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Basic Concepts of Interval-Valued Intuitionistic Fuzzy

Topological Vector Spaces

Dr. R. Santhi1

N. Udhayarani2

Abstract - Our aim is to introduce the new concept of interval valued intuitionistic fuzzy topological vector space(in

brief IVIF-TVS). In this paper, we introduce the concept of IVIF-vector point, quasi-coincidence. In further, we discuss the

relationship between PC-neighbourhood and QC-neighbourhood and its bases in IVIF-topological vector space..

Keywords Pseudo Coincidence, Quasi Coincidence, IVIF-vector points, IVIF-topological vector space, IVIF-convex, neighbourhood points, IVIF-neighbourhood base points, PC-neighbourhood, QC-neighbourhood.

2010 Subject classification: 54A05, 03E72, 15A03

1 INTRODUCTION

The fuzzy set concept was introduced by Zadeh [16]. The idea of Interval-valued intuitionistic fuzzy
set was introduced by Atanassov [1]. Then Atanassov and Gargov [2] generalize intuitinionistic fuzzy
set and introduce interval-valued intuitionistic fuzzy set and their properties. Amal Kumar Adak and
Manoranjan Bhowmik [4] introduced different types of interval cut-set of IVIFSs, also investigate some
properties of those cut-set of IVIFSs.In 2011, Zhang Zhenhua et. al. [17] present a novel approach in
generalized interval-valued intuitionistic fuzzy sets by analyzing the degree of hesitancy and introduced,
Generalized interval-valued intuitionistic fuzzy sets with parameters. Francisco Gallego Lupianez [7] de-
fine and study the notion of quasi-coincidence for intuitionistic fuzzy points and obtain a characterization
of continuity for maps between intuitionistic fuzzy topological spaces. Also Coker and Mustafa Demirci
[5], introduced quasi-coincidence and pseudo-coincidence of intuitionistic fuzzy points. In further Coker
[6] introduced the basic concepts of intuitionistic fuzzy topological spaces. In 2004, Kul Hur et. al. [9]
introduced the fundamental concepts of intuitionistic fuzzy Q-neighbourhood, intuitionistic Q-first axiom
of countability, intuitionistic first axiom of countability, intuitionistic fuzzy closure operator, intuitionistic
fuzzy boundary point and intuitionistic fuzzy accumulation point and investigate some of their properties.
In 1977, Katsaras and Liu [8] apply the concept of a fuzzy set to the elementary theory of vector spaces
and topological vector spaces. Topologically complete intuitionistic fuzzy metrizable spaces was introduced
by Reza Saadati [11]. Topology of interval-valued intuitionistic fuzzy sets concept introduced by Tapas
Kumar Mondal and Samanta [14]. In 2014, Mohammed Jassim Mohammed and Ghufran Adeel Ataa [10]
introduced and studied the concept of intuitionistic fuzzy topological vector space.

1Assistant Professor, PG and Research Department of Mathematics, Nallamuthu Gounder Mahalingam College, Pollachi-
642001, Coimbatore, Tamilnadu, India.
E.mail: santhifuzzy@yahoo.co.in

2Research Scholar, PG and Research Department of Mathematics, Nallamuthu Gounder Mahalingam College, Pollachi-
642001, Coimbatore, Tamilnadu, India.
E.mail: udhayaranin@gmail.com
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2 Introduction

Vijaya Balaji and Sivaramakrishnan [15] construct the cartesian product and homomorphism of interval-
valued fuzzy linear space. In our previous work [13], we construct interval-valued intuitionistic fuzzy vector
spaces and defined some of its properties. In further, we equip the concept of, Topology of Interval-Valued
Intuitionistic Fuzzy Sets to interval-valued intuitionistic fuzzy topological vector spaces.

3 Quasi-Coincidence in IVIF-Vector Points

DEfinition 3.1. Let X̃ be a nonempty set of IVIF-vectors. An IVIF-vector point denoted by Px is an
IVIF-set P such that there is an x ∈ X̃ satisfying:

[µAL
(y), µAU

(y)] =

{
[µL, µU ] If xµ = yµ

0 Otherwise

[νAL
(y), νAU

(y)] =

{
[νL, νU ] If xν = yν

1 Otherwise

where x ∈ X̃ is a fixed IVIF-vector point. The set of all IVIF-vector points Px is denoted by Pt(X̃).
An IVIF-vector point Px is said to belongs to an IVIF-set A if

[µPL
(x), µPU

(x)] ≤ [µAL
(x), µAU

(x)]

and
[νPL

(x), νPU
(x)] ≥ [νAL

(x), νAU
(x)]

DEfinition 3.2. Let A = {⟨x, [µAL
, µAU

] , [νAL
, νAU

]⟩ /x ∈ X̃} and B = {⟨x, [µBL
, µBU

] , [νBL
, νBU

]⟩ /x ∈
X̃} be two IVIF sets in X̃. If there exists x in X̃ such that

[µAL
(x), µAU

(x)] > [νBL
(x), νBU

(x)]

or
[νAL

(x), νAU
(x)] < [µBL

(x), µBU
(x)]

that is, µAL
> νBL

and µAU
> νBU

or νAL
< µBL

and νAU
< µBU

. Then A is said to be quasi-coincident
with B and is denoted by AqB.
Otherwise A is not coincident with B. It is denoted by A��q B.

Lemma 3.3. P (⟨[µL, µU ] , [νL, νU ]⟩) ∈ A if and only if P (⟨[µL, µU ] , [νL, νU ]⟩)��q Ac

Proof: The result of this Lemma follows from the Definition 3.1.

Theorem 3.4. Let A and B be two IVIF-sets in X̃, then

1. A��q B if and only if A ⊆ Bc,

2. AqB if and only if A ⊈ Bc.

2 ETIST
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Proof: Let A = {⟨x, [µAL
, µAU

] , [νAL
, νAU

]⟩ and B = {⟨x, [µBL
, µBU

] , [νBL
, νBU

]⟩ be two IVIF-sets

in X̃. Then there exists x ∈ X̃ such that by Lemma 3.3 P (⟨[µL, µU ] , [νL, νU ]⟩) ∈ A if and only if
P (⟨[µL, µU ] , [νL, νU ]⟩)��q Ac and P (⟨[µL, µU ] , [νL, νU ]⟩) ∈ B if and only if
P (⟨[µL, µU ] , [νL, νU ]⟩)��q Bc

To Prove(i): Assume that A��q B. This implies that [µAL
, µAU

] < [νBL
, νBU

]
or [νAL

, νAU
] > [µBL

, µBU
]. Therefore A ⊈ B. Hence A ⊆ Bc.

In this manner, we can prove the converse part.
To Prove(ii): Assume that AqB. This implies that [µAL

, µAU
] > [νBL

, νBU
] or [νAL

, νAU
] < [µBL

, µBU
].

Therefore A ⊆ B. Hence A ⊈ Bc.

Proposition 3.5. Let A, B be an IVIF sets and P (⟨[µL, µU ] , [νL, νU ]⟩) ∈ Pt(X̃). For A ⊆ B if and only
if P (⟩[µL, µU ] , [νL, νU ]⟩) ∈ A then P (⟨[µL, µU ] , [νL, νU ]⟩) ∈ B.

Proof: Suppose that A ⊆ B. Assume that P (⟨[µL, µU ] , [νL, νU ]⟩) ∈ A for all y ∈ X̃,

[µL, µU ] < [µAL
(y), µAU

(y)]

and
[νL, νU ] > [νAL

(y), νAU
(y)]

.
Since A ⊆ B, we get [µAL

(y), µAU
(y)] < [µBL

(y), µBU
(y)] and [νAL

(y), νAU
(y)] > [νBL

(y), νBU
(y)]. This

implies that [µL, µU ] < [µBL
(y), µBU

(y)]. Hence Px ∈ B.
Conversely, suppose that Px ∈ A then Px ∈ B. This implies [µL, µU ] < [µAL

(x), µAU
(x)], [νL, νU ] >

[νAL
(x), νAU

(x)]. This implies that [µL, µU ] < [µBL
(x), µBU

(x)],[νL, νU ] < [νBL
(x), νBU

(x)]. Therefore

[µAL
, µAU

] < [µBL
, µBU

] and [νAL
, νAU

] > [νBL
, νBU

] for all x ∈ X̃. Hence A ⊆ B.

4 Interval-Valued Intuitionistic Fuzzy Topological Vector Space

DEfinition 4.1. Let τ̃ be an IVIF-topology on the pair (Ṽ , τ̃) is called an IVIF-topological vector space if

the following two operations of IVIF sets on Ṽ is satisfied:

1. + : Ṽ × Ṽ → Ṽ by (α, β) = α + β,

2. • : F × Ṽ → Ṽ by (k, α) = kα.

Where α = ([µαL
, µαU

], [ναL
, ναU

]) and β = ([µβL
, µβU

], [νβL
, νβU

]). These two operations are IVIF-continuous,

F has usual IVIF-topology and Ṽ × Ṽ and F × Ṽ are the IVIF-product topologies.

DEfinition 4.2. If A and B are IVIF-sets in a vector space Ṽ over F and k ∈ F then we define A + B
in Ṽ as

(A+B) =
〈[
µ(A+B)L

, µ(A+B)U

]
,
[
ν(A+B)L

, ν(A+B)U

]〉
That is, [

µ(A+B)L
, µ(A+B)U

]
= [µAL

+ µBL
, µAU

+ µBU
]

and [
ν(A+B)L

, ν(A+B)U

]
= [νAL

+ νBL
, νAU

+ νBU
]
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DEfinition 4.3. If A and B are IVIF-sets in a vector space Ṽ over F and k ∈ F then we define kA in Ṽ
as

kA = ⟨k [µAL
, µAU

] , k [νAL
, νAU

]⟩
That is,

k [µAL
(α), µAU

(α)] =

{
[µkL(α) ∧ µAL

(α), µkU (α) ∧ µAU
(α)] if k ̸= 0 for all α ∈ Ṽ

0 if k = 0, α ̸= 0

and

k [νAL
(α), νAU

(α)] =

{
[(1− νkL(α)) ∨ νAL

(α), (1− νkU (α)) ∨ νAU
(α)] if k ̸= 0 for all α ∈ Ṽ

0 if k = 0, α ̸= 0.

DEfinition 4.4. An IVIF-set A in Ṽ is said to be IVIF-convex set if kA+(1−k)A ⊂ A for all k ∈ D [0, 1].

DEfinition 4.5. An IVIF-subset A on Ṽ is said to be IVIF-neighbourhood points of x if there is O ∈ τ̃ such
that [µL(O(t)), µU(O(t))] ≤ [µL(A(t)), µU(A(t))] and [νL(O(t)), νU(O(t))] ≥ [νL(A(t)), νU(A(t))] ,∀t ∈ Ṽ .

DEfinition 4.6. A subcollection B of an neighbourhood points of x is said to be an IVIF-base if [µL, µU ] ∈
[ϕ, [µAL

(x), µAU
(x)]) and [νL, νU ] ∈ ([νAL

(x), νAU
(x)], I]

For A ∈ IV IF (Ṽ ) there exists B ∈ BṼ , such that [µBL
(t), µBU

(t)] ≤ [µAL
(t), µAU

(t)] and [νBL
(t), νBU

(t)] ≥
[νAL

(t), νAU
(t)].

For t ∈ Ṽ , [µBL
(x), µBU

(x)] > [µL, µU ] and [νBL
(x), νBU

(x)] > [νL, νU ].

DEfinition 4.7. Let A be an IVIF-set. If there exists O ∈ τ̃ such that Px /∈ Oc and A ⊆ Oc then the
subset of Ṽ is called an PC-neighbourhood of Px.

DEfinition 4.8. Let A be an IVIF-set of Ṽ is said to be an QC-neighbourhood of Px if there exist O ∈ τ̃
such that PxqO ⊆ A.
The family of all IVIF-QC-neighbourhood of Px is denoted by QCN(Px).

DEfinition 4.9. For each A ∈ QCN(Px), there exists B ∈ Pt(x) such that [µBL
(x), µBU

(x)] ≤ [µAL
(x), µAU

(x)]

and [νBL
(x), νBU

(x)] ≥ [νAL
(x), νAU

(x)] , x ∈ Ṽ , then QCN(Px) is said to be an QCN -base of Px.

DEfinition 4.10. An IVIF-set A on (Ṽ , τ̃) is said to be neighbourhood of zero(in brief N0) if there is an
B ∈ τ̃ such that N0qB ⊆ A.

Lemma 4.11. Let A be an IVIF-set and A is an IVIF-convex,QC(N0), then int(A) is also IVIF-convex,
QC(N0).

Proof: Assume that an IVIF-set A is QC-neighbourhood of N0 and IVIF-convex. By definition, there
exists O ∈ τ̃ such that N0qO ⊆ A. Since O ∈ τ̃ . This implies, O is an IVIF-open set. That is O = int(O).
It implies, int(O) ⊆ int(A). Since O ⊆ A. Combining the above equations we get, N0qO ⊆ int(A).
Therefore int(A) is an IV IF −QC(N0).
Next we assume that, A is an IVIF-convex. This implies kA+ (1− k)A ⊂ A
Consider k(int(A)) + (1− k)int(A) = int(kA) + int((1− k)A) = int(kA+ (1− k)A) ⊂ int(A)
Therefore int(A) is also IVIF-convex set.
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Theorem 4.12. Let A be an IVIF-set on Ṽ . Then A is an IV IF − QCN(Px) if and only if Ac is an
IV IF − PCN(Px).

Proof: Suppose that A is an IVIF-QCN(Px). Then there is an O ∈ τ̃ such that PxqO ⊆ A. We know
that PxqO implies that Px ⊆ O. And Px /∈ Oc. Since O ⊂ A. This implies Ac ⊆ Oc. From last two
equations, Ac is an IV IF − PCN(Px).
Conversely, assume that Ac is an IV IF − PCN(Px). Then there is an O ∈ τ̃ such that Px /∈ Oc and
Ac ⊆ Oc. This implies that Px /∈ Oc. From this we get, PxqO ⊆ A. Since Ac ⊆ Oc implies O ⊆ A. Thus
there is an O ∈ τ̃ such that PxqO ⊆ A. Hence A is an IV IF −QCN(Px).

Theorem 4.13. A is an IVIF-QC neighbourhood of N0 if and only if A is an IV IF −N0.

Proof: Assume that A be an IV IF −N0. There is an O ∈ τ̃ such that N0qO ⊆ A. This implies that
A is an IV IF −QCN(N0).
Conversely assume that, A is an IV IF − QCN(N0). By definition, there exists an O ∈ τ̃ such that
N0qO ⊆ A. This implies that, at the point of N0, A is an IV IF − QCN(N0). Therefore, A is an
IV IF −N0.

Remark 4.14. From the Theorem 4.11 and 4.12, we can say: Let A be an IV IF −N0 if and only if Ac

be an IV IF − PCN(N0).
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