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New class of generalized closed sets in soft topological spaces

N. Selvanayaki1, Gnanambal Ilango2 and M.Maheswari3.

Abstract - In this paper, we introduce the notions of α-generalized regular weakly closed sets and α-generalized regular

weakly open sets in soft topological spaces and some of its properties are studied.

Keywords Soft sets, soft topological spaces, soft αgrw-closed sets and soft αgrw-open sets.

2010 Subject classification: 54A05, 54A10.

1 Introduction and Preliminaries

The concept of soft sets was first introduced by Molodtsov[7] in 1999 who began to develop the basics of
corresponding theory as a new approach to modeling uncertainties. In Molodtsov 2006, [8] successfully
applied the soft theory in several directions such as Smoothness of functions, Game theory, Operations
research, Riemann integration, Perron integration, Probability and Theory of measurement.

In recent years, an increasing number of papers have been written about soft sets theory and its
applications in various fields [9, 16]. Shabir and Naz [14] introduced the notion of soft topological spaces
which are defined to be over an initial universe with a fixed set of parameters. In addition Maji et al. [10]
proposed several operations on soft sets and some basic properties of these operations have been revealed
so far.

In 2012, generalized closed set was introduced by Kannan[6] in soft topological spaces. Selvanayaki and
Gnanambal Ilango[13] introduced the concept of α-generalized regular weakly closed sets in topological
spaces in the year 2013. In this paper soft α-generalized regular weakly closed sets are introduced in soft
topological spaces. Further we investigate some soft topological properties of this set.

Definition 1.1. [7] Let U be an initial universe set and E be a set of parameters. Let P (U) denotes the
power set of U and A ⊆ E. A pair (F,A) is called a soft set over U, where F is a mapping given by
F : A→ P (U).

1Assistant Professor, Department of Mathematics, Nallamuthu Gounder Mahalingam College, Pollachi-642001,
Coimbatore, Tamilnadu, India.
E.mail: selvanayaki.nataraj@gmail.com

2Assistant Professor, Department of Mathematics, Government Arts College, Coimbatore, Tamilnadu, India.
E.mail: gnanamilango@yahoo.co.in

3Assistant Professor, Department of Mathematics, Nallamuthu Gounder Mahalingam College, Pollachi-642001,
Coimbatore, Tamilnadu, India.
E.mail: mahimrk@gmail.com
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Definition 1.2. [10] Let U be an universal set and E be an universe set of parameters. Let (F,A) and
(G,B) be soft sets over a common universe set U and A,B ⊆ E. Then (F,A) is a subset of (G,B), denoted
by (F,A) ⊆ (G,B), if
(i) A ⊆ B,
(ii) for all e ∈ E,F (e) ⊆ G(e).

(F,A) equals (G,B), denoted by (F,A) = (G,B), if (F,A)⊆̃(G,B) and (G,B)⊆̃(F,A).
We denote the family of these soft sets by SS(X)E.

Definition 1.3. [10] Two soft set (F,A) and (G,B) over a common universe U are said to be equal if
(F,A) is a soft subset of (G,B) and (G,B) is a soft subset of (F,A).

Definition 1.4. [10] A soft set (F,A) over U is said to be a null soft set, denoted by φ̃, if ∀ε ∈ A,F (ε) = φ.

Definition 1.5. [10] A soft set (F,A) over U is said to be a absolute soft set, denoted by Ũ , if ∀ε ∈
A,F (ε) = U,

Definition 1.6. [10] Union of two soft sets of F,A) and (G,B) over the common universe U is the soft
set (H,C), where C = A ∪B, and ∀e ∈ C,

H(e) =


F (e), if e ∈ A−B
G(e), if e ∈ B − A
F (e) ∪G(e), if e ∈ A ∩B

Definition 1.7. [10] Intersection of two soft sets (F,A) and (G,B) over the common universe U is the
soft set (H,C), where C = A∩B, and ∀e ∈ C, H(e) = F (e) or G(e). We write (F,A) ∩̃ (G,B) = (H,C).

Definition 1.8. [2] The complement of a soft set (F,A), denoted by (F,A)c, is defined by (F,A)c =
(F c, A), F c : A → P (X) is mapping given by F c(e) = X − F (e),∀e ∈ A and F c is called the soft
complement function of F.

Definition 1.9. [10] A soft set (E,A) over X is said to be soft element if there exists α ∈ A such that
E(α) is a singleton, say {x}, and E(β) = φ, ∀ β(6= α) ∈ A, such a soft element is denoted by Ex

α.

Definition 1.10. [14] Let τ̃ be the collection of soft sets over X. Then τ̃ is said to be a soft topology on
X if

(i) (φ̃, A), (X̃, A) ∈̃ τ̃ , where φ̃(α) = φ and X̃(α) = X, ∀A,

(ii) the intersection of any two soft sets in τ̃ belongs to τ̃ ,

(iii) the union of any number of soft sets in τ̃ belongs to τ̃ .
The triple (X, τ̃ , A) is called a soft topological space over X. The members of τ̃ are said to be soft
open sets in X.

Definition 1.11. Let (X, τ̃ , E) be a soft topological space over X and (A,E) be a soft set in (X, τ̃ , E) is
called

(a) soft semi open [3] (A,E) ⊆̃ cls(ints(A,E)) and soft semi closed ints(cls(A,E)) ⊆̃
(A,E).
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(b) soft pre open [4] (A,E) ⊆̃ ints(cls(A,E)) and soft pre closed cls(ints(A,E)) ⊆̃
(A,E).

(c) soft regular open [12] (A,E) = ints(cls(A,E)) and soft regular closed (A,E) = cls(ints(A,E)).

(d) soft α-open [1] (A,E) ⊆̃ ints(cls(ints(A,E))) and soft α-closed if cls(ints(cls(A,E))) ⊆̃ (A,E).

Definition 1.12. [15] In a soft topological space (X, τ̃ , E), a soft set (G,C) is said to be regular semi-open
soft set if there is a regular open soft set (H,B) such that (H,B) ⊆̃ (G,C) ⊆̃ cls(H,B)

Definition 1.13. A soft set (A,E) of a soft topological space (X, τ̃ , E) is called

(a) a soft ω-closed [11] if cls(A,E) ⊆̃ (U,E) whenever (A,E) ⊆̃ (U,E) and (U,E) is soft semi open in
(X, τ̃ , E),

(c) a soft generalized pre regular closed (briefly soft gpr-closed)[5] if pcls(A,E) ⊆̃ (U,E) whenever
(A,E) ⊆̃ (U,E) and (U,E) is soft regular open in (X, τ̃ , E),

2 Soft α-generalized regular weakly closed sets in soft topolog-

ical spaces

Definition 2.1. A soft set (A,E) in a soft topological space (X, τ̃ , E) is called a soft α- generalized regular
weakly closed (briefly soft αgrw-closed) set in (X, τ̃ , E) if αcls((A,E)) ⊆̃ (U,E) whenever (A,E) ⊆̃ (U,E)
and (U,E) is soft regular semi-open in (X, τ̃ , E).

Example 2.2. Let X = {x1, x2}, E = {e1, e2} and τ̃ = { φ̃ , X̃ , (F1, E), (F2, E),
(F3, E)} where (F1, E), (F2, E), (F3, E) are soft sets over (X,E), defined as follows
F1(e1) = {φ}, F1(e2) = {x1},
F2(e1) = {x1}, F2(e2) = {x2},
F3(e1) = {x1}, F3(e2) = {X}.
Then a soft set (A,E) such that A(e1) = {x1}, A(e2) = {x1} is a soft αgrw-closed set.

Proposition 2.3. For a soft topological space (X, τ̃ , E), every soft closed (resp. soft α-closed, soft regular
closed and soft ω-closed) set is soft αgrw-closed.

Proof.

1. Let (A,E) be any soft closed set and (U,E) be soft regular semi-open such that (A,E) ⊆̃ (U,E). Since
every soft closed set is soft α-closed, αcls((A,E)) ⊆̃ cls((A,E)) = (A,E). Thus αcls((A,E)) ⊆̃ (U,E)
and so (A,E) is soft αgrw-closed.

2. Let (A,E) be soft α-closed set and (U,E) be soft regular semi-open such that (A,E) ⊆̃ (U,E). Then
αcls((A,E)) = (A,E) ⊆̃ (U,E). Hence (A,E) is soft αgrw-closed.

3. Let (A,E) be soft regular closed set and (U,E) be soft regular semi-open such that (A,E) ⊆̃ (U,E).
Then (A,E) is soft αgrw-closed, since every soft regular closed set is soft closed and by 1.
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4. Let (A,E) be soft ω-closed set and (U,E) be soft regular semi-open such that (A,E) ⊆̃ (U,E). Since
every soft regular semi-open set is soft semi open, αcls((A,E)) ⊆̃cls((A,E)) ⊆̃ (U,E). Hence (A,E)
is soft αgrw-closed.

Proposition 2.4. In a soft topological space (X, τ̃ , E), every soft αgrw-closed set is soft gpr-closed.

Proof. Let (A,E) be soft αgrw-closed and (U,E) be soft regular open such that (A,E) ⊆̃ (U,E).
Since every soft regular open is soft regular semi-open and every α-closed set is semi pre closed, we have
spcls((A,E)) ⊆̃ αcls((A,E))) ⊆̃ (U,E). Hence (A,E) is soft gpr-closed.

Remark 2.5. The converses of the above propositions need not be true as seen from the following examples.

Example 2.6. In Example 2.2, (A,E) is soft αgrw-closed but not soft closed, not soft α-closed, not soft
regular closed and not soft ω-closed.

Example 2.7. In Example 2.2, {(e1, {φ}), (e2, {x2})} is soft gpr-closed but not soft αgrw-closed.

Proposition 2.8. If (A,E) and (B,E) are soft αgrw-closed sets, then (A,E) ∪̃ (B,E) is soft αgrw-closed.

Proof. Suppose that (A,E) ∪̃ (B,E) ⊆̃ (U,E) and (U,E) is soft regular semi-open. Then (A,E) ⊆̃ (U,E)
and (B,E) ⊆̃ (U,E). Since (A,E) and (B,E) are soft αgrw-closed, αcls((A,E)) ⊆̃ (U,E) and αcls((B,E)) ⊆̃ (U,E)
and hence αcls((A,E) ∪̃ (B,E)) = αcls((A,E)) ∪̃ αcls((B,E)) ⊆̃ (U,E). Thus (A,E) ∪̃ (B,E) is soft
αgrw-closed.

Remark 2.9. The intersection of two soft αgrw-closed sets of a soft topological space (X, τ̃ , E) is generally
not soft αgrw-closed.

Example 2.10. In Example 2.2, the soft sets {(e1, {x1}), (e2, {x1})} and
{(e1, {x2}), (e2, {x1})} are soft αgrw-closed but their intersection {(e1, {φ}), (e2, {x1})} is not soft αgrw-
closed.

Proposition 2.11. If (A,E) is soft αgrw-closed subset of (X, τ̃ , E) such that (A,E) ⊆̃ (B,E) ⊆̃ αcls((A,E)),
then (B,E) is soft αgrw-closed set in (X, τ̃ , E).

Proof. Let (A,E) be soft αgrw-closed subset of (X, τ̃ , E) such that (A,E) ⊆̃ (B,E) ⊆̃ αcls((A,E)). Let
(B,E) ⊆̃ (U,E) and (U,E) is soft regular semi-open. Then (A,E) ⊆̃ (U,E). Since (A,E) is soft αgrw-
closed, αcls((A,E)) ⊆̃ (U,E). Now αcls((B,E)) ⊆̃ αcls(αcls((A,E))) = αcls((A,E)) ⊆̃ (U,E). Therefore
(B,E) is soft αgrw-closed sets in (X, τ̃ , E).

Remark 2.12. The converse of the above proposition need not be true. In Example 2.2, the sets (A,E) =
{(e1, {x2}), (e2, {φ})} and (B,E) = {(e1, {x2}), (e2, {x1})} are soft αgrw-closed sets in (X, τ̃ , E). Here

αcls((A,E)) = {(e1, {x2}), (e2, {φ})}. Therefore (A,E) ⊆̃ (B,E) *̃ αcls((A,E)). Thus any soft αgrw-
closed set need not lie between αgrw-closed and its soft αclosure.

Corollary 2.13. Every soft regular semi-open set is soft regular semi-closed.

Proof. Let (A,E) be soft regular semi-open and (B,E) be a soft regular closed set in (X, τ̃ , E). Then
ints((B,E)) is soft regular open and so by assumption ints((B,E)) ⊆̃ (A,E) ⊆̃ cls(ints((B,E))) = (B,E).
This implies (A,E) is soft regular semi-closed.
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Proposition 2.14. If a soft subset (A,E) of SS(X)E is soft αgrw-closed, then αcls((A,E))− (A,E) does
not contain any non empty soft regular semi-open set.

Proof. Let (A,E) be soft αgrw-closed set in (X, τ̃ , E). Let (U,E) be an non empty soft regular semi-open
set such that (U,E) ⊆̃ αcls((A,E))− (A,E). Now, (U,E) ⊆̃ (Ac, E) which implies (A,E) ⊆̃ (U c, E). Since
(U,E) is regular semi-open, (U c, E) is regular semi-open by Corollary 2.13. Since (A,E) is soft αgrw-closed
in (X, τ̃ , E), αcls((A,E)) ⊆̃ (U c, E). So (U,E) ⊆ [αcls((A,E))]c and also (U,E) ⊆̃ αcls((A,E)). Therefore

(U,E) ⊆̃ αcls((A,E)) ∩̃ [αcls((A,E))]c = φ̃, which is a contradiction. Hence αcls((A,E)) − (A,E) does
not contain any non empty soft regular semi-open set in (X, τ̃ , E).

Remark 2.15. The converse of the above proposition need not be true. In Example 2.2, let (A,E) =
{(e1, {x1}), (e2, {φ})}. Then αcls((A,E)) − (A,E) = {(e1, {X}), (e2, {x2})} − {(e1, {x1}), (e2, {φ})} =
{(e1, {x2}), (e2, {x2})} does not contain non empty soft regular semi-open set, but (A,E) is not a soft
αgrw-closed set in (X, τ̃ , E).

Corollary 2.16. If a soft subset (A,E) of SS(X)E is soft αgrw-closed, then αcls((A,E)) − (A,E) does
not contain any non empty soft regular semi-closed set.

Proposition 2.17. If a soft subset (A,E) of SS(X)E is soft αgrw-closed, then αcls((A,E))− (A,E) does
not contain any non empty soft regular closed set.

Proof. Let (A,E) be soft αgrw-closed set in (X, τ̃ , E) and (F,E) be a soft regular closed subset of
αcls((A,E)) − (A,E). Then (A,E) ⊆̃ (F c, E). Since every soft regular open set is soft regular semi-
open and (A,E) is soft αgrw-closed, αcls((A,E)) ⊆̃ (F c, E). Consequently (F,E) ⊆̃ [αcls((A,E))]c. Thus

(F,E) ⊆̃ αcls((A,E)) ∩̃ [αcls((A,E))]c = φ̃. Hence αcls((A,E)) − (A,E) contains no non empty soft
regular closed set.

Remark 2.18. The converse of the above proposition need not be true. In Example 2.2, let (A,E) =
{(e1, {x1}), (e2, {φ})}. Then αcls((A,E)) − (A,E) = {(e1, {x2}), (e2, {x2})} does not contain non empty
soft regular closed set, but (A,E) is not a soft αgrw-closed set.

Proposition 2.19. Let (A,E) be a soft αgrw-closed set in (X, τ̃ , E). Then (A,E) is soft α-closed if and
only if αcls((A,E))− (A,E) is soft regular semi-open in (X, τ̃ , E).

Proof. Suppose (A,E) is soft α-closed. Then αcls((A,E)) = (A,E) and so αcls((A,E)) − (A,E) = φ̃,
which is soft regular semi-open in (X, τ̃ , E).

Conversely, suppose that (A,E) is soft αgrw-closed and αcls((A,E))−(A,E) is soft regular semi-open.
Since (A,E) is soft αgrw-closed by Proposition 2.14, αcls((A,E))−(A,E) does not contain any non empty

soft regular semi-open in (X, τ̃ , E). Then αcls((A,E))−(A,E) = φ̃. Therefore αcls((A,E)) = (A,E). Hence
(A,E) is soft α-closed.

Remark 2.20. A soft singleton set of SS(X)E is denoted by {x}e,∀e ∈ E, x ∈ X.

Proposition 2.21. For each Xx
e ∈̃ SS(X)E, where Xx

e is a soft element of SS(X)E either {x}e is soft
regular semi-closed or X − {x}e is soft αgrw-closed in (X, τ̃ , E).

Proof. Suppose that {x}e is not regular semi-closed in (X, τ̃ , E). Then X −{x}e is not regular semi-open

and the only regular semi-open set containing X − {x}e is X̃ itself. Therefore αcls((X − {x}e)) ⊆̃ X̃ and
so X − {x}e is soft αgrw-closed in (X, τ̃ , E).
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Corollary 2.22. For an element Xx
e ∈̃ SS(X)E the set X − {x}e is soft αgrw-closed or soft regular

semi-open.

Proof. Suppose that X − {x}e is not soft regular semi-open. Then X̃ is the only soft regular semi-open

containing X −{x}e and also αcls((X −{x}e)) ⊆̃ X̃. Hence X −{x}e is soft αgrw-closed set in (X, τ̃ , E).

Definition 2.23. A soft subset (A,E) is called a soft α-generalized regular weakly open (briefly soft αgrw-
open) set in a soft topological space(X, τ̃ , E) if (Ac, E) is soft αgrw-closed.

Proposition 2.24. For a soft topological space (X, τ̃ , E), every soft open (resp. soft α-open, soft regular
open and soft ω-open) set is soft αgrw-open.

Proof. Obvious

Theorem 2.25. A soft subset (A,E) of SS(X)E is soft αgrw-open if and only if (F,E) ⊆̃ αints((A,E))
whenever (F,E) is soft regular semi-closed and (F,E) ⊆̃ (A,E).

Proof. Suppose that (F,E) ⊆̃ αints((A,E)) whenever (F,E) is soft regular semi-closed and (F,E) ⊆̃ (A,E).
Let (Ac, E) ⊆̃ (U,E), where (U,E) is soft regular semi-open. Then (U c, E) ⊆̃ (A,E), where (U c, E) is soft
regular semi-closed. By hypothesis (U c, E) ⊆̃ αints((A,E)), which implies (αints((A,E))c ⊆̃ (U,E). That
is αcls((A

c, E)) ⊆̃ (U,E). Thus (Ac, E) is soft αgrw-closed. Hence (A,E) is soft αgrw-open.
Conversely, suppose that (A,E) is soft αgrw-open, (F,E) ⊆̃ (A,E) and (F,E) is soft regular semi-

closed. Then (F c, E) is soft regular semi-open and (Ac, E) ⊆̃ (F c, E). Therefore αcls((A
c, E)) ⊆̃ (F c, E)

and so (F,E) ⊆̃ (αcls((A
c, E)))c = αints((A,E)). Hence (F,E) ⊆̃ αints((A,E)).

Proposition 2.26. If (A,E) and (B,E) are soft αgrw-open sets, then (A,E) ∩̃ (B,E) is soft αgrw-open.

Proof. Proofs follows from Proposition 2.8

Remark 2.27. The union of two soft αgrw-open sets of a soft topological space (X, τ̃ , E) is generally not
soft αgrw-open set. In Example 2.2, the soft sets {(e1, {x2}), (e2, {x2)}} and {(e1, {x1}), (e2, {φ}} are soft
αgrw-open sets but their union {(e1, {X}), (e2, {x2)}} is not soft αgrw-open.

Theorem 2.28. For a subset (A,E) and (U,E) of SS(X)E, the following are equivalent:

(a) cls((A,E))− (A,E) is soft αgrw-closed.

(b) (A,E) ∪̃ (cls((A,E)))c is soft αgrw-open.

Proof. (a) ⇒ (b). Let (U,E) = cls((A,E)) − (A,E). Then (U c, E) = (A,E) ∪̃ (cls((A,E)))c and
(A,E) ∪̃ (cls((A,E)))c is soft αgrw-open.

(b) ⇒ (a). Let (U,E) = (A,E) ∪̃ (cls((A,E)))c. Then (U c, E) is soft αgrw-closed and (U c, E) =
cls((A,E))− (A,E) and so cls((A,E))− (A,E) is soft αgrw-closed.

Proposition 2.29. If a soft subset (A,E) is soft αgrw-open in (X, τ̃ , E), then (U,E) = X̃ whenever
(U,E) is soft regular semi-open and αints((A,E)) ⊆̃ (Ac, E) ⊆̃ (U,E).

Proof. Assume that (A,E) is soft αgrw-open, (U,E) be soft regular semi-open such that αints((A,E)) ∪̃ (Ac, E) ⊆̃ (U,E).
This implies (U c, E) ⊆̃ (αints((A,E)) ∪̃ (Ac, E))c

= αcls((A
c, E)) − (Ac, E). Since (Ac, E) is soft αgrw-closed and (U c, E) is soft regular semi-closed by

Corollary 2.16 , it follows that (U c, E) = φ̃. Hence X̃ = (U,E).
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Proposition 2.30. If (A,E) is soft αgrw-closed then αcls((A,E))− (A,E) is soft αgrw-open.

Proof. Suppose that (A,E) is soft αgrw-closed. Let (F,E) ⊆̃ αcls((A,E))− (A,E), where (F,E) is soft

regular semi-closed. By Corollary 2.16, (F,E) = φ̃. Therefore (F,E) ⊆̃ αints(αclS((A,E))− (A,E)) and
by Theorem 2.25, αcls((A,E))− (A,E) is soft αgrw-open.
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