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Nano generalized α** closed sets in Nano Topological Spaces 

Kalarani.M1, Nithyakala.R2, Santhi.R3  

©NGMC 2021 

 

ABSTRACT: The objective of this paper is to introduce a new class of set called Nano α**- set (briefly Nα**- set) 

and a new closed set Nano generalized α**-closed set (Ngα**-closed set) in Nano topological spaces. The relation 

between Ngα**-closed set with other closed sets are discussed. Further the interior and closure of the closed set is 

defined and studied its properties.  

Keywords: Nα**- set, Ngα**-closed set, Ngα**-interior, Ngα**-closure. 

1.  INTRODUCTION 

Levine [6] introduced the concepts of generalized closed sets in Topological spaces. Lellis Thivagar [5] introduced 

nano topological space and also defined nano closed sets, nano interior and nano closure of a set. Bhuvaneswari [2] 

introduced the generalized closed sets in nano topological spaces. The present paper aims to introduce a new set 

nano α**-set and a new class of closed set called nano generalized α**- closed set in nano topological spaces is 

defined and investigate its relationship with other nano closed sets. In addition, the interior, closure of nano 

generalized α**-closed are defined and studied its properties. 

 

2. PRELIMINARIES 

Definition 2.1: [8] Let U be a non-empty finite set of objects called the universe and R be an equivalence relation on  

U named as indiscernibility relation. Then U is divided into disjoint equivalence classes. The pair (U,R) is said to be  

approximation space. Let X ⊆ U. Then 

(i) The lower approximation of X with respect to R is the set of all objects, which can be for certain classified 

as X with respect to R and is denoted by 𝐿𝑅(𝑋). 

             𝐿𝑅(𝑋)=⋃𝑥∈𝑈{𝑅(𝑥): 𝑅(𝑥)⊆𝑋}, where R(x) denotes the equivalence class determined by 𝐿𝑅(𝑋). 

(ii) The upper approximation of X with respect to R is the set of all objects which can be possibly classified as 

X with respect to R and is denoted by 𝑈𝑅(𝑋). 

                 𝑈𝑅(𝑋) = ⋃𝑥∈𝑈 {𝑅(𝑥): 𝑅(𝑥) ∩ 𝑋 ≠ φ }  
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(iii) The boundary region of X with respect to R is the set of all objects which can be classified neither as X nor as 

not-X with respect to R and it is denoted by 𝐵𝑅(𝑋) and 𝐵𝑅(𝑋) = 𝑈𝑅(𝑋) - 𝐿𝑅(𝑋). 

 

Definition 2.2: [5] Let U be the universe, R be an equivalence relation on U and τ𝑅 (𝑋) = {φ ,𝑈, 𝐿𝑅(𝑋), 𝑈𝑅(𝑋), 

𝐵𝑅(𝑋)} where X ⊆ U. Then τ𝑅 (𝑋) satisfies the following axioms. 

(i) U and φ  ∈ τ𝑅 (𝑋). 

(ii) The union of all the elements of any sub-collection of τ𝑅 (𝑋) is in τ𝑅 (𝑋). 

(iii)  The intersection of the elements of any finite sub collection of τ𝑅 (𝑋) is in  τ𝑅 (𝑋). 

Here τ𝑅 (𝑋) is a topology on U called the nano topology on U with respect to X and (U, τ𝑅 (𝑋)) as a nano 

topological space. The elements of τ𝑅 (𝑋) are called as nano open sets. The complement of the nano open set is 

called nano closed sets. 

 

Definition 2.3: [5] If (U, τ𝑅 (𝑋)) is a nano topological space with respect to X where X ⊆ U and if A ⊆ U then (i)  

The nano interior of 𝐴 is defined as the union of all nano open subsets contained in 𝐴 and is denoted by 𝑁𝑖𝑛𝑡(𝐴).  

That is 𝑁𝑖𝑛𝑡(𝐴)) is the largest nano open subset of 𝐴. (ii) The nano closure of 𝐴 is defined as the intersection of  

all nano closed sets containing 𝐴 and is denoted by 𝑁𝑐𝑙(𝐴). That is 𝑁𝑐𝑙(𝐴)is the smallest nano closed set  

containing 𝐴. 

 

Definition 2.4: Let (U, τ𝑅 (𝑋)) be a nano topological space. Then A ⊆ U is said to be a 

(i)  nano preopen set [5] if 𝐴 ⊆ 𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝐴))     

(ii) nano semi open set [5] if 𝐴 ⊆ 𝑁𝑐𝑙(𝑁𝑖𝑛𝑡(𝐴)) 

(iii) nano 𝛼-open set [5] if 𝐴 ⊆ 𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝑁𝑖𝑛𝑡(𝐴)))    

(iv) nano regular open set [5] if 𝐴 = 𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝐴))      

(v) nano 𝛽-open set if 𝐴 ⊆ 𝑁𝑐𝑙(𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝐴))) 

The complements of the above sets are called as their respective closed sets. 

 

Definition 2.5: Let (U, τ𝑅 (𝑋)) be a nano topological space and 𝐴 ⊆ 𝐺. Then A is called 

(i) nano generalized closed (Ng-closed) set [2] if 𝑁𝑐𝑙(𝐴) ⊆ 𝐺 whenever 𝐴 ⊆ 𝐺 and 𝐺 is nano open set in U. 

(ii)  nano generalized star closed (Ng*-closed) set [2] if 𝑁𝑐𝑙(𝐴) ⊆ 𝐺 whenever 𝐴 ⊆ 𝐺 and 𝐺 is nano gopen set in 

U. 

(iii)  nano 𝛼- generalized closed (N𝛼g-closed) set [4] if 𝑁𝛼𝑐𝑙(𝐴) ⊆ 𝐺 whenever 𝐴 ⊆ 𝐺 and 𝐺 is nano open set in U. 

(iv)  nano generalized 𝛼 closed (Ng𝛼-closed) set [4] if 𝑁𝛼𝑐𝑙(𝐴) ⊆ 𝐺whenever 𝐴 ⊆ 𝐺 and 𝐺 is nano 𝛼 open set 

in U. 

(v)  nano regular generalized closed (Nrg-closed) set [6] if 𝑁𝑟𝑐𝑙(𝐴) ⊆ 𝐺whenever 𝐴 ⊆ 𝐺 and 𝐺 is nano regular 

open set in U. 



Kalarani.M, Dr. Nithyakala.R, Dr. Santhi.R  

 

80  ETIST 2021 

(vi) nano semi generalized closed (Nsg-closed) set [3] if 𝑁s𝑐𝑙(𝐴) ⊆ 𝐺 whenever 𝐴 ⊆ 𝐺 and 𝐺 is nano semi 

open set in U. 

(vii) nano generalized semi closed (Ngs-closed) set [3] if 𝑁s𝑐𝑙(𝐴) ⊆ 𝐺 whenever 𝐴 ⊆ 𝐺 and 𝐺 is nano open set 

in U. 

(viii) nano c-set i f A=G⋂F where 𝐺 is nano open and F is nano α*- set. 

(ix) nano 𝛼∗- set if 𝑁𝑖𝑛𝑡(𝐴) = 𝑁𝑖𝑛𝑡 (𝑁𝑐𝑙(𝑁𝑖𝑛𝑡(𝐴))) 

(x) nano t-set (Nt-set) [3] if   𝑁𝑖𝑛𝑡(A)= 𝑁𝑖𝑛𝑡 (𝑁𝑐𝑙(𝐴)). 

(xi)  nano c*-set i f A=G⋂F where 𝐺 is nano g-open and F is nano α*- set.  

(xii) nano c(s)-set i f A=G⋂F where 𝐺 is nano g-open and F is nano t-set. 

 

3. NANO α**- SETS IN NANO TOPOLOGICAL SPACES 

In this section, a new set Nano α** set is defined and studied its relations with other existing sets. 

 

Definition.3.1: A subset A of a nano topological space (U, τ𝑅 (𝑋)) is called a nano α**-set (Nα**-set) if 

 𝑁𝑖𝑛𝑡(𝑁𝑐𝑙 (𝐴)) = 𝑁𝑖𝑛𝑡 (𝑁𝑐𝑙(𝑁𝑖𝑛𝑡(𝐴))). 

Example 3.2: Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑} with 𝑈⁄𝑅 = {{𝑎},{c},{𝑏,𝑑}} and 𝑋 = {𝑎,𝑏}. Then  τ𝑅(𝑋)={φ ,𝑈,{𝑎},{𝑏,𝑑}, 

{𝑎,𝑏,𝑑}} is a nano topology with respect to 𝑋 and the complement τ𝑅
 𝑐 (𝑋)={φ ,𝑈,{𝑐},{𝑎,𝑐},{𝑏,𝑐,𝑑}}. Some of  

the nano sets for the topology are as follows. 

(1) nano pre-open= {φ , 𝑈,{𝑎},{𝑏},{𝑑},{𝑎,𝑏},{𝑎,𝑑}, {𝑏,𝑑},{𝑎,𝑏,𝑐},{𝑎,𝑏,𝑑},{𝑎,𝑐,𝑑}} 

(2) nano semi-open = {φ ,𝑈,{𝑎},{𝑎,𝑐},{𝑏,𝑑},{𝑎,𝑏,𝑑},{𝑏,𝑐,𝑑}} 

(3) nano 𝛼-open = {φ ,𝑈,{𝑎},{𝑏,𝑑},{𝑎,𝑏,𝑑}} 

(4) nano regular open = {φ,𝑈,{𝑎},{𝑏,𝑑}} 

(5) nano 𝛽-open= {φ,𝑈,{𝑎},{𝑏},{𝑑},{𝑎,𝑏},{𝑎,𝑐},{𝑎,𝑑},{𝑏,𝑐},{𝑏,𝑑},{𝑐,𝑑}, 

{𝑎,𝑏,𝑐},{𝑎,𝑏,𝑑},{𝑎,𝑐,𝑑},{𝑏,𝑐,𝑑}} 

(6) nano t-set={φ ,𝑈,{𝑎},{𝑐},{𝑎,𝑐},{𝑏,𝑑},{𝑏,𝑐,𝑑}} 

(7) nano c-set ={φ ,𝑈,{𝑎},{𝑏},{𝑐},{𝑑},{𝑎,𝑏},{𝑎,𝑐},{𝑎,𝑑},{𝑏,𝑐},{𝑏,𝑑},{𝑐,𝑑}, {𝑎,𝑏,𝑐},{𝑎,𝑏,𝑑}, {𝑎,𝑐,𝑑}, 

{𝑏,𝑐,𝑑}} 

(8) nano c*-set ={φ ,𝑈,{𝑎},{𝑏},{𝑐},{𝑑},{𝑎,𝑏},{𝑎,𝑐},{𝑎,𝑑},{𝑏,𝑐},{𝑏,𝑑},{𝑐,𝑑}, {𝑎,𝑏,𝑐},{𝑎,𝑏,𝑑}, {𝑎,𝑐,𝑑}, 

{𝑏,𝑐,𝑑}} 

(9) nano c(s)-set={φ ,𝑈,{𝑎},{𝑏},{𝑐},{𝑑},{𝑎,𝑏},{𝑎,𝑐},{𝑏,𝑑},{𝑎,𝑏,𝑑},{𝑏,𝑐,𝑑}} 

(10) N𝛼∗-set = {φ ,𝑈,{𝑎},{𝑏},{𝑐},{𝑑},{𝑎,𝑏},{𝑎,𝑐},{𝑎,𝑑}, {𝑏,𝑐},{𝑏,𝑑},{𝑐,𝑑}, 

{𝑎,𝑏,𝑐},{𝑎,𝑐,𝑑},{𝑏,𝑐,𝑑}} 

(11) N𝛼**-closed set = {φ, 𝑈, {𝑎},{𝑐},{𝑎,𝑐},{𝑏, 𝑑},{𝑎,𝑏, 𝑑},{𝑏,𝑐,𝑑}} 

 

Theorem 3.3: The union of any two Nα**-set is Nα**-set. 

Theorem 3.4: The intersection of any two Nα**-set is also a Nα**-set. 
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Remark 3.5: From the above example, the following implications are obtained. 

 

 

 

 

 

 

 

 

 

Figure.3.1 

Remark.3.6: The sets nano β open and nano preopen sets are independent with Nα** set. 

Theorem.3.7: Let (U, τ𝑅 (𝑋)) be a nano topological space, then every Nα** set is not a Nα* set. 

Proof: The proof of the theorem follows in the above example. 

 

4. NANO GENERALIZED α**- CLOSED SETS IN NANO TOPOLOGICAL SPACES 

In this section, a new closed set nano generalized α**- closed (Ngα**-closed) set is defined and its relation with  

other nano closed sets are discussed. 

 

Definition 4.1: A subset 𝐴 of a nano topological space (U, τ𝑅(𝑋)) is called a nano generalized α**- closed set  

(Ngα**- closed set) if Ncl( A)  ⊆ 𝐺 whenever A ⊆ 𝐺 and 𝐺 is nano α**-set. 

Example 4.2: Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑} with 𝑈⁄𝑅 = {{𝑎}, {𝑏}, {𝑐, 𝑑}} and 𝑋 = {𝑏,𝑑} . Then τ𝑅 (𝑋)={φ,  𝑈, {𝑏},{𝑐,𝑑}, 

{𝑏,𝑐,𝑑}} is a nano topology with respect to 𝑋 and the complement is τ𝑅
 𝑐 (𝑋) = {φ, 𝑈,{𝑎}, {𝑎,𝑏},{𝑎,𝑐,𝑑}}. The 

following are some nano closed sets for this nano topology. 

(1) nano pre closed= {φ ,𝑈,{𝑎},{𝑐},{𝑑},{𝑎,𝑏},{𝑎,𝑐},{𝑎,𝑑}, {𝑎,𝑏,𝑐},{𝑎, 𝑏,𝑑},{𝑎,𝑐,𝑑}} 

(2) nano semi-closed = {φ ,𝑈,{𝑎},{𝑏},{𝑎,𝑏},{𝑐,𝑑}, {𝑎,𝑐,𝑑}} 

(3) nano 𝛼-closed = {φ ,𝑈,{𝑎},{𝑎,𝑏},{𝑎,𝑐,𝑑}} 

(4) nano regular closed = {φ ,𝑈,{𝑎,𝑏},{𝑎,𝑐,𝑑}}. 

(5) nano 𝛽-closed= {φ ,𝑈,{𝑎},{𝑏},{𝑐},{𝑑},{𝑎,𝑏},{𝑎,𝑐},{𝑎,𝑑},{𝑏,𝑐},{𝑏,𝑑},{𝑐,𝑑}, 

{𝑎,𝑏,𝑐},{𝑎,𝑏,𝑑},{𝑎,𝑐,𝑑}} 

(6) 𝑁𝑔-closed = {φ,𝑈,{𝑎},{𝑎,𝑏},{𝑎,𝑐},{𝑎,𝑑},{𝑎,𝑏,𝑐},{𝑎,𝑏,𝑑},{𝑎,𝑐,𝑑}} 

(7) 𝑁𝑔*-closed ={φ,𝑈,{𝑎},{𝑎,𝑏},{𝑎,𝑐},{𝑎,𝑑},{𝑎,𝑏,𝑐},{𝑎,𝑏,𝑑},{𝑎,𝑐,𝑑}} 

(8) Nrg-closed={φ ,𝑈,{𝑎},{𝑎,𝑏},{𝑎,𝑐},{𝑎,𝑑},{𝑏,𝑐},{𝑏,𝑑},{𝑎,𝑏,𝑐},{𝑎,𝑏,𝑑},{𝑎,𝑐,𝑑},{𝑏,𝑐,𝑑}} 

(9) Nsg-closed={φ ,𝑈,{𝑎},{𝑏},{𝑐},{𝑑},{𝑎,𝑏},{𝑎,𝑐},{𝑎,𝑑}, {𝑐,𝑑},{𝑎,𝑏,𝑐},{𝑎,𝑏,𝑑},{𝑎,𝑐,𝑑}} 

(10) Ngs-closed={φ ,𝑈,{𝑎},{𝑏},{𝑐},{𝑑},{𝑎,𝑏},{𝑎,𝑐},{𝑎,𝑑}, {𝑐,𝑑},{𝑎,𝑏,𝑐},{𝑎,𝑏,𝑑},{𝑎,𝑐,𝑑}} 

(11) Ngα-closed = {φ ,𝑈,{𝑎},{𝑎,𝑏},{𝑎,𝑐},{𝑎,𝑑},{𝑎,𝑏,𝑐},{𝑎,𝑏,𝑑},{𝑎,𝑐,𝑑}} 

 Nα**-set 

 Nt-set 

 Nr open 

 Nα open  N semi open 

 Nc(s)-set 

 Nc*-set 

 Nc-set 

 Nα*-set 

 Nβ open  N pre open 
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(12) Nαg-closed = {φ , 𝑈,{𝑎},{𝑎,𝑏},{𝑎,𝑐},{𝑎,𝑑},{𝑎,𝑏,𝑐},{𝑎,𝑏,𝑑},{𝑎,𝑐,𝑑}} 

(13) Ng𝛼**-set = {φ, 𝑈,{𝑎},{𝑎,𝑏},{𝑎,𝑐},{𝑎, 𝑑},{𝑎,𝑏,𝑐}{𝑎, 𝑏,𝑑},{𝑎,𝑐,𝑑}} 

 

Theorem 4.3: The union of any two Ngα**-closed set is Ngα**-closed. 

Theorem 4.4: The intersection of any two Ngα**-closed set is also a Ngα**-closed. 

Remark 4.5: From the above example, the following implications are obtained. 

 

 

 

 

 

 

 

 

 

Figure 4.1 

 

5. NANO gα**-INTERIOR AND NANO gα**-CLOSURE IN NANO TOPOLOGICAL SPACES 

In this section, Nano gα**interior, Nano gα**closure is introduced and studied its characterizations. 

 

Definition 5.1: Let (U, τ𝑅 (𝑋)) be a nano topological space and 𝐴 ⊆G, then nano gα**- interior is defined as  

Ngα**int(A)=U{B/Bis a Ngα**-open, B⊂A}. 

Definition 5.2: Let A be a subset of (U, τ𝑅 (𝑋)). A point x∈U is called Ngα**- interior point of A if A contains a  

Ngα**-open set containing x. 

Definition 5.3: Let (U, τ𝑅 (𝑋)) be a nano topological space and 𝐴 ⊆G, then nano gα**-closure is defined as  

Ngα**cl(A)=⋂{B/B is a Ngα**-closed, A⊂B}. 

Theorem 5.4: A subset 𝐴 of (𝑈, τ𝑅 (𝑋)) is Ngα**-open if and only if Ngα**-int(𝐴) = 𝐴.  

Proof: Let 𝐴 be Ngα**open in 𝑈 then Ngα**-int(𝐴) = 𝐴. Conversely let Ngα**-int(𝐴) = 𝐴. Then by definition  

Ngα**-int (𝐴) is a nano generalized α**open set, so 𝐴 is a nano generalized α** open. Hence the proof. 

Theorem 5.5: Let 𝐴 and 𝐵 be any two subsets of (𝑈, τ𝑅(𝑋)). Then 

(i) Ngα**-int(𝑈) = 𝑈 and Ngα**-int(φ) = φ. 

(ii) Ngα**-int(𝐴)⊂𝐴. 

(iii) if 𝐵 is any Ngα** open set contained in 𝐴, then 𝐵⊂Ngα**-int(𝐴). 

(iv) if 𝐴⊂𝐵, then Ngα**-int(𝐴)⊂Ngα**-int (𝐵). 

(v) Ngα**-int(Ngα**-int(𝐴))=Ngα**-int (𝐴).  

Proof : 

Nr-closed 

Ngα closed 

Ngα** closed 

Nsg closed 

Nαg closed 

Ng closed 

Ngs closed 

Ng* closed 

N pre-closed 

Nβ-closed 

Nrg closed 
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(i) Since 𝑈 is a Ngα**open set, by definition Ngα**-int (𝑈) = union of all Ngα** open sets that are contained in 𝐴 

= 𝑈 ⋃ {all Ngα** open sets} = 𝑈. That is Ngα**-int(𝑈) = 𝑈. Here φ is the only Ngα** open set contained in φ, So 

Ngα**-int(φ) = φ. 

(ii) Let 𝑥 ∈ Ngα**-int (𝐴) ⟹ 𝑥 is an interior point of 𝐴. ⟹ 𝑥 ∈ 𝐴. Therefore Ngα**-int(𝐴) ⊂ 𝐴. 

(iii) Let 𝐵 be any Ngα** open set such that 𝐵 ⊂ 𝐴. If 𝑥 ∈ 𝐵, then 𝑥 is an Ngα** interior point of 𝐴,  since 𝐵 ⊂ 𝐴. 

⟹ 𝑥 ∈ Ngα**-int (𝐴). Hence  𝐵 ⊂ Ngα**-int(𝐴). 

(iv) Let 𝐴 and 𝐵 be subsets of 𝑈 with 𝐴 ⊂ 𝐵. Let 𝑥 ∈ Ngα**-int (𝐴). Then 𝑥 is a Ngα**interior point of 𝐴 and 𝐴 is 

a Ngα** neighbourhood of 𝑥. Since 𝐴 ⊂ 𝐵, 𝐵 is also a Ngα** neighbourhood of 𝑥.  

⟹ 𝑥 ∈ Ngα**-int (𝐵). Hence Ngα**-int (𝐴) ⊂ Ngα**-int (𝐵). 

(v) Let 𝐴 be any subset of 𝑈. By definition of Ngα**-interior, Ngα**-int(𝐴) is Ngα** open and hence  

Ngα**-int (Ngα**-int(𝐴)) = Ngα**-int (𝐴). 

Theorem 5.6: If 𝐴 and 𝐵 are two subsets of (𝑈, τ𝑅(𝑋)), then  

(i) Ngα**-int(𝐴)⋃Ngα**-int(𝐵) ⊂ Ngα**-int(𝐴⋃𝐵). 

(ii) Ngα**-int(𝐴)⋂Ngα**-int(𝐵)=Ngα**-int(𝐴⋂𝐵). 

 

Theorem 5.7: If 𝐴 is a subset of (𝑈, τ𝑅(𝑋)), then N-int(𝐴)⊂Nα-int(𝐴)⊂ Ngα**-int(𝐴). 

Proof : Let 𝐴 be a subset of 𝑈. Let 𝑥 ∈ N int (𝐴) ⟹ 𝑥 ∈ ⋃{𝐵 ∶ 𝐵 is Nano-open and 𝐵 ⊂ 𝐴}. ⟹ there exists a nano  

open set 𝐵 such that 𝑥∈ 𝐵 ⊂ 𝐴. Every open set is a nano α open ⟹ there exists a Nα-open set 𝐵 such that 𝑥 ∈𝐵 ⊂ 𝐴.  

Hence 𝑥 ∈ ⋃{𝐵 ∶ 𝐵 is Nano α-open and 𝐵 ⊂ 𝐴}.  We know every nano α-open set is Ngα**-open in 𝑈.  

⟹ 𝑥 ∈ ⋃{𝐵∶𝐵 is Ngα**-open and 𝐵⊂𝐴}.   ⟹ 𝑥 ∈ Ngα**-int(𝐴). Thus  N-int(𝐴)⊂Nα-int(𝐴)⊂ Ngα**-int(𝐴). 

 

Theorem 5.8: Let 𝐴 and 𝐵 are any two subsets of (𝑈, τ𝑅(𝑋)). Then 

(i) Ngα**-cl(𝑈)=𝑈 and Ngα**-cl(φ)=φ. 

(ii) 𝐴⊂Ngα**-cl(𝐴). 

(iii) if 𝐵 is any Ngα**-closed set containing 𝐴, then Ngα**-cl(𝐴)⊂𝐵. 

(iv) If 𝐴⊂𝐵 then Ngα**-cl(𝐴)⊂Ngα**-cl(𝐵). 

(v) Ngα**-cl(Ngα**-cl(𝐴))=Ngα**-cl(𝐴). 

 

Theorem 5.9: If A is a Ngα**-closed subset of (𝑈, τ𝑅 (𝑋)), then Ngα**-cl(𝐴) = 𝐴.  

Theorem 5.10: If 𝐴 and 𝐵 are two subsets of (𝑈, τ𝑅(𝑋)), then  

(i) Ngα**-cl(𝐴)⋃Ngα**-cl(𝐵)=Ngα**-cl(𝐴⋃𝐵). 

(ii) Ngα**-cl(𝐴)⋂Ngα**-cl(𝐵)=Ngα**-cl(𝐴⋂𝐵). 

 

Theorem 5.11: If 𝐴 is a subset of (𝑈, τ𝑅(𝑋)), then  

(i) [Ngα**-int(𝐴)]c=[Ngα**-cl(𝐴c)]. 

(ii) Ngα**-int(𝐴)=[Ngα**-cl(𝐴c)]c.  
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6. CONCLUSION 

In conclusion, a new set nano α**-set is introduced, using this set nano generalized α**- closed (Ngα**- closed) set 

in Nano Topological Spaces is defined. Its relation with other closed sets are investigated. Moreover, the interior and 

closure of Ngα**- closed sets are defined and examined its properties. 
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