2)),  = (x, (0.2, 0.2), (0.8, 0.8), (-

0.2, -0.2), (-0.6, -0.5)),  = (y, (0.2, 0.2), (0.6, 0.7), (-0.4, -0.3), (-0.6, -0.5)) and  = (y, (0.5, 0.5), (0.4, 0.4), (-

0.5, -0.5), (-0.5, -0.4)). Define a mapping  :  by  and . Here  = (y, (0.6, 

0.7), (0.2, 0.2), (-0.6, -0.5), (-0.4, -0.3)) is BPFRCS in Y and  are BPFROS in X. Now  = (x, (0.6, 

0.7), (0.2, 0.2), (-0.6, -0.5), (-0.4, -0.3)) is a BPFSCS in X but  is not a BPFR GCS, since 

 as  . Therefore,  is a BPFS continuous mapping but not a BPFaR G 

continuous mapping in X. 

Theorem 3.17: A mapping  be a BPFaR G continuous mapping if and only if the inverse 

image of each BPFROS in Y is a BPFR GOS in X. 

Proof: Necessity: Let  be a BPFROS in Y. This implies  is a BPFRCS in Y. Since  is a BPFaR G 

continuous mapping,  is a BPFR GCS in X. Since ,  is a BPFR GOS 

in X. 

Sufficiency: Let  be a BPFRCS in Y. This implies  is a BPFROS in Y. By hypothesis,  is a 

BPFR GOS in X. Since ,  is a BPFR GCS in X. Thus  is a BPFaR G 

continuous mapping. 
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Theorem 3.18:  Let  be a mapping where  is a BPFRCS in X for every BPFCS in Y. 

Then  is a BPFaR G continuous mapping but not conversely. 

Proof: Let  be a BPFRCS in Y. Since every BPFRCS is a BPFCS,  is a BPFCS in Y. Then  is a 

BPFRCS in X. Since every BPFRCS is a BPFR GCS,  is a BPFR GCS in X. Hence  is a BPFaR G 

continuous mapping. 

Example 3.19:  Let X={a,b} and Y={u,v}. Then  and  are BPFTs on X 

and Y respectively, where = (x, (0.7, 0.7), (0.3, 0.2), (-0.7, -0.5), (-0.3, -0.2)),  = (x, (0.2, 0.2), (0.8, 0.8), (-

0.2, -0.2), (-0.7, -0.6)),  = (y, (0.7, 0.7), (0.3, 0.2), (-0.7, -0.6), (-0.2, -0.2)) and  = (y, (0.2, 0.2), (0.9, 0.9), (-

0.1, -0.1), (-0.8, -0.7)). Define a mapping  :  by  and . Here  = (y, (0.3, 

0.2), (0.7, 0.7), (-0.2, -0.1), (-0.7, -0.6)) is BPFRCS in Y and  = (x, (0.3, 0.2), (0.7, 0.7), (-0.2, -0.1), (-

0.7, -0.6)) is a BPFS in X. Now  where  is BPFROS in X and . 

Therefore  is a BPFR GCS in X but not a BPFRCS in X, since  is BPFCS in Y but 

. Thus  is a BPFaR G continuous mapping but not the mapping in Theorem 4.14. 

Theorem 3.20:  Let  be a mapping. If  for every BPFS  in 

Y, then  is a BPFaR G continuous mapping. 

Proof: Let  be a BPFROS in Y. By hypothesis, . Since  is a BPFROS, it is a 

BPF OS in Y. Therefore  . Hence . 

Therefore . This implies  is a BPF OS in X and hence  is a 

BPFR GOS in X. Thus  is a BPFaR G continuous mapping. 

Remark 3.21: The converse of the above theorem 3.21 is true if  is a BPFROS in Y and X is a BPFR  

space. 

Theorem 3.22: Let  be a mapping. If  for every BPFS  in Y, 

then  is a BPFaR G continuous mapping. 

Proof: Let  be a BPFRCS in Y. By hypothesis, . Since  is a BPFRCS, it is a 

BPF CS in Y. Therefore  . Hence . Therefore 

. This implies  is a BPF CS in X and hence  is a BPFR GCS in X. Thus 

 is a BPFaR G continuous mapping. 

Remark 3.23: The converse of the above theorem 3.23 is true if  is a BPFRCS in Y and X is a BPFR  

space. 

Theorem 3.24: Let  be a mapping where X is a BPFR  space. If  is a BPFaR G 

continuous mapping, then  for every BPFRCS  in Y. 

Proof: Let  be a BPFRCS in Y. By hypothesis,  is a BPFR GCS in X. Since X is a BPFR  space, 

 is a BPF CS in X. This implies . Now 

, as every 

BPFRCS is a BPF CS. Hence . 

Theorem 3.25: Let  be a mapping where X is a BPFR  space. If  is a BPFaR G 

continuous mapping, then  for every BPFROS B in Y. 

Proof: This theorem can be easily proved by taking complement in Theorem 3.25. 
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