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Oscillation of Third Order Difference Equations with Bounded

and Unbounded Neutral Coefficients

S. Kaleeswari1 and Said. R. Grace2

Abstract - This paper aims the oscillatory behavior of solutions to a class of third order difference equations with bounded

and unbounded neutral coefficients. New oscillation results for all solutions to be oscillatory are obtained. Examples are

provided to illustrate the main results.

Keywords Bounded; difference equations; neutral terms; nonlinear; oscillation; unbounded.

2010 Subject classification: 39A10, 39A21.

1 Introduction

In this paper, we are concerned with the oscillation of all solutions of the third order difference equations
with bounded and unbounded neutral coefficients of the form

∆3 (y (n) + p (n) y (τ (n))) + q (n) yα (σ (n)) = 0, n ≥ n0 (1)

where n ∈ N (n0) = {n0, n0 + 1, .....} , n0 is a positive integer. We use the following assumptions throught
the paper.

(H1) {p (n)} is positive real sequence with p (n) ≥ 1, p (n) not identically one for large n and {q (n)} is
nonnegative real sequence and does not vanish eventually;

(H2) α is a ratio of odd positive integers;

(H3) {τ (n)} and {σ (n)} are strictly increasing sequences of integers with τ (n) < n with lim
n→∞

τ (n) =∞
and σ (n) < n with lim

n→∞
σ (n) =∞;

(H4) there exists a constant u with 0 < u ≤ 1 and(
n

τ (n)

) 2
u 1

p (n)
≤ 1 (2)

1Department of Mathematics, Nallamuthu Gounder Mahalingam College, Pollachi-642001,
Coimbatore, Tamilnadu, India.
E.mail: kaleesdesika@gmail.com

2Department of Engineering Mathematics, Faculty of Engineering, Cairo University, Orman,
Giza 12221, Egypt.
E-mail: saidgrace@yahoo.com
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Let θ = min {τ(n), σ(n)}. By a solution of (1), we mean a sequence {y(n)} defined for all n ≥ θ and
satisfying (1) for all n ∈ N . We consider only solutions of (1) that satisfy sup {|y(n)| : n ≥ N} > 0 for all
N ≥ n0 and we tacitly assume that (1) possesses such solutions. A solution of (1) is called oscillatory if it
is neither eventually positive nor eventually negative, and otherwise it is called nonoscillatory.

The qualitative analysis of solutions to various classes of third and higher order neutral difference
equations have been attracting attention of researchers in recent years, see the monographs [1, 2] and we
mention the papers [3-16, 21-25] and the references cited therein. Functional difference equations have
many applications in engineering and natural sciences. For instance, neutral type difference equations have
been applied to problems in economics, mathematical biology, image analysis and many other areas(see
[17-20]).

The above cited papers except [12] were concerned with the case where p(n) is bounded, and so the
results obtained in these papers cannot be applied to the case p(n) → ∞ as n → ∞. Based on this
observation, the aim of this paper is to obtain some new oscillation criteria that can be applied not only
to the case where p(n) is unbounded but also to the case where p(n) is bounded. The results established
here are motivated by the oscillation results of [7-10].

Without loss of generality, we deal only with positive solutions of (1); since y(n) is a solution of (1),
then −y(n) is also a solution.

2 Main Results

To obtain the main results, we shall use the following notations.
For all large n ≥ n0 > 0, we define

z (n) = y(n) + p(n)y(τ(n)), h (n) = τ−1(σ(n)), g (n) = τ−1(η(n)),

Π1 (n) =
1

p(τ−1(n))

[
1−

(
τ−1(τ−1(n))

τ−1(n)

) 2
u 1

p(τ−1(τ−1(n))

]

and

Π2 (n) =
1

p(τ−1(n))

[
1− 1

p(τ−1(τ−1(n))

]
,

where {η(n)} is realvalued positive sequence. We can notice that the sequences {Π1 (n)} and {Π2 (n)} are
nonnegative because of the condition (2).

Lemma 2.1. If the sequence {h(n)} is such that ∆ih(n) > 0, i = 0, 1, 2, ....m and ∆m+1h(n) ≤ 0,∆m+1h(n)
does not vanish eventually for n ≥ N , then for every 0 < u ≤ 1, we have

h(n)

∆h(n)
≥ u

n

m

eventually.

8 ETIST
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Proof. By monotonicity of ∆ih(n), for any 0 < u ≤ 1, we have

∆i−1h(n) >
n−1∑
s=n0

∆ih(s) ≥ (n− n0)∆
ih(n) ≥ un∆ih(n).

Define the sequence {ρi(n)}, i = 1, 2, ....,m as follows:

ρ1(n) = ∆i−1h(n)− un∆ih(n)

ρ2(n) = 2∆i−2h(n)− un∆i−1h(n)

...........................................

...........................................

ρi(n) = ih(n)− un∆h(n)

Clearly ρi(n) > 0 eventually for i = 1, 2, ....,m.
Thus mh(n) > un∆h(n), which implies

h(n)

∆h(n)
> u

n

m
.

This completes the proof of the lemma.

Lemma 2.2. For n1 ≥ n0, assume that y(n) is an eventually positive solution of (1). Then z(n) satisfies
one of the following two cases for n2 ≥ n1.

(I) z(n) > 0,∆z(n) > 0,∆2z(n) > 0,∆3z(n) ≤ 0,

(II) z(n) > 0,∆z(n) < 0,∆2z(n) > 0,∆3z(n) ≤ 0

for n ≥ n2.

Proof. Since the proof is immediate, it is omitted.

Lemma 2.3. Suppose that y(n) is an eventually positive solution of (1) and z(n) satisfies case (I) of
Lemma 2.2 for n ≥ n2 for some n2 ≥ n1. Then there exists a nu ≥ n2 for every 0 < u ≤ 1 such that

∆

(
z(n)

n
2
u

)
≤ 0, (3)

for n ≥ nu.

ETIST 9
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Proof. Suppose that z(n) satisfies case (I) of Lemma 2.2 for n ≥ n2 for some n2 ≥ n1. Then by Lemma
2.1, there exists a nu ≥ n2 for every 0 < u ≤ 1 such that

z(n) ≥ u

2
n∆z(n) (for) n ≥ nu (3*)

From (3*), we have

∆

(
z(n)

n
2
u

)
=
n2/u∆z(n)− z(n)∆n2/u

n2/u(n+ 1)2/u
≤ ∆z(n)

(n+ 1)2/u
− z(n)

n2/u
≤ 0,

for n ≥ nu. This completes the proof of the lemma.

Lemma 2.4. Suppose that y(n) is eventually positive solution of (1) with z(n) satisfying case (I) of Lemma
2.2. If

u=∞∑
u=n0

s=∞∑
s=u

q(s)Πα
1 (σ(s))hα(s) =∞, (4)

then

(i) z satisfies the inequality

∆3z(n) + q(n)Πα
1 (σ(n))zα(h(n)) ≤ 0 (5)

for large n;

(ii) ∆z(n)→∞ as n→∞;

(iii) z(n)/n is increasing.

Proof. Assume that y(n) is an eventually positive solution of (1) such that y(n) > 0, y(τ(n)) > 0 and
y(σ(n) > 0 for n ≥ n1 for some n1 ≥ n0. From the definition of z, we have

y(n) =
1

p(τ−1(n))

[
z(τ−1(n))− y(τ−1(n)

]
≥ z(τ−1(n))

p(τ−1(n))
− 1

p(τ−1(n))p(τ−1(τ−1(n)))
z(τ−1(τ−1(n))) (6)

Since τ(n) < n and τ is strictly increasing, we have τ−1 is increasing and n < τ−1(n). Thus

τ−1(n) ≤ τ−1(τ−1(n)). (7)

Now z(n) satisfies case (I) for n ≥ n2, by Lemma 2.3, there exists a nu ≥ n2 such that (3) holds for n ≥ nu.
From (3) and (7), we obtain

z(τ−1(τ−1(n))) ≤ (τ−1(τ−1(n)))2/uz(τ−1(n))

(τ−1(n))2/u
. (8)

10 ETIST
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Use (8) in (6) to get

y(n) ≥ Π1(n)z(τ−1(n)) for n ≥ nu. (9)

Since lim
n→∞

σ (n) =∞, there exists a n3 ≥ nu such that σ(n) ≥ nu for all n ≥ n3. Thus it follows from (9)

that

x(σ(n)) ≥ Π1(σ(n))z(τ−1(σ(n))) for n ≥ n3. (10)

Substituting (10) in (1) yields

∆3z(n) + q(n)Πα
1 (σ(n))zα(h(n)) ≤ 0 for n ≥ n3. (11)

Thus (5) holds.

Next we have to claim that equation (4) implies ∆z(n)→∞ as n→∞. Suppose that ∆z(n) does not
tend to ∞ as n → ∞, which implies that there exists a constant k > 0 such that lim

n→∞
∆z(n) = k and so

∆z(n) ≤ k. Since ∆z(n) is positive and increasing for n ≥ n2, there exists n3 ≥ n2 and a constant c > 0
such that

∆z(n) ≥ c for n ≥ n3.

This implies

z(n) ≥ cn for n ≥ n4,

for some n4 ≥ n3 and some c > 0. Since lim
n→∞

h(n) = ∞, we can choose n5 ≥ n4 such that h(n) ≥ n4 for

n ≥ n5. Therefore,

z(h(n)) ≥ ch(n).

Using this in (11) yields

∆3z(n) + cαq(n)Πα
1 (σ(n))hα(n) ≤ 0 for n ≥ n5.

Summing this inequality from n to ∞, we obtain

∆2z(n) ≥ cα
∞∑
s=n

q(s)Πα
1 (σ(s))zα(h(s))

Again summing from n5 to n− 1 gives

k ≥ ∆z(n) ≥ cα
n−1∑
u=n5

∞∑
s=u

q(s)Πα
1 (σ(s))zα(h(s)),

which is a contradiction to (4) and hence the claim.

ETIST 11
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Finally, from ∆z(n)→∞ as n→∞, we can see that

z(n) = z(n2) +
n−1∑
s=n2

∆z(s) ≤ z(n2) + (n− n2)∆z(n) ≤ n∆z(n),

which implies

∆

[
z(n)

n

]
=
n∆z(n)− z(n)

n(n+ 1)
≥ 0.

Thus (iii) holds and hence the proof of the lemmma.

Lemma 2.5. Suppose that y(n) is an eventually positive solution of (1) with z(n) satisfying case (I) of
Lemma 2.2. Let

∞∑
s=n0

q(s)Πα
1 (σ(s))h

2α
u (s) =∞. (12)

Then

lim
n→∞

z(n)

n2/u
= 0. (13)

Proof. Since z(n) satisfies case (I) for n ≥ n2 for some n2 ≥ n1, by Lemma 2.3, there exists a nu ≥ n2

such that (3) holds for n ≥ nu, which implies z(n)/n2/u is decreasing for n ≥ nu.
Now we have to claim

lim
n→∞

z(n)

n2/u
= 0.

If this is not the case, then there exists a constant b > 0 and a n3 ≥ nu such that

z(n) ≥ bn2/u for n ≥ n3. (14)

Since case (I) holds, we again arrive at (11) for n ≥ n3. Using (14) in (11) gives

∆3z(n) + bαq(n)Πα
1 (σ(n))h

2α
u (n) ≤ 0 (15)

for n ≥ n4 for some n4 ≥ n3. Summing (15) from n4 to n− 1 gives

n−1∑
s=n4

q(s)Πα
1 (σ(s))h

2α
u (s) ≤ ∆2z(n4)

bα
,

which contradicts (12) and hence the proof.

Lemma 2.6. Assume that y(n) is an eventually positive solution of (1) with z(n) satisfying case (II) of
Lemma 2.2. If there exists a nondecreasing sequence {η(n)} such that σ(n) ≤ η(n) < τ(n) for n ≥ n0 and
if

∞∑
s=t0

q(s)Π2(σ(s))(g(s)− h(s))2α =∞, (16)

then

lim
n→∞

∆2z(n) = 0. (17)

12 ETIST
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Proof. Suppose that y(n) is an eventually positive solution of (1) such that y(n) > 0, y(τ(n)) > 0 and
y(σ(n) > 0 for n ≥ n1 for some n1 ≥ n0. As in Lemma 2.4, we again see that (6) and (7) hold. Since
∆z(n) < 0, it follows from (7) that

z(τ−1(n)) ≥ z(τ−1(τ−1(n))).

Thus (6) becomes

x(n) ≥ Π2(n)z(τ−1(n)). (18)

Using (18) in (1) yields

∆3z(n) + q(n)Πα
2 (σ(n))zα(h(n)) ≤ 0. (19)

for n ≥ n3 for some n3 ≥ n2.
Since (−1)k∆kz(n) > 0 for k = 0, 1, 2 and ∆3z(n) ≤ 0 for n3 ≤ r ≤ t, it is seen that

z(r) ≥ (t− r)2

2
∆2z(t) (20)

Since σ(n) ≤ η(n) and τ is increasing, we conclude that τ−1(σ(n)) ≤ τ−1(η(n)), i.e, h(n) ≤ g(n).
Substituting r = h(n) and t = g(n) in (20), we obtain

z(h(n)) ≥ (g(n)− h(n))2

2
∆2z(g(n)).

Thus (19) becomes,

∆3z(n) +
1

2α
q(n)Πα

2 (σ(n))(g(n)− h(n))2α(∆2(g(n)))α ≤ 0. (21)

Since Π2(n) < 1, we have Πα
2 (n) ≥ Π2(n). So inequality (21) takes the form

∆3z(n) +
1

2α
q(n)Π2(σ(n))(g(n)− h(n))2α(∆2(g(n)))α ≤ 0. (22)

Now we claim that (16) implies ∆2z(n)→ 0 as n→∞. Suppose to the contrary that lim
n→∞

∆2z(n) = l > 0.

Then ∆2z(n) ≥ l for n ≥ n3 for some n3 ≥ n2. Since lim
n→∞

g(n) = ∞, we can choose n4 ≥ n3 such that

g(n) ≥ n3 for all n ≥ n4. Hence ∆2g(n) ≥ l for n ≥ n4. Using this in (22) gives

∆3z(n) +
lα

2α
q(n)Π2(σ(n))(g(n)− h(n))2α ≤ 0 (23)

for n ≥ n4. Summing (23) from n4 to n− 1 gives

n−1∑
s=n4

q(s)Π2(σ(s))(g(s)− h(s))2α ≤
(

2

l

)α
∆2z(n4)

which is a contradiction to (16). This completes the proof.

ETIST 13
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Now the following theorem is concerned with equation (1) when α = 1.

Theorem 2.7. Let (4) hold and suppose that there exists a nondecreasing sequence {η(n)} such that
σ(n) ≤ η(n) < τ(n) for n ≥ n0. If there exist constants v, u such that 0 < v, u ≤ 1 satisfying

lim sup
n→∞

vuh1− 2
u (n)

2

h(n)∑
s=n0

sq(s)Π1(σ(s))(h(s))
2
u


+ lim sup

n→∞

vuh2− 2
u (n)

2

n−1∑
s=h(n)

q(s)Π1(σ(s))(h(s))
2
u


+ lim sup

n→∞

(
vuh(n)

2

∞∑
s=n−1

q(s)Π1(σ(s))h(s)

)
> 1 (24)

and

lim sup
n→∞

n−1∑
s=g(n)

1

2
q(s)Π2(σ(s))(g(s)− h(s))2 > 1 (25)

then all the solutions of equation (1) are oscillatory.

Proof. Suppose that y(n) is a nonoscillatory solution of (1), say y(n) > 0, y(τ(n)) > 0 and y(σ(n) > 0 for
n ≥ n1 for some n1 ≥ n0. Then from Lemma 2.2, the corresponding sequence z satisfies either case (I) or
case (II) for n ≥ n2 for some n2 ≥ n1.

First we consider case(I). By Lemma 2.4, we again arrive at (11) for n ≥ n3 which, for α = 1, takes
the form

∆3z(n) + q(n)Π1(σ(n))z(h(n)) ≤ 0 for n ≥ n3. (26)

Summing (26) from n to ∞ gives

∆2z(n) ≥
∞∑
s=n

q(s)Π1(σ(s))z(h(s)), (27)

and summing again from n3 to n− 1 gives

∆z(n) ≥
n−1∑
u=n3

∞∑
s=u

q(s)Π1(σ(s))z(h(s))

=
n−1∑
u=n3

n−1∑
s=u

q(s)Π1(σ(s))z(h(s)) +
n−1∑
u=n3

∞∑
s=n−1

q(s)Π1(σ(s))z(h(s))

=
n−1∑
s=n3

(s− n3)q(s)Π1(σ(s))z(h(s)) + (n− n3)
∞∑

s=n−1

q(s)Π1(σ(s))z(h(s)).
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For any 0 < v ≤ 1, there exists n4 ≥ n3 such that s−n3 ≥ vs and n−n3 ≥ vn for n ≥ s ≥ n4. Thus from
the last inequality, we obtain

∆z(n) ≥ α

n−1∑
s=n4

sq(s)Π1(σ(s))z(h(s)) + αn
∞∑

s=n−1

q(s)Π1(σ(s))z(h(s)). (28)

Using (3*) in (28) gives

2z(n)

un
≥ α

n−1∑
s=n4

sq(s)Π1(σ(s))z(h(s)) + αn
∞∑

s=n−1

q(s)Π1(σ(s))z(h(s)). (29)

From (29), we obtain

2z(h(n))

uh(n)
≥ α

h(n)∑
s=n4

sq(s)Π1(σ(s))z(h(s))

+ αh(n)
n−1∑

s=h(n)

q(s)Π1(σ(s))z(h(s))

+ αh(n)
∞∑

s=n−1

q(s)Π1(σ(s))z(h(s)). (30)

Also for n ≤ s, we have h(n) ≤ h(s). Since z(n)/n is increasing,

z(h(s)) ≥ h(s)z(h(n)

h(n)
. (31)

For h(n) ≤ s ≤ n, we have h(h(n)) ≤ h(s) ≤ h(n). Since z(n)

n2/u is decreasing,

z(h(s)) ≥ h2/u(s)z(h(n)

h2/u(n)
. (32)

For n4 ≤ s ≤ h(n) and h(n) < n, we have h(s) ≤ h(h(n) < h(n). Since z(n)

n2/u is decreasing, we again obtain
(32). Using (31) and (32) in (30) gives

2z(h(n))

uh(n)
≥

α h(n)∑
s=n4

sq(s)Π1(σ(s))(h(s))2/u

 zh(n)

(h(n))2/u

+

αh(n)
n−1∑

s=h(n)

q(s)Π1(σ(s))(h(s))2/u

 zh(n)

(h(n))2/u

+

(
αh(n)

∞∑
s=n−1

q(s)Π1(σ(s))h(s)

)
z(h(s)

h(s)
. (33)
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From (33), we see that

vuh1−
2
u (n)

2

h(n)∑
s=n4

sq(s)Π1(σ(s))(h(s))
2
u

+
vuh2−

2
u (n)

2

n−1∑
s=h(n)

q(s)Π1(σ(s))(h(s))
2
u

+
vuh(n)

2

∞∑
s=n−1

q(s)Π1(σ(s))h(s) ≤ 1.

Taking limit supremum on both sides of above inequality, we obtain a contradiction to (24).
Next we consider case (II). Proceeding as in Lemma 2.6, we again arrive at (21), which for α = 1

becomes

∆3z(n) +
1

2
q(n)Π2(σ(n))(g(n)− h(n))2∆2(g(n)) ≤ 0. (34)

Summing (34) from g(n) to n− 1 gives

∆3z(n) +

 n−1∑
s=g(n)

1

2
q(s)Π2(σ(s))(g(s)− h(s))2

∆2(g(n)) ≤ 0,

which is a contradiction to (25). This completes the proof.

Next theorem provides the oscillatory results for equation (1) in the case when α < 1.

Theorem 2.8. Assume that (4) and (12) hold. Suppose there exists a nondecreasing sequence η(n) such
that σ(n) ≤ η(n) ≤ τ(n) for n ≥ n0. If there exists 0 < u ≤ 1 such that limsup of

h1−
2
u (n)

h(n)∑
s=n0

sq(s)Πα
1 (σ(s))(h(s))

2α
u

+ h2−
2
u (n)

n−1∑
s=h(n)

q(s)Πα
1 (σ(s))(h(s))

2α
u

+
h2−α(n)

h
2(1−α)
u (n)

∞∑
s=n−1

q(s)Πα
1 (σ(s))hα(s) (35)

and

n−1∑
s=g(n)

q(s)Π2(σ(s))(g(s)− h(s))2α (36)

are greater than zero as n→∞, then all the solutions of equation (1) are oscillatory.
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Proof. Suppose that y(n) is a nonoscillatory solution of (1), say y(n) > 0, y(τ(n)) > 0 and y(σ(n) > 0 for
n ≥ n1 for some n1 ≥ n0. Then from Lemma 2.2, the corresponding sequence z(n) satisfies either case (I)
or case (II) for n ≥ n2 for some n2 ≥ n1.

First we consider case (I). By Lemma 2.4, we again arrive at (11) for n ≥ n3. Summing (11) from n to
∞ gives

∆2z(n) ≥
∞∑
s=n

q(s)Πα
1 (σ(s))zα(h(s)) for n ≥ n3. (37)

Summing (37) from n3 to n− 1 gives

∆z(n) ≥
n−1∑
u=n3

∞∑
s=u

q(s)Πα
1 (σ(s))zα(h(s))

=
n−1∑
u=n3

n−1∑
s=u

q(s)Πα
1 (σ(s))zα(h(s)) +

n−1∑
u=n3

∞∑
s=n−1

q(s)Πα
1 (σ(s))zα(h(s))

=
n−1∑
s=n3

(s− n3)q(s)Π
α
1 (σ(s))zα(h(s)) + (n− n3)

∞∑
s=n−1

q(s)Πα
1 (σ(s))zα(h(s)).

For any 0 < v ≤ 1, there exists n4 ≥ n3 such that s− n3 ≥ vs and n− n3 ≥ vn for n ≥ s ≥ n4. Thus we
obtain

∆z(n) ≥ α
n−1∑
s=n4

sq(s)Πα
1 (σ(s))zα(h(s)) + αn

∞∑
s=n−1

q(s)Πα
1 (σ(s))zα(h(s)). (38)

Using (3*) in (38) gives

2z(n)

un
≥ α

n−1∑
s=n4

sq(s)Πα
1 (σ(s))zα(h(s)) + αn

∞∑
s=n−1

q(s)Πα
1 (σ(s))zα(h(s)). (39)

From (39), we obtain

2z(h(n))

uh(n)
≥ α

h(n)∑
s=n4

sq(s)Πα
1 (σ(s))zα(h(s))

+ αh(n)
n−1∑

s=h(n)

q(s)Πα
1 (σ(s))zα(h(s))

+ αh(n)
∞∑

s=n−1

q(s)Πα
1 (σ(s))zα(h(s)). (40)

Using (31) and (32) in (40) yields
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2z(h(n))

uh(n)
≥

α h(n)∑
s=n4

sq(s)Πα
1 (σ(s))(h(s))2α/u

 zαh(n)

h2α/u(n)

+

αh(n)
n−1∑

s=h(n)

q(s)Πα
1 (σ(s))(h(s))2α/u

 zαh(n)

h2α/u(n)

+

(
αh(n)

∞∑
s=n−1

q(s)Πα
1 (σ(s))hα(s)

)
zα(h(n)

hα(n)
. (41)

Let w(n) = z(h(n))

h2/α(n)
. Then from (41), we obtain

2

αu
w1−α(n) ≥ h1−

2
u (n)

 h(n)∑
s=n4

sq(s)Πα
1 (σ(s))(h(s))2α/u


+ h2−

2
u (n)

 n−1∑
s=h(n)

q(s)Πα
1 (σ(s))(h(s))2α/u


+

h2−α(n)

h
2(1−α)
u

(n)

(
∞∑

s=n−1

q(s)Πα
1 (σ(s))hα(s)

)
. (42)

Taking limsup as n→∞ on both sides of the above inequality and using (13), we obtain a contradiction
to (35).

Next, we consider case (II). Proceeding as in the proof of Lemma 2.6, we again arrive at (22). Summing
(22) from g(n) to n− 1 gives

n−1∑
s=g(n)

q(s)Π2(σ(s))(g(s)− h(s))2α ≤ 2α(∆2(g(n)))1−α

Noting that (36) implies (16), we see that (17) holds. Taking the limsup as n → ∞ on both sides of the
above inequality and using (17), we obtain a contradiction to (36) and this completes the proof of the
theorem.

The following are the examples which illustrate the main results.

3 Examples

First example establishes the equation with bounded neutral coefficients.

Example 3.1. Consider the third order difference equation

∆3
[
y(n) + 32y(

n

2
)
]

+
1

n3
y(
n

4
) = 0, n ≥ 1 (E1)
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Here p (n) = 32, q (n) = 1
n3 , α = 1, τ (n) = n

2
< n and σ (n) = n

4
.

Then we can see that conditions (H1)-(H2) hold and

τ−1(n) = 2n, τ−1(τ−1((n)) = 4n, h(n) = n
2

and g(n) = 2n
3

with η(n) = n
3
.

Set u = 2/3. Then we get (
n

τ(n)

)2/u
1

p(n)
=

1

2
.

Thus condition (H3) holds, Π1(n) = 1/64 and Π2(n) = 31/1024.

Letting v = u = 2/3, we can easily see that all conditions of Theorem 2.7 are satisfied and hence all
the solutions of equation (E1) are oscillatory.

The second example is concerned with an equation with unbounded neutral coefficients.

Example 3.2. Consider the sublinear difference equation

∆3
[
y (n) + 2ny(

n

2
)
]

+
1

n6/5
y3/5(

n

10
) = 0, n ≥ 8. (E2)

Here p (n) = 2n, q (n) = 1
n6/5 , α = 3/5, τ (n) = n/2 < n and σ (n) = n/10.

Then conditions (H1)-(H2) hold and τ−1(n) = 2n, τ−1(τ−1((n)) = 4n,

h(n) = τ−1(σ(n)) = n
5

and g(n) = τ−1(η(n)) = n
4

with η(n) = n
8
.

Choosing u = 2/3, we get (
n

τ(n)

)2/u
1

p(n)
=

4

n
≤ 1

2
,

i.e., condition (H3) holds. Since Π1(n) ≥ 7
32n

and Π2(n) ≥ 63
256n

,

by Theorem 2.8, equation (E2) is oscillatory.

4 Conclusion

In this paper, by using the summing averaging technique, the oscillatory behaviour of every solution of
the equation (1) are discussed in Theorems 2.7 and 2.8. Here some sufficient conditions for all solutions
to be oscillatory are proved. These sufficient conditions which are new, extend and complement some of
the known results in the literature. Also the examples reveal the illustration of the proved results.
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