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A note on soft αgrw-closed sets

N. Selvanayaki1, Gnanambal Ilango2 and M.Maheswari3,

Abstract - Aim of this paper is to study some properties of αgrw-closed sets in soft topological spaces and related char-

acterizations are studied.

Keywords Soft sets, soft topological spaces, soft αgrw-closed sets and soft regular semi kernal.

2010 Subject classification: 54A05, 54A10.

1 Introduction and Preliminaries

Molodtsov [9] (1999) introduced the concept of a soft set as a new approach for modeling uncertainties.
After that Maji et al. [7] established some fundamental operations between two soft sets and then tackled
one of their applications in decision making problems. Shabir and Naz(2011)[11] studied the topological
structures of soft sets.

Selvanayaki et. al. [10] introduced αgrw-closed sets in soft topological spaces. In this paper we study
some more properties of soft αgrw-closed sets.

Definition 1.1. [9] Let U be an initial universe set and E be a set of parameters. Let P (U) denotes the
power set of U and A ⊆ E. A pair (F,A) is called a soft set over U, where F is a mapping given by
F : A→ P (U).

Definition 1.2. [8] Let U be an universal set and E be an universe set of parameters. Let (F,A) and
(G,B) be soft sets over a common universe set U and A,B ⊆ E. Then (F,A) is a subset of (G,B), denoted
by (F,A) ⊆ (G,B), if
(i) A ⊆ B,
(ii) for all e ∈ E,F (e) ⊆ G(e).

(F,A) equals (G,B), denoted by (F,A) = (G,B), if (F,A) ⊆̃ (G,B) and (G,B) ⊆̃ (F,A).
We denote the family of these soft sets by SS(X)E.

Definition 1.3. [8] Two soft set (F,A) and (G,B) over a common universe U are said to be equal if
(F,A) is a soft subset of (G,B) and (G,B) is a soft subset of (F,A).

Definition 1.4. [8] A soft set (F,A) over U is said to be a null soft set, denoted by φ̃, if ∀ε ∈ A,F (ε) = φ.

1Assistant Professor, Department of Mathematics, Nallamuthu Gounder Mahalingam College, Pollachi-642001,
Coimbatore, Tamilnadu, India.
E.mail: selvanayaki.nataraj@gmail.com

2Assistant Professor, Department of Mathematics, Government Arts College, Coimbatore, Tamilnadu, India.
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Definition 1.5. [8] A soft set (F,A) over U is said to be a absolute soft set, denoted by Ũ , if ∀ε ∈
A,F (ε) = U,

Definition 1.6. [8] Union of two soft sets of F,A) and (G,B) over the common universe U is the soft
set (H,C), where C = A ∪B, and ∀e ∈ C,

H(e) =


F (e), if e ∈ A−B
G(e), if e ∈ B − A
F (e) ∪G(e), if e ∈ A ∩B

Definition 1.7. [8] Intersection of two soft sets (F,A) and (G,B) over the common universe U is the
soft set (H,C), where C = A∩B, and ∀e ∈ C, H(e) = F (e) or G(e). We write (F,A) ∩̃ (G,B) = (H,C).

Definition 1.8. [2] The complement of a soft set (F,A), denoted by (F,A)c, is defined by (F,A)c =
(F c, A), F c : A → P (X) is mapping given by F c(e) = X − F (e),∀e ∈ A and F c is called the soft
complement function of F.

Definition 1.9. [8] A soft set (E,A) over X is said to be soft element if there exists α ∈ A such that
E(α) is a singleton, say {x}, and E(β) = φ, ∀ β( 6= α) ∈ A, such a soft element is denoted by Ex

α.

Definition 1.10. [11] Let τ̃ be the collection of soft sets over X. Then τ̃ is said to be a soft topology on
X if

(i) (φ̃, A), (X̃, A) ∈̃ τ̃ , where φ̃(α) = φ and X̃(α) = X, ∀A,

(ii) the intersection of any two soft sets in τ̃ belongs to τ̃ ,

(iii) the union of any number of soft sets in τ̃ belongs to τ̃ .
The triple (X, τ̃ , A) is called a soft topological space over X. The members of τ̃ are said to be soft
open sets in X.

Definition 1.11. Let (X, τ̃ , E) be a soft topological space over X and (A,E) be a soft set in (X, τ̃ , E) is
called

(a) soft regular open [13] (A,E) = ints(cls(A,E)) and soft regular closed (A,E) =̃ cls(ints(A,E)).

(b) soft α-open [1] (A,E) ⊆̃ ints(cls(ints(A,E))) and soft α-closed if cls(ints(cls(A,E))) ⊆̃ (A,E).

Definition 1.12. [14] In a soft topological space (X, τ̃ , E), a soft set (G,C) is said to be regular semi-open
soft set if there is a regular open soft set (H,B) such that (H,B) ⊆̃ (G,C) ⊆̃ cls(H,B)

Definition 1.13. A soft set (A,E) of a soft topological space (X, τ̃ , E) is called

(a) a soft generalized closed (briefly soft g-closed) [6] if cls(A,E) ⊆̃ (U,E) whenever (A,E) ⊆̃ (U,E)
and (U,E) is soft open in (X, τ̃ , E),

(b) a soft α-generalized closed (briefly soft αg-closed)[3] if αcls(A,E) ⊆̃ (U,E) whenever (A,E) ⊆̃ (U,E)
and (U,E) is soft open in (X, τ̃ , E).
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Definition 1.14. [10] A soft set (A,E) in a soft topological space (X, τ̃ , E) is called a soft α- gener-
alized regular weakly closed (briefly soft αgrw-closed) set in (X, τ̃ , E) if αcls(A,E) ⊆̃ (U,E) whenever
(A,E) ⊆̃ (U,E) and (U,E) is soft regular semi open in (X, τ̃ , E).

Definition 1.15. [5] Let (X, τ̃ , E) be a soft topological space, (F,E), (G,E) be semi closed sets in X such

that (F,E) ∩̃ (G,E) = φ̃. If there exist semi open soft sets (F1, E) and (F2, E) such that (F,E) ⊆̃ (F1, E), (G,E) ⊆̃ (F2, E)

and (F1, E) ∩̃ (F2, E) = φ̃, then (X, τ̃ , E) is called a soft semi normal space.

Definition 1.16. [4] A soft topological space (X, τ̃ , E) is said to be soft compact if every soft open cover
of (X,E) has a finite subcover.

Definition 1.17. [12] Let (X, τ̃ , E) be a soft topological space over X, (G,A) a soft closed set in (X, τ̃ , E)

and eF ∈̃ XA such that eF /̃∈ (G,A). If there exist soft open sets (F1, A) and (F2, A) such that eF ∈̃ (F1, A), (G,A) ⊆̃ (F2, A)
and (F1, A) ⊆̃ (F2, A) = φA, then (X, τ̃ , E) is called a soft regular space.

2 Soft αgrw-closed sets in soft topological spaces

Proposition 2.1. In a soft topological space (X, τ̃ , E), RSOSS(X, τ̃ , E) = {φ̃, X̃}, where RSOSS(X, τ̃ , E)
is the set of all soft regular semi-open sets, then every subset of SS(X)E is soft αgrw-closed.

Proof. Assume thatRSOSS(X, τ̃ , E) = {φ̃, X̃} and (A,E) be any subset of SS(X)E. Suppose (A,E) = φ̃,

then (A,E) is a soft αgrw-closed set. Suppose (A,E) 6= φ̃, then X̃ is the only soft regular semi-open set

containing (A,E) and so αcls((A,E)) ⊆̃ X̃. Hence (A,E) is soft αgrw-closed.

Remark 2.2. The converse of the above proposition need not be true as seen from the following example.

Example 2.3. Let X = {x1, x2, x3}, E = {e1, e2} and τ̃ = { φ̃ , X̃ , (F1, E),
(F2, E), (F3, E), (F4, E), (F5, E), (F6, E)} where (F1, E), (F2, E), (F3, E), (F4, E),
(F5, E), (F6, E) are soft sets over X defined as follows
F1(e1) = {x1}, F1(e2) = {x1},
F2(e1) = {x2}, F2(e2) = {x2},
F3(e1) = {x3, x2}, F3(e2) = {x3, x2},
F4(e1) = {x1, x2}, F4(e2) = {x1, x2}
F5(e1) = {x2, x3}, F5(e2) = {x2, x3}
F6(e1) = {x1, x3}, F6(e2) = {x1, x3}.
In (X, τ̃ , E), every subset of (X,E) is soft αgrw-closed but RSOSS(X,E) 6= {φ̃, X̃}.

Proposition 2.4. Every subset of SS(X)E is soft αgrw-closed if and only if RSOSS(X, τ̃ , E) ⊆̃ {(F,E) ⊆̃ SS(X)E :
(F c, E) ∈̃ SαOS(X, τ̃ , E)}, where SαOS(X, τ̃ , E) is the set of all soft α-open sets in (X, τ̃ , E).

Proof. Suppose that every soft subset of SS(X)E is soft αgrw-closed. Let (U,E) ∈̃ RSOSS(X, τ̃ , E).
Since (U,E) ⊆̃ (U,E) and (U,E) is soft regular semi-open, αcls((U,E)) ⊆̃ (U,E). Thus (U,E) ∈̃ {(F,E) ⊆̃ (X,E) :
(F c, E) ∈̃ SαOS(X, τ̃ , E)}.

Conversely, assume RSOSS(X, τ̃E) ⊆̃ {(F,E) ⊆̃ (X,E) : (F c, E) ∈̃ SαOS(X, τ̃ , E)}.
Let (A,E) be any subset of SS(X)E such that (A,E) ⊆̃ (U,E), where (U,E) is soft regular semi-open.
Thus (U,E) is soft α-closed and so αcls((A,E)) ⊆̃ (U,E). Hence (A,E) is soft αgrw-closed.
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Proposition 2.5. If (A,E) is both soft open and soft g-closed in (X, τ̃ , E), then (A,E) is soft αgrw-closed
(X, τ̃ , E).

Proof. Let (A,E) ⊆̃ (U,E) and (U,E) be soft regular semi-open. Now (A,E) ⊆̃ (A,E) and so
cls((A,E)) ⊆̃ (A,E), because (A,E) is soft open and soft g-closed. This implies αcls((A,E)) ⊆̃ cls(A,E) ⊆̃ (U,E),
since every soft closed is soft α-closed. Hence (A,E) is soft αgrw-closed.

Remark 2.6. If (A,E) is soft αgrw-closed in (X, τ̃ , E), then (A,E) need not be soft open and soft g-closed
(X, τ̃ , E).

Example 2.7. Let X = {x1, x2}, E = {e1, e2} and τ̃ = { φ̃ , X̃ (F1, E), (F2, E),
(F3, E), (F4, E)} where (F1, E), (F2, E), (F3, E), (F4, E) are soft sets over X, defined as follows F1(e1) =
{x2}, F1(e2) = {x1},
F2(e1) = {x1}, F2(e2) = {x2},
F3(e1) = {φ}, F1(e2) = {x1},
F4(e1) = {x1}, F3(e2) = {X}.
Then a soft set (A,E) such that A(e1) = {x1}, A(e2) = {x1} is both soft open and soft αgrw-closed but
not soft g-closed.

Proposition 2.8. If (A,E) is soft regular semi-open and soft αgrw-closed, then (A,E) is soft α-closed.

Proof. Suppose (A,E) is soft regular semi-open and soft αgrw-closed, αcls((A,E)) ⊆̃ (A,E). Also
(A,E) ⊆̃ αcls((A,E))), so αcls((A,E)) = (A,E). Hence (A,E) is soft α-closed.

Remark 2.9. In Example 2.7, the soft set (e1, {x2}), (e2, {φ}) is soft α-closed and soft αgrw-closed but
not soft regular semi-open.

Corollary 2.10. Let (A,E) be soft regular semi-open and soft αgrw-closed. Then (A,E) ∩̃ (F,E) is soft
αgrw-closed for every soft α-closed set (F,E).

Proof. Since (A,E) is soft regular semi-open and soft αgrw-closed, then by
Proposition 2.8, (A,E) is soft α-closed. Therefore (A,E) ∩̃ (F,E) is soft α-closed, since (F,E) is soft
α-closed. Hence (A,E) ∩̃ (F,E) is soft αgrw-closed.

Proposition 2.11. If (A,E) is both soft open and soft αg-closed, then (A,E) is soft αgrw-closed.

Proof. Suppose (A,E) is both soft open and soft αg-closed. Let (A,E) ⊆̃ (U,E) and (U,E) is soft regular
semi-open. Now (A,E) ⊆̃ (A,E) and by hypothesis αcls((A,E)) ⊆̃ (A,E).Therefore αcls((A,E)) ⊆̃ (U,E).
Hence (A,E) is soft αgrw-closed.

Remark 2.12. If (A,E) is both soft open and soft αgrw-closed, then (A,E) need not be αg-closed. In
Example 2.7, the soft subset A(e1) = {φ}, A(e2) = {X} is soft αgrw-closed but not soft open and not soft
αg-closed.

Remark 2.13. Difference of two soft αgrw-closed sets is not generally soft αgrw-closed.

Example 2.14. Let X = {x1, x2}, E = {e1, e2} and τ̃ = { φ̃ , X̃ , (F1, E), (F2, E),
(F3, E)} where (F1, E), (F2, E), (F3, E) are soft sets over (X,E), defined as follows
F1(e1) = {φ}, F1(e2) = {x1},
F2(e1) = {x1}, F2(e2) = {x2},
F3(e1) = {x1}, F3(e2) = {X}.
Then the soft sets (A,E) = {(e1, {X}), (e2, {x2})} and (B,E) = {(e1, {x2}), (e2, {x1})} are soft αgrw-
closed but (A,E)− (B,E) = {(e1, {x1}), (e2, {x2})} is not soft αgrw-closed.
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Definition 2.15. The intersection of all soft regular semi-open subsets of (X, τ̃ , E) containing (A,E) is
said to be the soft regular semi-kernal of (A,E) and is denoted by srsker((A,E)).

i.e., srsker((A,E)) =
⋂̃
{(F,E) : (A,E) ⊆̃ (F,E),where (F,E) ∈̃ RSOSS(X, τ̃ , E)}.

Theorem 2.16. A soft subset (A,E) of SS(X)E is soft αgrw-closed if and only if αcls((A,E)) ⊆̃ srsker((A,E)).

Proof. Consider (A,E) is soft αgrw-closed. Let Xx
e /̃∈ αcls((A,E)), where Xx

e is a soft element of SS(X)E.

Suppose that Xx
e /̃∈ srsker((A,E)), then there is a soft regular semi-open set (U,E) containing (A,E) such

that Xx
e /̃∈ (U,E). Since (U,E) is soft regular semi-open containing (A,E), we have Xx

e /̃∈ αcls((A,E)),
which is a contradiction. Thus αcls((A,E)) ⊆̃ srsker((A,E)).

Conversely, let αcls((A,E)) ⊆̃ srsker(A,E) and (U,E) be soft regular semi-open such that (A,E) ⊆̃ (U,E),
then αcls((A,E))) ⊆̃ srsker(A,E) ⊆̃ (U,E). Therefore (A,E) is soft αgrw-closed.

Proposition 2.17. Let (X, τ̃ , E) be a soft regular space in which every soft regular semi-open subset is
soft open. If (A,E) is soft compact subset of (X, τ̃ , E), then (A,E) is soft αgrw-closed.

Proof. Let (A,E) ⊆̃ (U,E) and (U,E) be soft regular semi-open. By assumption (U,E) is soft open in
(X, τ̃ , E). Since (A,E) is a soft compact subset of a soft regular space (X, τ̃ , E), then there exists a soft
closed set (V,E) such that (A,E) ⊆̃ (V,E) = cls((V,E)) ⊆̃ (U,E). Thus αcls((A,E)) ⊆̃ (U,E). Hence
(A,E) is soft αgrw-closed.

Proposition 2.18. If (X, τ̃ , E) is soft semi-normal and (F,E) ∩̃ (A,E) = φ, where (F,E) is soft regular
semi-open and (A,E) is soft αgrw-closed, then there exist disjoint soft semi open sets (S1, E) and (S2, E)
such that (A,E) ⊆̃ (S1, E) and (F,E) ⊆̃ (S2, E).

Proof. Since (F,E) is soft regular semi open and (F,E) ∩̃ (A,E) = φ. Then (A,E) ⊆̃ (F c, E) and so
αcls((A,E)) ⊆̃ (F c, E). Thus αcls((A,E)) ∩̃ (F,E) = φ. Since αcls((A,E)) and (F,E) are soft semi closed
and (X, τ̃ , E) is soft semi normal, there exist disjoint soft semi open sets (S1, E) and (S2, E) such that
αcls((A,E)) ⊆̃ (S1, E) and (F,E) ⊆̃ (S2, E). This implies (A,E) ⊆̃ (S1, E) and (F,E) ⊆̃ (S2, E).

Proposition 2.19. If (X, τ̃ , E) is soft semi-normal in which every α-closed set is closed and (F,E) ∩̃ (A,E) =
φ, where (F,E) is soft regular closed and (A,E) is soft αgrw-closed then there exist disjoint soft open sets
(O1, E) and (O2, E) such that (A,E) ⊆̃ (O1, E) and (F,E) ⊆̃ (O2, E).

Proof. Similar to Proposition 2.18.
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