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Nonoscillatory properties of certain nonlinear difference equations 

with generalized difference 

M. Raju*1 – S. Kaleeswari2 – N. Punitha3 

 

©NGMC 2021 

 

ABSTRACT:  A New criteria is obtained for an asymptotic behavior of fixed solutions of certain nonlinear delay 

difference equation with generalized difference of the type 

    ,0  nlnnknnn
j
m xfxqxpx )(aNn , Na ,

Zmlk ,,, , j=1,2 and 

j{3,5,7,9,…, r}, r is an odd positive integer. 

Keywords: fixed point, nonoscillatory, difference equation, generalized difference. 

 

1.  INTRODUCTION & PRELIMINAIRES 

     1.1 Introduction 

The basic theory of difference equations is based on the forward difference operator   defined by 

nn xx 0
,   1,1

0









 





 jx
s

j
x sn

j

s

sj

n

j
, for ...,2,1,0n . Later the following definition was 

suggested for m  by [1, 5, 3]: 

 0,,   RmNnxxx nmnnm .      (1.1.1) 
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Recently, equation (1.1.1) was reconsidered and its inverse was defined by 
1m  [6]. By extending the 

sequences of complex numbers and m  to be real, some new qualitative properties were studied for the 

solutions of difference equations involving m . 

In the year 2011, N. Parhi[13] has studied the oscillatory and nonoscillatory solutions of the following second 

order difference equations, involving generalized difference operator,   

a(p(n-1)a(y(n-1))+q(n)y(n)=0, n≥1                           (1.1.2) 

                         and a(p(n-1)a(y(n-1))+q(n)y(n)=f(n), n≥1,                (1.1.3) 

where a is defined by ay(n)=y(n+1)-ay(n), a≠0. Also he obtained necessary and sufficient conditions for the 

first equation (1.1.2). 

In the year 2012, M. Maria Susai Manuel et al.[8] have studied the following second order generalized 

difference equation: 

      0,2  kukfkul ,  k[a,), a >0, l(0,),      (1.1.4) 

and also proved the condition for nonexistence of non-trivial l2(l) and c0(l) solutions of equation (1.1.4). Further 

they presented some formulae and examples to find the values of finite and infinite series in number theory as 

application of l. Further, in the year 2013, M. Maria Susai Manuel et al.[9] have studied the same generalized 

difference equation (1.1.4), and extended the applications of l in number theory. 

Motivated by the papers [13], [8] and [9], in this article, we have studied the higher order nonlinear 

generalized difference equation with delay terms of the form: 

    ,0  nlnnknnn
j
m xfxqxpx      (1.1.5) 

where NaaNn  ),( ,  
Zmlk ,,, , j=1,2 and j{3,5,7,9,…, r}, r is an odd positive integer, 

m is the generalized forward difference operator defined by nnm xx 0
, 

  nmnjx
s

j
x msn

j

s

sj

n

j

m 







 





 1,1,1
0

,  j, m Z+.   

Further, it is assumed that 

(C1) 0,0  nn qp , 

(C2) 10,0  nn qp , 

(C3) 1,0  nn qp , 

(C4) 10,0  nn qp , 

(C5)    RRf 0:  is continuously differentiable in its domain for  0Ru . 

Our objective here is to proceed further in this direction to obtain the asymptotic stability of fixed points of 

equation (1.1.5) which include and generalize some earlier results cited there in references. For applications of 

difference equations one can refer [1, 2, 3, 5, 7, 9, 10, 11, 12, 16, 17, 26]. 
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1.2 Preliminaries 

Difference equations usually describe the evolution of some certain phenomena over time and are also 

important in describing dynamics for fundamentally discrete system. The population dynamics have discrete 

generation; the size of the (n+1)th generation x(n+1) is a function of the nth generation x(n)[5]. This can be 

expressed as difference equation of the form 

    nxgnx 1          (1.2.1) 

The concept of difference equations with many examples in applications such as asymptotic behavior of 

solutions of difference equations were studied extensively by S. N. Elaydi[3]. Further, by a solution of 

difference equation (1.2.1), we mean a real sequence nx , ...,2,1,0n , which satisfies the difference 

equation (1.2.1), for all 0, 00  nnn . A point 
x  is said to be a fixed point of the difference equation 

(1.2.1) if     xxg . Let x  be a point in the domain of g . If there exists a positive integer   and a fixed 

point 
x  of (1.2.1) such that       xxgxxg 1, 

, then x  is an eventually fixed point of equation 

(1.2.1). The fixed point 
x  of equation (1.2.1) is stable if given 0   there exists  0  such that 

 xx0  implies    xxg m

0 , for all 0m . If 
x  is not stable, then it is called unstable. The 

fixed point 
x  of equation (1.2.1) is asymptotically stable if it is stable and   there exists  0  such that 

 xx0  implies 



 xxn

n
lim . If  , then the fixed point  

x  is said to be globally asymptotically 

stable. 

 A fixed point is also referred to as a fixed solution or critical point or equilibrium point or stationary point 

or rest point or singular point or limit point)[1]. If 
x  is a fixed point of equation (1.2.1) [or equation (1.1.5)], 

then obviously     xxn  is a solution of equation (1.2.1) [or equation (1.1.5)]. Equation (1.1.5) is also 

referred as nonautonomous or time-variant whereas equation (1.2.1) is called autonomous or time-invariant [3]. 

Several authors have been studying time-variant systems in the area of dynamical systems, but in this paper we 

have studied the equation (1.1.5) in the discrete manner.  

Throughout this paper we use the notations  ...,2,1,0N , numbersrealpositiveallofsetR . 

integerspositiveallofsetZ , numbersrealallofsetR , integersallofsetZ ,    ...,2,1,  aaaaN

, where Na . . 

2. MAIN RESULTS  

In this section, we give some new criteria for asymptotic stability of fixed points (or fixed solution) of 

equation (1.1.5). The following definitions and theorems are main tools in this section. In this direction, we 

introduce the following definitions for asymptotic stability of fixed points (or fixed solution) of equation (1.1.5). 
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Definition 2.1 The generalized difference operator 
j

m  is defined as nnm xx 0
; 

  1,1
0









 




 jx

s

j
x mn

j

s

sj
n

j
m ; for all m Z+. 

Definition 2.2 The generalized difference operator of jth kind is defined as  1 j

mm

j

m . 

Definition 2.3 Suppose that sequence  nx  be a sequence as defined in Definition 2.1, then we define the 

following: 

 







m

ns

ssn

n

ns

sm xxx
00

,   
 










m

ns

m

ms

sn

m

ns

snsms

n

ns

sm xxxxx
0 00

2

1

2
, for all nN(n0),  

       













 



















jm

ms

sn

m

ns

sm

j
m

ns

ssn

j
n

ns

s

j

m xxjxxx
1

11

000

111 , for all nN(n0),  

j=1, 2, 1≤ m ≤ n. 

        nj

mj

ms

sn

s
j

ns

sm

sj

j

m

ns

ssn

j
n

ns

s

j

m xxxjxxxx 






































 

)1(

1

1
1

111
)1()1(111

000

, for 

all nN(n0), 3≤ j ≤ n, 1≤ m ≤ n. 

 

Theorem 2.1 If one of the conditions (C1), (C2), (C4) is satisfied along with the condition (C5), then the fixed 

solution  x of equation (1.1.5) is asymptotically stable. 

Proof: Without loss of generality we can assume that  nx be an eventually positive and nondecreasing solution of 

(1.1.5), then there exists an integer  aNa 1  such that 0nx , for )( 1aNn . It follows that both 

0,  lnkn xx , for    aNaaNn  11 , . 

Let lnnknnnn xqxpxz   , for    aNaaNn  11 , .     (2.1) 

First, we consider the condition (C1). Then from equation (1.1.5) and from condition (C5) we have 

  00   nnn
j
m zandxfz  , for    aNaaNn  11 , .    (2.2) 

Next we shall show that 

 (i)     xxn  is a fixed solution of equation (1.1.5), 

(ii) 



 xxn

n
lim . 

Case (i) To show that     xxn  is a fixed solution of equation (1.1.5). 
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Since  nx is eventually fixed solution of equation (1.1.5), we have there exists a positive integer  12 aNa  such 

that     



  xxfxxf n

a
n

a


122 , , for  2aNn . This implies that  nx is a periodic solution of 

equation (1.1.5). It remains to show that   



 xxf n

n


12 , for    122 , aNaaNn  . 

Suppose that     



  xxfxxf n

a
n

a


122 , , for    122 , aNaaNn  . Therefore, either 

  



 xxf n

a


12   or   



 xxf n

a


12 , for all    122 ,, aNaan  . This implies that 

  0
12  




xxf n
a

 , for    122 , aNaaNn  , which is a contradiction since distance between two 

points is not negative. Now Consider   



 xxf n

a


12 , for    122 , aNaaNn   

     


 n
a

n
a

xfxf 22 1
, for    122 , aNaaNn  . This shows that there exists a sufficiently 

small real number 0  such that nn xx  , for    122 , aNaaNn  , which is a contradiction to our 

assumption. Thus from both the cases we conclude that   



 xxf n

a


12 , for all nn xx  . Hence we 

proved that     xxn  is a fixed solution of equation (1.1.5). 

Case (ii) To show that 



 xxn

n
lim . 

Suppose that 



 xxn

n
lim . Then there exists an infinite subsequence 

    nn i  such that    xx
n i . 

Therefore we can take a sequence of subsets   NiN   such that 
     iNiin i  ,, , for Ni . So there 

exists  iNi 1  such that   NiiNn  ,   and 
2


nx . Thus  

  









2


 fxf n , for    1, iNiiNn  .       (2.3) 

Therefore from inequalities (2.2) and (2.3), we have  











2


fzn

j

m , for    1, iNiiNn  .       (2.4) 

Summing the inequality (2.4) from a2 to n, we obtain the following  

          






















 

















2
111 2

1

11

22


fanzzjzz

jm

ms

sn

m

as

sm

j
m

as

ssn

j
, for 

   2, aNiiNn  , j=1,2, 1≤ m ≤ n, and 
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, for    2, aNiiNn  , 3≤ j ≤ n, 1≤ m ≤ n. 

Case (a) when j=1, we have 
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Case (b) when j=2, we have 
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Case (c) when j is an odd positive integer, we have 
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From both the cases (a) and (b), we see that 0nz , for    1, iNiiNn  , 2an  , where  12 iNa  , 

which is a contradiction to the fact that 0nz , for    122 , aNaaNn  . Hence we proved that 




 xxn

n
lim . 

Second, we consider the condition (C2). Then from equation (2.1) and from condition (C2), we have  

lnnnn xqxz  , for    aNaaNn  11 , .       (2.6) 

It follows that there is an integer  12 aNa   such that  

  0 nn
j
m xfz , for    122 , aNaaNn  , j≥1.     (2.7) 

First we have to prove that 0nz , for    122 , aNaaNn  . Suppose that 0nz , for 

   122 , aNaaNn  . Then there exists a positive integer  23 aNa   and a real number 0K such that 

Kzn  , for    233 , aNaaNn  . Therefore form equation (2.6), we obtain  
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lnnn xqKx  , for    233 , aNaaNn  .      (2.8) 

Case (I) Suppose  nx is unbounded. 


n
n

xei suplim.,. . Then there exists a subsequence   Nn
ii 


1
 

such that lani  3 and  iasin ,  ln
l

n xx 
ii

max . In view of the inequality (2.8), we have 

iii nnlnnn xqKxqKx   , which is a contradiction.  

Case (II) Suppose  nx is bounded. 


 0,suplim.,. n
n

xei . Then there exists a subsequence 

  Nn
ii 






1
 such that 

in
x and 


iasin ,  

lnln
xx

 
ii

max . It follows that 


 i

suplim
ni

x . In view of the inequality (2.8), we have  
 iii nnlnnn

xqKxqKx , which implies 





iii

suplimsuplimsuplim
ni

nlni
nni

xqKxqKx .  nqKei .,. , which is a contradiction.  

Thus in both cases we obtained the contradiction to the inequality (2.8). Therefore our assumption, namely, 0nz , 

for    122 , aNaaNn   is wrong. Hence we proved that inequalities remains hold for this condition also. 

Proof of the remaining part is same as that of condition (C1), and hence we omitted. 

Finally, we consider the condition (C4). Then from equation (2.1) and from condition (C5), we have  

lnnknnnn xqxpxz   , for    aNaaNn  11 , .      (2.9) 

Then from equation (1.3), condition (C5), and proof of the theorem for condition (C2)  we have 

  00   nnn
j
m zandxfz  , for    122 , aNaaNn  ,  j≥1.  

The remaining part of the proof is the same as that of condition (C1), and hence we omitted. 

 Hence the theorem is completely proved. 

 

Remark 2.1 [5] Intuitively, a fixed solution  x is stable if solutions close to  x do not wander far from  x  

under all iterations f in equation (1.2.1). Asymptotically stability of  x requires the additional condition that all 

solutions of equation (1.2.1) that start near  x converge to  x . 

 

Corollary 2.1 If one of the conditions (C1), (C2), (C4) is satisfied along with the condition (C5), then the fixed 

solution  x of equation (1.1) is globally asymptotically stable. 

Proof  It is easily seen from the proof of the theorem 2.1 along with the remark 2.1.  

 

Theorem 2.2 If the condition (C3) is satisfied along with the condition (C5), then the solution  x of equation 

(1.1.5) is not a fixed solution and hence it is not asymptotically stable. 
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Remark 2.2 The proof of the theorem 2.2 is similar to that of theorem 2.1, and hence omitted. 

 

Corollary 2.2 If the condition (C3) is satisfied along with the condition (C5), then the solution  x of equation 

(1.3) is not a fixed solution and hence it is not globally asymptotically stable. 

Proof  It is easily seen from the proof of the theorem 2.2 along with the remark 2.1. 

 

3. CONCLUSION 

In this manuscript, we obtained new criteria for asymptotic behavior of fixed solutions of nonlinear delay difference 

equation (1.1,5). 
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