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A STUDY ON WEAKLY g̈ CONTINUOUS AND IRRESOLUTE 

MAPPINGS IN INTUITIONISTIC FUZZY TOPOLOGICAL 

SPACES 

S. EARNEST RAJADURAI 

©NGMC 2021 

ABSTRACT: In this study the notions of intuitionistic fuzzy weakly g̈ closed sets, intuitionistic fuzzy weakly g̈ continuous 

mappings, intuitionistic fuzzy weakly g̈ irresolute mappings, intuitionistic fuzzy weakly g̈ closed mappings, intuitionistic 

fuzzy weakly g̈ open mappings, intuitionistic fuzzy weakly g̈ homeomorphisms and some of their characterizations 

 

Keywords: Intuitionistic fuzzy closed set, intuitionistic fuzzy open set, intuitionistic fuzzy weakly g̈ continuous 

mappings, intuitionistic fuzzy weakly g̈ irresolute mappings, intuitionistic fuzzy weakly g̈ closed mappings, 

intuitionistic fuzzy weakly g̈ open mappings, intuitionistic fuzzy weakly g̈ homeomorphisms  

 

1. INTRODUCTION 

Continuity is a property of transformation which enables to preserve some spatial characteristics while transforming one 

space to another. It is a natural curiosity to study how does the ‘fuzziness of continuity’ passes the information of spatial 

characteristics under transformation. In 1997, Gurcay, Coker and Haydar [6] have introduced continuous mappings in 2007 

and P. Rajarajeswari and L.Senthil Kumar [8] have introduced regular weakly generalized continuous mappings in 

intuitionistic fuzzy topological spaces. In this chapter, we study weakly g̈ continuous mappings and intuitionistic fuzzy 

weakly  g̈  irresolute mappings in intuitionistic fuzzy topological spaces.  

 

 

2. PRELIMINARIES 

Throughout this dissertation, (X, τ), (Y, σ) and (Z, δ) (or simply X, Y and Z) denote the intuitionistic fuzzy topological 

spaces (IFTS in short) on which no separation axioms are assumed unless otherwise explicitly mentioned. For a subset A of 

X , the closure, the interior and the complement of A are denoted by cl(A) , int(A) and Ac respectively. We recall some basic 

definitions that are used in the sequel. 
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Definition  2.1.  [1] Let X  be a non-empty set. An intuitionistic fuzzy set (IFS in short) A in X is an object having the 

form A = {(x, µA(x), νA(x)) : x ∈ X}, where the functions µA : X  → [0, 1] and νA : X  → [0, 1] denote the degree 

of membership(namely µA(x) ) and the degree of non-membership(namely νA(x) ) of each element x ∈ X to the set A,  

respectively, and 0 ≤ µA(x)+ νA(x) ≤ 1 for each x ∈ X. Denote by IFS( X ), the set of all intuitionistic fuzzy sets in X. 

Definition 2.2. [1] Let A and B be IFSs of the form 

 A = {(x, µA(x), νA(x)) : x ∈ X} and B = {(x, µB(x), νB(x)) : x ∈ X}. Then 

• A ⊆ B if and only if µA(x) ≤ µB(x) and νA(x) ≥ νB(x) for all x ∈ X , 

•  A = B if and only if A ⊆ B and B ⊆ A,   

• Ac  = {(x, νA(x), µA(x)) : x ∈ X} , 

• A ∩ B = {(x, µA(x) ∧ µB(x), νA(x) ∨ νB(x)) : x ∈ X} 

• A ∪ B = {(x, µA(x) ∨ µB(x), νA(x) ∧ νB(x)) : x ∈ X} 

The intuitionistic fuzzy sets 0∼ = {(x, 0, 1): x ∈ X} and 1∼ = {(x, 1, 0): x ∈ X} are respectively the empty set and the 

whole set in X. 

Definition 2.3. [4] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the 

following axioms. 

•  0∼, 1∼ ∈ τ, 

• G1 ∩ G2 ∈ τ for any G1, G2 ∈ τ, 

• ∪Gi ∈ τ for any family {Gi : i ∈ J} ⊆ τ. 

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as 

an intuitionistic fuzzy open set (IFOS in short) in X. The complement Ac of an IFOS A in an IFTS (X, τ) is called an 

intuitionistic fuzzy closed set (IFCS in short) in X. 

Note:  

For the sake of simplicity, we shall use the notation A = (x, µA, νA) instead of A = {(x, µA(x), νA(x)): x ∈ X}. 

Definition 2.4. [4] Let (X, τ) be an IFTS and A = (x, µA, νA) be an IFS in X. 

Then 

• int(A) = ∪{G : G is an IFOS in X and G ⊆ A}, 

• cl(A) = ∩{K : K is an IFCS in X and A ⊆ K}, 

• cl(Ac) = (int(A))c, 

• int(Ac) = (cl(A))c 

Definition 2.5. [7] Let A = (x, µA, νA) be an IFS in an IFTS (X, τ). Then 

• α int(A) = ∪{G : G is an IFα OS in X and G ⊆ A},  

• α cl(A) = ∩{K : K is an IFα CS in X and A ⊆ K}, 

Definition 2.6. [6] An IFS A = (x, µA, νA) in an IFTS (X, τ) is said to be an 

• intuitionistic fuzzy semi-closed set (IFSCS in short) if int(cl(A)) ⊆ A, 

• intuitionistic fuzzy semi-open set (IFSOS in short) if A ⊆ cl(int(A)), 

• intuitionistic fuzzy α -closed set (IF α CS in short) if cl(int(cl(A))) ⊆ A, 
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• intuitionistic fuzzy α -open set (IF α OS in short) if A ⊆ int(cl(int(A))), 

• intuitionistic fuzzy regular closed set (IFRCS in short) if  cl(int(A)) = A, 

• intuitionistic fuzzy regular open set (IFROS in short) if A = int(cl(A)). 

• intuitionistic fuzzy pre closed set (IF PCS in short) if cl(int(A)) ⊆ A, 

• intuitionistic fuzzy pre-open set (IF POS in short) if  A ⊆ int(cl(A)) , 

Definition 2.7.  An IFS A = (x, µA, νA) in an IFTS (X, τ ) is called an 

• intuitionistic fuzzy generalized closed set (IFGCS in short) if cl(A) ⊆ U whenever A ⊆ U and U is an IFOS in X . 

The complement of an IFGCS is an IFGOS [10], 

• intuitionistic fuzzy semi generalized closed set (IFSGCS in short) if  scl(A) ⊆ U whenever A ⊆ U and U is an 

IFSOS in X . The complement of an IFSGCS is an IFSGOS [17], 

• intuitionistic fuzzy weakly generalized closed set (IFWGCS in short) if cl(int(A)) ⊆ U whenever  A ⊆ U and U is 

an IFOS in X . The complement of an IFWGCS is an IFGW OS [14], 

• intuitionistic fuzzy regular weakly generalized closed set (IFRWGCS in short) if scl(A) ⊆ U whenever A ⊆ U  and 

U is an IFROS in X . The complement of an IFRWGCS is an IFRGW OS [7], 

Definition 2.8. Let f be a mapping from an IFTS (X,  τ) into an IFTS (Y, σ). Then is said to be an 

• intuitionistic fuzzy continuous mapping (IF continuous mapping in short) if f −1(B) ∈ IFO(X) for every  

B ∈ σ [6], 

• intuitionistic fuzzy generalized  continuous  mapping (IFG continuous mapping in short) if f −1(B) ∈  IFGO(X) for 

every B ∈ σ [19], 

• intuitionistic fuzzy pre continuous  mapping (IFP continuous mapping in short) if f −1(B) ∈  IFPGO(X) for every    

B ∈ σ [13],  

• intuitionistic fuzzy weakly generalized continuous mapping (IFW continuous mapping in short) if                      

f−1(B) ∈ IFWGO(X) for  every B ∈  σ  [8],  

• intuitionistic fuzzy regular weakly generalized continuous mapping (IFRG continuous mapping  in short) if        

f−1(B) ∈ IFRWGO(X) for  every B ∈  σ [21], 

Definition 2.9. Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ). Then is said to be an 

•  intuitionistic fuzzy closed mapping (IF closed mapping in short) if f (A) is an IFCS in Y for each IFCS A in X [6], 

• intuitionistic fuzzy generalized closed mapping (IFG closed mapping in short) if f (A) is an IFGCS in Y for each 

IFCS A in X [20], 

• intuitionistic fuzzy  α -closed mapping (IF α closed mapping in short) if f (A) is an  IF α CS in Y for each IFCS in X [12], 

• intuitionistic fuzzy  pre closed mapping (IFP closed mapping in short) if f (A) is an  IF PCS in Y for each IFCS in X [15], 

• intuitionistic fuzzy weakly generalised closed mapping (IFWG closed mapping in short)  if  f (A) is an IFWGCS in Y for 

each IFCS in X [15]. 
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Definition 2.10.Let f be a bijection mapping from an IFTS (X, τ) into an IFTS (Y, σ). Then f is said to be an 

• intuitionistic fuzzy homeomorphism (IF homeomorphism in short) if f  and  f −1 are IF continuous mappings [18], 

• intuitionistic fuzzy weakly generalized homeomorphism (IFWG homeomorphism in short) if f and f −1 are IFWG 

continuous mappings[16]. 

3. INTUITIONISTIC  FUZZY WEAKLY  g̈  CONTINUOUS MAPPINGS 

In this section, we study the notion of intuitionistic fuzzy weakly  g̈  continuous mappings and investigate some of their 

properties. 

Definition  3.1.  A mapping f: (X, τ) → (Y, σ) is called an intuitionistic fuzzy weakly g̈ continuous (IFW g̈ continuous in 

short) mapping if f −1(V )  is an IFW g̈  CS in (X, τ )  for every IFCS V of (Y, σ). 

Theorem  3.2.  Every IF continuous mapping is an IFW g̈  continuous mapping, but not conversely. 

Proof: Let f: (X, τ) → (Y, σ) be an IF continuous mapping and A be an IFCS in Y.  Then f −1 (A) is an IFCS in X.  Since 

every IFCS is an IFW g̈        CS, f −1 (A) is an IFW g̈  CS in X. Hence f  i s  an IFW g̈ continuous mapping. 

Example 3.3. Let X = {a, b}, Y = {u, v} and A = (x, (0.5, 0.6), (0.5, 0.4)) , B = (y, (0.6, 0.6), (0.4, 0.4)) . Then  τ = {0∼, A, 1∼} , 

σ = {0∼, B, 1∼} are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping f: (X, τ ) → (Y, σ) by         

f (a) = u and f (b) = v . Then IFS S = (y, (0.4, 0.4), (0.6, 0.6)) is IFCS in Y and f −1(S) is IFW g̈  CS but not an IFCS in X. 

Therefore f is an IFW g̈ continuous mapping but not an IF continuous mapping. 

Theorem  3.4.  Every IFW g        ̈   continuous mapping is an IFG continuous mapping, but not conversely. 

Proof:  Let f:: (X, τ ) → (Y, σ)  be an IFW g̈  continuous mapping.  Let A be an IFCS in Y. Then f −1 (A) is an  

IFW g̈ CS in X. Since every IFW g̈  CS is an IFGCS, f −1 (A) is an IFGCS in X. Hence f is an IFG continuous mapping. 

Example 3.5.  Let X = {a, b}, Y = {u, v} and A = (x, (0.8, 0.8), (0.2, 0.1)) ,  B = (y, (0.1, 0.3), (0.8, 0.7)). Then                       

τ = {0∼, A, 1∼}, σ = {0∼, B, 1∼} are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping                

f: (X, τ) → (Y, σ) by f (a) = u and f (b) = v . Then IFS S = (y, (0.8, 0.7), (0.1, 0.3)) is IFCS in Y and f −1(S) is an IFGCS but not 

an IFW g̈         CS in X. Therefore f is an IFG continuous mapping but not an IFW g̈ continuous mapping.  

Theorem 3.6.  Every IFW g̈ continuous mapping is an IFW continuous mapping, but not conversely. 

Proof: Let f: (X, τ) → (Y, σ) be an IFW g̈ continuous mapping and A be an IFCS in Y. Then f  −1 (A) is IFW g̈  CS in X. 

Since every IFW g̈       CS is an IFWCS, f −1 (A) is an IFWCS in X. Hence f is an IFW continuous mapping. 

Example 3.7.  Let X = {a, b}, Y = {u, v} and A = (x, (0.7, 0.7), (0.3, 0.3)),  B = (y, (0.6, 0.6), (0.4, 0.4)). Then τ = {0∼, A, 1∼}, 

σ = {0∼, B, 1∼} are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping f:  (X, τ) → (Y, σ) by         

f (a) = u and f (b) = v.  Then IFS S = (y, (0.4, 0.4), (0.6, 0.6)) is IFCS in Y and f −1(S) is an IFWCS but not an IFW g̈  CS in X.  

Therefore f   is an IFW continuous mapping but not an IFW g̈ continuous mapping. 

Theorem  3.8.  Every IFW g̈  continuous mapping is an IFG α  continuous mapping, but not conversely. 

Proof:  Let f: (X, τ) → (Y, σ) be an IFW g̈ continuous mapping and A be an IFCS in Y. Then f −1 (A)  is an IFW g̈  CS in  

X . Since every IFW g̈  CS is an IFG α CS,  f −1(A)  is an IFG α CS in X . Hence f is an IFG α continuous mapping. 

Example 3.9.  Let X = {a, b}, Y = {u, v} and A = (x, (0.3, 0.2), (0.7, 0.7)), B = (y, (0.3, 0.4), (0.6, 0.6)). Then τ = {0∼, A, 1∼}, 

σ = {0∼, B, 1∼} are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping f:  (X, τ) → (Y, σ) by          
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f (a) = u and f (b) = v.  Then IFS S = (y, (0.6, 0.6), (0.3, 0.4)) is IFCS in Y  and  −1(S)  is an IFG α CS but not an IFW g̈  CS in  X .  

Therefore f i s  an IFG α continuous mapping but not an IFW g̈  continuous mapping. 

Theorem  3.10.  Every IFW g̈  continuous mapping is an IFRG continuous mapping, but not conversely. 

Proof:  Let f: (X, τ) → (Y, σ) be an IFW g̈  continuous mapping.  Let A be an IFCS in Y. Then         f −1 (A)  is an IFW g̈  CS 

in X.  Since every IFW g̈   CS is an IFRGCS, f −1 (A) is an IFRGCS in X. Hence f is an IFRG continuous mapping. 

Example 3.11. Let X = {a, b} , Y = {u, v} and A = (x, (0.8, 0.8), (0.2, 0.1)) , B = (y, (0.1, 0.3), (0.9, 0.7)) . Then τ = {0∼, A, 1∼},   

σ = {0∼, B, 1∼} are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping f: (X, τ ) → (Y, σ) by         

f (a) = u and f (b) = v . Then IFS S = (y, (0.9, 0.7), (0.1, 0.3)) is IFCS in  Y   and  f −1(S)  is an IFRGCS but not an IFW g̈   CS in  

X .  Therefore f   is an IFRG continuous mapping but not an IFW g̈ continuous mapping. 

Theorem  3.12.  A mapping f: (X, τ) → (Y, σ)  is an IFW g̈  continuous if and only if the inverse image of every IFOS in 

Y is an IFW g̈   OS in X .  

Proof:   Let A   be an IFOS in Y. Then Ac  is an IFCS in  Y .  Since f   is IFW g̈ continuous mapping, f −1 (Ac) is an IFW 

g̈       CS in X. Since f −1(Ac) = (f −1(A))c , f −1(A) is an IFW g̈   OS in  X . 

Theorem  3.2.13.  If  f  : (X, τ ) → (Y, σ)  is IFW g̈  continuous and  g  : (Y, σ) → (Z, δ) is IF continuous, then gof  :  (X, τ ) 

→ (Z, δ)  is IFW g̈  continuous. 

Proof:   Let  f : (X, τ ) → (Y, σ)  be IFW g̈   continuous and  g : (Y, σ) → (Z, δ)  be IF continuous. Let A be  an  IFCS  

in  Z. Then  g−1(A) is  an  IFCS  in Y because  g   is IF continuous. Also f −1 (g−1(A))  is an IFW g̈   CS in  X because      

f is IFW g̈  continuous. Therefore (gof )−1(A)  = f −1(g−1(A))  is an IFW g̈   CS in  X .  Hence gof is an IFW g̈ continuous 

mapping. 

Definition 3.2.14. Let (X, τ) be an IFTS and A be an IFS in X. Then intuitionistic fuzzy weakly g̈  interior and 

intuitionistic fuzzy weakly g̈  closure of A  are defined as  

• w g̈ cl(A) = ∩ {K:K is an IFW g̈   CS in X  and A ⊆ K }, 

• w g̈ int(A) = ∪ {G:G is an IFW g̈   OS in X  and G ⊆ A }. 

Result 3.2.15.  If A is IFW g̈   CS, then w g̈ cl(A) = A . 

Theorem  3.2.16.  Let f : (X, τ ) → (Y, σ)  be an IFW g̈  continuous mapping. Then the following conditions are hold: 

• f (w g̈ cl(A)) ⊆ cl(f (A)) , for every IFS A  in X, 

•   w g̈ cl(f −1(B)) ⊆ f −1(cl(B)) , for every IFS B  in Y . 

Proof: i)  Let f: (X, τ ) → (Y, σ) be  IFW g̈ continuous. Let A be an intuitionistic fuzzy set in  X. Then cl(f (A))  is an 

IFCS in  Y. Since f   is IFW g̈ continuous, f −1(cl(f (A))) is an IFW g̈ CS in X . Also A ⊆ f −1(cl(A)). Thus, w g̈ cl(A) ⊆         

w g̈ cl(f −1(cl(f (A)))  = f −1(cl(f (A))) because f −1(cl(f (A))) is intuitionistic fuzzy weakly g̈ closed. Hence  f (w g̈ cl(A)) ⊆ 

cl(f (A))  for every IFS  A  in  X.   

ii) Replacing  A  by  f −1(B)  in (i), we have  f (w g̈ cl(f −1(B))) ⊆ cl(f (f −1(B))) ⊆ cl(B)..  Hence w g̈ cl(f −1(B)) ⊆ f −1(cl(B)) , for 

every IFS B in  Y. 
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4. INTUITIONISTIC  FUZZY WEAKLY g̈  IRRESOLUTE MAPPINGS 

In this section, we study the notion of intuitionistic fuzzy weakly  g̈ irresolute mappings and investigate some of their 

properties. 

Definition 4.1. A mapping f: (X, τ) → (Y, σ) is said to be an intuitionistic fuzzy weakly g̈  irresolute (IFWg̈  irresolute in 

short) mapping if f −1(V )  is an IFW g̈          CS in  (X, τ )  for every IFW g̈          CS V of (Y, σ). 

Theorem 4.2.  Let f: (X, τ ) → (Y, σ) be an IFW g̈ irresolute mapping, then f  is an IFW g̈  continuous mapping. 

Proof:  Let f: (X, τ) → (Y, σ) be an IFW g̈ irresolute mapping and A be an IFCS in Y.  Since every IFCS is an IFW g̈ CS, 

A is an IFW g̈ CS in Y .  By hypothesis f −1(A)  is an IFW g̈ CS in  X . Hence   f i s  an IFW g̈ continuous mapping. 

Theorem 4.3.  Let f: (X, τ) → (Y, σ) be an IFW g̈ irresolute mapping, then f is an IF irresolute mapping if X is an is an 

IFW g̈ ′′ T ½ space. 

Proof:  Let A  be an IFCS in  Y  . Since every IFCS is an IFW g̈ CS,  A  is an IFW g̈  CS in Y . By hypothesis f −1(A) is an  

IFW g̈ CS in X . Since X is an IFW g̈ ′′ T ½ space, f −1(A) is an IFCS in X . Hence f is an IF irresolute  mapping. 

Theorem  4.4.  Let  f  : (X, τ ) → (Y, σ)  and  g  : (Y, σ) → (Z, δ)  be IFW g̈ irresolute mappings, then                   

gof  :  (X, τ ) → (Z, δ)  is an IFW g̈ irresolute mapping. 

Proof:  Let  A  be an IFW g̈ CS in  Z .  Then  g−1(A)  is an IFW g̈ CS in  Y .  Since f   is an IFW g̈  irresolute mapping,        

f −1(g−1(A))  is an IFW g̈  CS in  X .  Hence  gof   is an IFW g̈  irresolute mapping. 

Theorem 4.3.5. Let f : (X, τ ) → (Y, σ) be  a  mapping   from  an  IFTS X into  an  IFTS Y  . Then the following conditions are 

equivalent if X and  Y   are IFW g̈ T1/2  spaces. 

• f  is an IFW g̈  irresolute mapping, 

• f −1(B)  is an IFW g̈ OS  in X  for each IFW g̈ OS   B  in Y  , 

• cl (f −1(B)) ⊆ f −1(cl(B)) for each IFS B of Y . 

Proof : (i) ⇒ (ii) . Obvious. 

(ii) ⇒ (iii) . Let B be any IFS in Y and B ⊆ cl (B) . Then f −1(B) ⊆ f −1(cl(B)) . 

Since cl(B) is an IFCS in Y  , cl(B) is an IFW g̈ CS  in Y. Therefore f −1(cl(B)) is an IFW g̈ CS  in X, by hypothesis. 

Since X is an IFW g̈ T1/2  space, f −1(cl(B))is an IFCS in X. Hence cl(f −1(B)) ⊆ cl(f −1(cl(B))) . That is cl(f −1(B)) ⊆         

f −1(cl(B)).  

(iii) ⇒  (i) . Let  B be an  IFW g̈ CS   in  Y .Since Y is  IFW g̈ T1/2  space,  B  is an IFCS in Y and cl(B) = B . Hence f −1(B) 

= f −1(cl(B)) ⊇  cl(f −1(B)) . But clearly f −1(B) ⊆ cl(f −1(B)) . Therefore cl(f −1(B)) = f −1(B) . Which implies f −1(B) is an IFCS 

and hence it is an  IFW g̈ CS  in  X . Thus f  i s  an  IFW g̈ irresolute mapping. 

Theorem 4.3.6.  Let f: (X, τ) → (Y, σ) be an IFW g̈ irresolute and g: (Y, σ) → (Z, δ) be an IFW g̈  continuous mapping, 

then  gof :  (X, τ ) → (Z, δ)  is an IFW g̈ continuous mapping. 

Proof:  Let A be an IFCS in Z. Then g−1(A) is an IFW g̈ CS in Y. Since f is an IFW g̈  irresolute mapping, f −1(g−1(A)) 

is an IFW g̈ CS in X . Hence gof  is an IFW g̈  continuous mapping. 
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