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STRONGER FORM OF SOFT CLOSED SETS

V. Inthumathi1, J. Jayasudha2, V. Chitra3, M. Maheswari4

Abstract - The aim of this paper is to introduce a stronger form of soft closed sets which is lie between soft regular closed

sets and soft closed sets. And also we study its properties in soft topological spaces.

Keywords Soft sets, soft topological spaces, soft δ-closed sets and soft δ-open sets.

2010 Subject classification: 54A05, 54A10

1 Introduction

Molodtsov [5] introduced the theory of soft sets, which can be seen as a new mathematical approach
to vagueness. He has shown several applications of this theory in solving many practical problems in
economics, engineering, social science, medical science, etc. In recent years, the development in the fields
of soft set theory and its application has been taking place in a rapid pace. This is because of the general
nature of parametrization expressed by a soft set.

In this paper, we introduce δ-closed sets and δ-open sets in soft topological spaces and study some of
its properties.

2 Preliminaries

Definition 2.1. [5] Let U be an initial universe set and E be a set of parameters. Let P (U) denotes the
power set of U and A ⊆ E. A pair (F,A) is called a soft set over U, where F is a mapping given by
F : A→ P (U).

Definition 2.2. [4] Let U be an universal set and E be a set of parameters. Let (F,A) and (G,B) be
soft sets over a common universe set U and A,B ⊆ E. Then (F,A) is a subset of (G,B), denoted by
(F,A) ⊆ (G,B), if
(i) A ⊆ B,
(ii) for all e ∈ E, F (e) ⊆ G(e).

(F,A) equals (G,B), denoted by (F,A) = (G,B), if (F,A) ⊆̃ (G,B) and (G,B) ⊆̃ (F,A).

1Associate Professor, Department of Mathematics,Nallamuthu Gounder Mahalingam College, Pollachi-642001,
Coimbatore, Tamilnadu, India. E.mail: inthumathi65@gmail.com

2Assistant Professor, Department of Mathematics,Nallamuthu Gounder Mahalingam College, Pollachi-642001,
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Definition 2.3. [3] Let X be a universe and E a set of attributes. Then the collection of all soft sets over
X with attributes from E is called a soft class and is denoted as (X,E).

Definition 2.4. [4] A soft set (F,A) over U is said to be a null soft set, denoted by φ̃, if ∀ e ∈ A, F (e) = φ.

Definition 2.5. [4] A soft set (F,A) over U is said to be a absolute soft set, denoted by Ũ , if ∀ e ∈
A, F (e) = U,

Definition 2.6. [4] Union of two soft sets of F,A) and (G,B) over the common universe U is the soft
set (H,C), where C = A ∪B, and ∀ e ∈ C,

H(e) =


F (e), if e ∈ A−B
G(e), if e ∈ B − A
F (e) ∪G(e), if e ∈ A ∩B

Definition 2.7. [4] Intersection of two soft sets (F,A) and (G,B) over the common universe U is the soft
set (H,C), where C = A ∩ B, and ∀ e ∈ C, H(e) = F (e) or G(e). We write (F,A) ∩̃ (G,B) = (H,C).

Definition 2.8. [2] The complement of a soft set (F,A), denoted by (F,A)c, is defined by (F,A)c =
(F c, A), F c : A → P (X) is mapping given by F c(e) = X − F (e),∀ e ∈ A and F c is called the soft
complement function of F.

Definition 2.9. [6] A soft set (E,A) over X is said to be soft element if there exists α ∈ A such that
E(α) is a singleton, say {x}, and E(β) = φ, ∀ β( 6= α) ∈ A such a soft element is denoted by Ex

α.

Definition 2.10. [8] Let (X, τ̃ , E) be a soft topological space over X and (A,E) be a soft set in (X, τ̃ , E)
is called soft regular open set if (A,E) = cls(ints((A,E))).

Definition 2.11. [9] A soft topological space (X, τ̃ , E) is soft compact if each soft open cover of (X,E)
has a finite subcover.

Definition 2.12. [7] Let (X, τ̃ , E) be a soft topological space over X and (G,E) be a soft closed set in

(X, τ̃ , E) and Xx
e ∈̃ (X,E) such that Xx

e /̃∈ (G,E). If there exist soft open sets (F1, E) and (F2, E) such

that Xx
e ∈̃ (F1, E), (G,E) ⊆̃ (F2, E) and (F1, E) ∩̃ (F2, E) = φ̃. Then (X, τ̃ , E) is called a soft regular

space.

Definition 2.13. [7] Let (X, τ̃ , E) be a soft topological space over X, (F,E) and (G,E) be soft closed sets

in (X, τ̃ , E) such that (F,E) ∩̃ (G,E) = φ̃. If there exist soft open sets (F1, E) and (F2, E) such that

(F,E) ⊆̃ (F1, E) (G,E) ⊆̃ (F2, E) and (F1, E) ∩̃ (F2, E) = φ̃. Then (X, τ̃ , E) is called a soft normal
space.

Through out this paper we denote soft elements of (X,E) by Xx
e and soft elements of a soft set (A,E)

by Axe .
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3 Soft δ-closed sets and Soft δ-open sets

Definition 3.1. A soft point Xx
e ∈̃ (X,E) is called soft δ-cluster point of a soft subset (A,E) in the soft

topological space (X, τ̃ , E) if the soft interior of each soft closed neighborhood of Xx
e intersects (A,E) and

is denoted by A(e).

i.e., A(e) =


x ∈ X, ints(cls((U,E))) ∩̃ (A,E) 6= φ̃, where(U, E) is the open

neighborhood of Xx
e ∈̃ (X,E) for all e ∈ E

φ, otherwise

Definition 3.2. The collection of all soft δ-cluster points of (A,E) is called the soft δ-closure of (A,E)
and is denoted by δcls((A,E)).

Symbolically, δcls((A,E)) = {(e, A(e)) ∈̃ (X,E) for all e ∈ E}

Definition 3.3. A soft subset (A,E) is called soft δ-closed if δcls((A,E)) = (A,E).
The complement of a soft δ-closed set of (X, τ̃ , E) is called soft δ-open.

Example 3.4. 1. Let X = {x1, x2}, E = {e1, e2} and τ̃ = { φ̃ , X̃ , (F1, E), (F2, E),
(F3, E)} where (F1, E) = {(e1, {x1}), (e2, {φ})}, (F2, E) = {(e1, {x2}), (e2, {φ})}, (F3, E) = {(e1, {X}), (e2, {φ})}.
Then soft δ-closed sets are φ̃, X̃, {(e1, {x1}), (e2, {X})}, {(e1, {x2}), (e2, {X})} and {(e1, {φ})(e2, {X})}.

2. Let X = {x1, x2}, E = {e1, e2} and τ̃ = { φ̃ , X̃ , (G1, E), (G2, E), (G3, E)} where (G1, E) =
{(e1, {φ}), (e2, {x2}), (G2, E) = {(e1, {x1}), (e2, {x2}), (G3, E) = {(e1, {x2}), (e2, {X}). Then soft

δ-closed sets are φ̃ and X̃.

Proposition 3.5. Every soft δ-closed set is soft closed

Remark 3.6. Converse of the above proposition need not be true. In Example 3.4(2), the soft set
{(e1, {x1}), (e2, {φ})} is soft closed but not a soft δ-closed set.

Proposition 3.7. 1. Every soft regular open set is soft δ-open.

2. Every soft δ-open set is the union of a collection of soft regular open sets.

Proof.1. Let (A,E) be soft regular open. Then for each Axe ∈̃ (A,E), (A,E) ∩̃ (A,E)c = φ̃ and so

Axe /̃∈ δcls((A,E)c). That isAxe /̃∈ (A,E)c impliesAxe /̃∈ δcls((A,E)c). This implies that δcls((A,E)c) ⊆̃ (A,E)c.
But (A,E)c ⊆̃ δcls((A,E)c) always. Thus, we have (A,E)c = δcls((A,E)c). Hence (A,E) is soft δ-open. 2.

Let (A,E) be a soft δ-open set. Then (A,E)c = δcls((A,E)c). For each Axe ∈̃ (A,E), Axe /̃∈ δcls((A,E)c)

and there exists a soft open neighborhood (N,E) of Axe such that ints(cls((N,E))) ∩̃ (A,E)c = φ̃. Then
Axe ∈̃ (N,E)⊆̃ ints(cls((N,E))) ⊆̃ (A,E) and hence (A,E) = ∪̃ {ints(cls((N,E))) : Axe ∈̃ (A,E)}. Since
ints(cls((N,E))) is soft regular open for each Axe ∈̃ (A,E), hence (A,E) is the union of a collection of soft
regular open sets.

Remark 3.8. Converse of the Proposition 3.7 (1) need not be true. In Example 3.4(1), the soft set
{(e1, {X}), (e2, {φ})} is soft δ-open but not a soft regular open set.

Proposition 3.9. For any subsets (A,E) and (B,E) of (X,E), the following properties hold:
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1. (A,E) ⊆̃ δcls((A,E)).

2. If (A,E) ⊆̃ (B,E) then δcls((A,E)) ⊆̃ δcls((B,E)).

Proof. 1. We have φ̃ 6= (A,E) ∩̃ (N,E) ⊆̃ (A,E) ∩̃ ints(cls((N,E))), for any Axe ∈̃ (A,E) and any soft
open neighborhood (N,E) of Axe and so Axe ∈̃ δcls((A,E)). Thus (A,E) ⊆̃ δcls((A,E)).

2. Assume that (A,E) ⊆̃ (B,E). Presume that Xx
e /̃∈ δcls((B,E)). Then there exists a soft open

neighborhood (N,E) of Xx
e such that ints(cls((N,E))) ∩̃ (B,E) = φ̃ and so ints(cls((N,E))) ∩̃ (A,E) = φ̃.

Thus Xx
e /̃∈ δcls((A,E)). Hence δcls((A,E)) ⊆̃ δcls((B,E)).

Proposition 3.10. For any soft subset (A,E) of (X,E),

1. δcls((A,E)) is the smallest soft δ-closed set containing (A,E).

2. (A,E) is soft δ-closed if and only if δcls((A,E)) = (A,E).

Proof.

1. Let {(Fi, E) : i ∈ Λ} be the collection of all soft δ-closed sets containing (A,E). Then δcls((A,E)) =
⋂̃
{(Fi, E) :

i ∈ Λ} and so δcls((A,E)) is soft δ-closed, since arbitrary intersection of all soft δ-closed sets is soft

δ-closed. Since (A,E) ⊆̃ (Fi, E) for each i, we have (A,E) ⊆̃
⋂̃
{(Fi, E), i ∈ Λ} = δcls((A,E)).

Moreover δcls((A,E)) is the intersection of all soft δ-closed set containing (A,E), δcls((A,E)) is
contained in every soft δ-closed set containing (A,E). Hence δcls((A,E)) is the smallest soft δ-closed
set containing (A,E).

2. Assume that (A,E) is soft δ-closed. Then the smallest soft δ-closed set containing (A,E) is (A,E)
itself and so δcls((A,E)) = (A,E). Conversely, assume that δcls((A,E)) = (A,E) then δcls((A,E))
is soft δ-closed and so (A,E) is soft δ-closed.

Theorem 3.11. For each subset (S,E), the soft δ-closure of (S,E) is the intersection of all soft δ-closed
sets containing (S,E).

Proof. Let Xx
e ∈̃ δcls((S,E)). For any soft open neighborhood (N,E) of Xx

e and any soft δ-closed set

(A,E) containing (S,E), we have φ̃ 6= ints(cls((N,E))) ∩̃ (S,E) ⊆̃ ints(cls((N,E))) ∩̃ (A,E) and hence
Xx
e ∈̃ δcls((A,E)) = (A,E). Thus, we have Xx

e ∈̃ ∩̃ {(A,E) : (S,E) ⊆̃ (A,E) and (A,E) is soft δ-closed}.
Conversely, presume that x /̃∈ δcls((S,E)). Then there exists a soft open neighborhood (N,E) ofXx

e such

that ints(cls((N,E))) ∩̃ (S,E) = φ̃ . Since every soft regular open set is soft δ-open, (ints(cls((N,E))))c is

a soft δ-closed set which contains (S,E) and does not contain Xx
e . Thus Xx

e /̃∈ ∩̃ {(A,E) : (S,E) ⊆̃ (A,E)
and (A,E) is soft δ-closed}. Hence the proof.

Proposition 3.12. Arbitrary intersection of soft δ-closed sets is a soft δ-closed set.

Proof. Let (Ai, E) be a soft δ-closed sets in (X, τ̃ , E) for each i ∈ Λ. Then δcls[
⋂
i∈Λ(Ai, E)] ⊆̃ δcls(Ai, E) =

(Ai, E) and so δcls[
⋂
i∈Λ(Ai, E)] ⊆̃

⋂
i∈(Ai, E). This implies

⋂
i∈(Ai, E) is soft δ-closed.

Proposition 3.13. For a soft subset (A,E), δcls((A,E)) is soft δ-closed.

Proof. Proof is obvious from Theroem 3.11 and Proposition 3.12.
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Theorem 3.14. Let (X, τ̃ , E) be a soft topological space and let τ̃δ={(A,E) ⊆̃ (X,E) : (A,E) is a soft
δ-open set of (X, τ̃ , E)}. Then τ̃δ is a soft topology.

Proof.

1. Clearly φ̃, X̃ ∈̃ τ̃δ.

2. Let (Ai, E) ∈̃ τ̃δ for each i ∈ Λ. Then (Ai, E)c is soft δ-closed for each i ∈ Λ. Then
⋂̃
i∈Λ(Ai, E)c is

soft δ-closed by Proposition 3.12. Thus
⋃̃
i∈Λ(Ai, E) is soft δ-open.

3. Let (A,E), (B,E) ∈̃ τ̃δ. By Proposition 3.7(2), (A,E) =
⋃̃
i∈Λ1

(Ai, E) and (B,E) =
⋃̃
j∈Λ2

(Bj, E),

whereAi andBj are soft regular open sets for each i ∈ Λ1 and j ∈ Λ2. Thus (A,E) ∩̃ (B,E) =
⋃̃
{(Ai, E) ∩̃ (Bj, E) : i ∈

Λ1, j ∈ Λ2}. Since (Ai, E) ∩̃ (Bj, E) is soft regular open, (A,E) ∩̃ (B,E) is a soft δ-open set.
Henceτ̃δ is a soft topology.

Corollary 3.15. τ̃δ ⊆̃ τ̃ .

Proof. It is immediate from Proposition 3.5.

Proposition 3.16. For a soft subsets (A,E) and (B,E), we have the following properties.

1. δcls(φ̃) = φ̃ and δcls(X̃) = X̃.

2. δcls(δcls((A,E))) = δcls((A,E)).

3. δcls((A,E) ∩̃ (B,E)) ⊆̃ δcls((A,E)) ∩̃ δcls((B,E)).

4. δcls((A,E) ∪̃ (B,E)) = δcls((A,E)) ∪̃ δcls((B,E)).

Proof. 1. Since φ̃ and X̃ are soft δ-closed sets, we have δcls(φ̃) = φ̃ and δcls(X̃) = X̃.
2. Let (A,E) ⊆̃ (B,E) and (B,E) be soft δ-closed. Then δcls((A,E) ⊆̃ (B,E)) and so δcls(δcls((A,E))) ⊆̃ (B,E).
Therefore δcls(δcls((A,E))) ⊆̃

⋂
{(B,E) : (A,E) ⊆̃ (B,E) where (B,E) is soft δ-closed} = δcls((A,E)).

Then we have δcls((A,E)) ⊆̃ δcls(δcls((A,E))). Thus δcls(δcls((A,E))) = δcls((A,E)).
3. Since (A,E) ∩̃ (B,E) ⊆̃ (A,E) and (A,E) ∩̃ (B,E) ⊆̃ (B,E), we have δcls((A,E) ∩̃ (B,E)) ⊆̃ δcls((A,E))
and δcls((A,E) ∩̃ (B,E)) ⊆̃ δcls((B,E)). This implies δcls((A,E) ∩̃ (B,E)) ⊆̃ δcls((A,E)) ∩̃ δcls((B,E)).
4. Since (A,E) ⊆̃ (A,E) ∪̃ (B,E) and (B,E) ⊆̃ (A,E) ∪̃ (B,E), we have δcls((A,E)) ⊆̃ δcls((A,E) ∪̃ (B,E))
and δcls((B,E)) ⊆̃ δcls((A,E) ∪̃ (B,E)) and so δcls((A,E)) ∪̃ δcls((B,E)) ⊆̃ δcls((A,E) ∪̃ (B,E)). We
know that (A,E) ⊆̃ δcls((A,E)) and (B,E) ⊆̃ δcls((B,E)). This implies (A,E) ∪̃ (B,E) ⊆̃ δcls((A,E)) ∪̃ δcls((B,E))
and δcls((A,E) ∪̃ (B,E)) ⊆̃ δcls((A,E)) ∪̃ δcls((B,E)).Hence δcls((A,E) ∪̃ (B,E)) = δcls((A,E)) ∪̃ δcls((B,E)).

Proposition 3.17. For a soft subsets (A,E) and (B,E), we have the following properties.

1. δints((A,E)) ⊆̃ (A,E).

2. δints(φ̃) = φ̃ and δints(X̃) = X̃.

3. If (A,E) ⊆̃ (B,E) then δints((A,E)) ⊆̃ δints((B,E)).

4. δints(δints((A,E))) = δints((A,E)).
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5. δints((A,E) ∩̃ (B,E)) = δints((A,E)) ∩̃ δints((B,E)).

6. δints((A,E)) ∪̃ δints((B,E)) ⊆̃ δints((A,E) ∪̃ (B,E)).

7. δints((A,E)) is the largest soft δ-open set contained in (A,E).

8. (A,E) is soft δ-open if and only if δints((A,E)) = (A,E).

Theorem 3.18. For a soft topological space (X, τ̃ , E), the following are equivalent.

1. (X, τ̃ , E) is soft normal.

2. For any soft δ-closed set (A,E) and a soft open set (B,E) containing (A,E), there exists a soft open
set (V,E) such that (A,E) ⊆̃ (V,E) and cls((V,E)) ⊆̃ (B,E).

Proof. 1⇒2. Assume that (X, τ̃ , E) is soft normal and (B,E) is a soft open set containing the soft δ-closed

set (A,E). Then (B,E)c ∩̃ (A,E) = φ̃ and so (B,E)c is a soft closed set disjoint from the soft closed set
(A,E), since every soft δ-closed set is soft closed. By hypothesis, there exist disjoint soft open sets (U,E)
and (V,E) such that (B,E)c ⊆̃ (U,E) and (A,E) ⊆̃ (V,E). This implies cls((V,E)) ⊆̃ (U,E)c ⊆̃ (B,E).
Thus (V,E) is a soft open set such that (A,E) ⊆̃ (V,E) and cls((V,E)) ⊆̃ (B,E).

2⇒1. Assume that for each soft δ-closed set (A,E) and a soft open set (B,E) containing (A,E) there
exists a soft open set (V,E) such that (A,E) ⊆̃ (V,E) and cls((V,E)) ⊆̃ (B,E). Let (C,E) and (A,E)
be any two disjoint soft closed subsets of (X, τ̃ , E). Then (A,E) ⊆̃ (C,E)c and (C,E)c is a soft open
set containing a soft δ-closed set (A,E). By assumption. there exists a soft open set (V,E) such that
(A,E) ⊆̃ (V,E) and cls((V,E)) ⊆̃ (C,E)c. Thus (V,E) and [cls((V,E))]c are disjoint soft open sets such
that (C,E) ⊆̃ [cls((V,E))]c and (A,E) ⊆̃ (V,E).

Proposition 3.19. Every soft δ-closed subset of a soft compact topological space is soft compact.

Proof. Let (A,E) be a soft δ-closed subset of a soft compact topological space (X, τ̃ , E) and let {(Ui, E)}
be a soft open covering of (A,E). Then (A,E) ⊆̃

⋃
i(Ui, E). Consequently, X̃ = (A,E) ∪̃ (A,E)c ⊆̃

⋃
i(Ui, E) ∪̃ (A,E)c,

where (A,E)c is soft δ-open. Thus {{(Ui, E)}, (A,E)c} is a soft open covering of X̃. Since X̃ is soft com-

pact, X̃ ⊆̃
⋃
i=1,2,...,n(Ui, E) and so (A,E) ⊆̃

⋃
i=1,2,...,n(Ui, E). Hence (A,E) is soft compact.

Proposition 3.20. Let (A,E) be a soft compact subset of a soft regular topological space (X, τ̃ , E).
If (U,E) is a soft δ-open subset containing (A,E), then there exists a soft closed set (F,E) such that
(A,E) ⊆̃ (F,E) ⊆̃ (U,E).

Proof. Since (U,E) is a soft δ-open set containing a soft compact subset (A,E), we have (U,E) is a soft
open nbd. of each point of (A,E). Then for each Axe ∈̃ (A,E), there exists a soft open nbd. (VAx

e
, E) of

Axe such that cls((VAx
e
, E)) ⊆̃ (U,E), since X̃ is soft regular. Therefore {(VAx

e
, E) : Axe ∈̃ (A,E)} is a soft

open covering of (A,E) and so (A,E) ∈̃
⋃
i=1,2,...,n(VAxi

e
, E) and cls((VAxi

e
, E)) ⊆̃ (U,E) for each i. Set

(F,E) =
⋃
i=1,2,...,n[cls((VAxi

e
, E))]. Then (F,E) is soft closed and (F,E) ⊆̃ (U,E) and (A,E) ⊆̃ (F,E).

Hence (A,E) ⊆̃ (F,E) ⊆̃ (U,E).
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