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NαI-CONNECTED SPACES

V. Inthumathi1, R. Abinprakash2

Abstract: Our main motive of this research work is to study the concepts of NαI-connectedness,NPI-connectedness,

NSI-connectedness, NβI-connectedness and study the interrlationship between these concepts in nano ideal topological

spaces. Also we verify the concepts of NαI-connectedness and nano connectedness are equivalent.

Keywords : Nano ideal topology, Nano connected, NαI-connected, NPI-connected, NSI-connected, NβI-connected

spaces. 2010 Subject classification: 54A05, 54A10, 54B05

1 Introduction

The concept of connectedness is a crucial property in Topological spaces.The notion of α-connectedness,
Pre connectedness, Semi connectedness and β-connectedness are introduced and studied by Jafari et.al.
[9], Popa [16], Piptone [15] and Popa et.al. [17] respectively. The concept of ideal topological space was
first introduced by Kuratowski [11]. Later Hamlett and Jankovic [4] investicated the further properties
of ideal topological spaces. In 2008, the concept of connectedness in ideal topological spaces was first
introduced by Ekici and Noiri [1] . Recently many authors introduced and investicated the new types con-
nectedness concepts [2, 14] in ideal topological spaces. The contemporary researchers pulling this concept
into varies branches of Topological spaces.

Lellis Thivagar and Carmel Richard[12] introduced the notion of Nano topological spaces. In 2016,
Lellis Thivagar and Sudha devi [13] defined the notion of nano ideal topological spaces and discussed some
of its properties.

The notion of nano connectedness in nano topological spaces was introduced by Krishnaprakash et.al.
[10] . In this research work we introduce the concepts of NαI-connectedness,NPI-connectedness, NSI-
connectedness and NβI-connectedness in nano ideal topological spaces. We also characterize and interre-
late with these connectedness.

1Associate Professor and Head, PG and Research Department of Mathematics,Nallamuthu Gounder Mahalingam College,
Pollachi-642001, Coimbatore, Tamilnadu, India.
E.mail: inthumathi65@gmail.com

2Research Scholar, PG and Research Department of Mathematics, Nallamuthu Gounder Mahalingam College, Pollachi-
642001, Coimbatore, Tamilnadu, India.
E.mail: abinprakash6343@gmail.com
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2 Preliminaries

Definition 2.1. [12] Let U be a non-empty finite set of objects called the universe and R be an equivalence
relation on U named as the indiscernibility relation. Elements belonging to the same equivalence class are
said to be indiscernible with one another. The pair (U, R ) is said to be the approximation space. Let
X ⊆ U .

1. The lower approximation of X with respect to R is the set of all objects, which can be for certain
classified as X with respect to R and it is denoted by LR(X).
LR(X) =

∪
x∈U

{R(x) : R(x) ⊆ X}, where R(x) denotes the equivalence class determined by x.

2. The upper approximation of X with respect to R is the set of all objects, which can be possibly classified
as X with respect to R and it is denoted by UR(X).
UR(X) =

∪
x∈U

{R(x) : R(x) ∩X ̸= ϕ}

3. The boundary region of X with respect to R is the set of all objects, which can be classified neither
as X nor as not-X with respect to R and it is denoted by BR(X).
BR(X) = UR(X)− LR(X)

Definition 2.2. [12] Let U be the universe, R be an equivalence relation on U and
τR(X) = {ϕ, U, LR(X), UR(X), BR(X)} where X ⊆ U . Then τR(X) satisfies the following axioms:

1. ϕ and U are in τR(X).

2. The union of the elements of any subcollection of τR(X) is in τR(X).

3. The intersection of the elements of any finite subcollection of τR(X) is in τR(X).

That is, τR(X) is a topology on U called the nano topology(NT) on U with respect to X and (U, τR(X)) as
the nano topological space (NTS). The elements of τR(X) are called as nano open (N-O)sets.

Definition 2.3. [12] Let (U, τR(X)) be a NTS, the set B = {ϕ, U, LR(X), BR(X)} is the basis for τR(X).

Definition 2.4. [4] An ideal I on a topological space is a non-empty collection of subsets of X which
satisfies
1. A ∈ I and B ⊆ A implies B ∈ I.
2. A ∈ I and B ∈ I implies A ∪B ∈ I.

Definition 2.5. [13] A NTS (U, τR(X)) with an ideal I on U is called a Nano Ideal Topological space(NITS)
and denoted as (U, τR(X), I).

Definition 2.6. [13] Let(U, τR(X), I) be a NITS. A set operator
A∗N : P (U) → P (U) is called the nano local function of I on U with respect to I on τR(X) is defined
as A∗N = {x ∈ U : U ∩A /∈ I ; for every U ∈ τR(X)} and is denoted by A∗N , where nano closure operator
is defined as NCl∗(A) = A ∪ A∗N .
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Definition 2.7. A subset A of a NITS (U, τR(X), I) is called,

1. NαI - open [13] if A ⊆ Nint(NCl∗(Nint(A)))

2. NSI- open [13] if A ⊆ NCl∗(Nint(A)).

3. NPI -open [6] if A ⊆ Nint(NCl∗(A)).

4. NβI - open [5] if A ⊆ NCl∗(Nint(NCl∗(A))).

The family of all NαI- open (resp., NSI- open, NPI-open,NβI-open) sets of a NITS is denoted by
NαIO(U,X) (resp. NSIO(U,X), NPIO(U,X),NβIO(U,X)).
A subset A of a NITS (U, τR(X), I) is said to be NαI-closed (resp.,NSI-closed, NPI-closed,NβI-closed),
if its complement is NαI-open (resp., NSI- open ,NPI-open,NβI- open).

Definition 2.8. [7] A mapping ψ : (U, τR(X), I) → (V, τR′(Y )) is called NαI-continuous (resp., NSI-
continuous, NPI-continuous) if ψ−1(B) is NαI-open (resp., NSI-open, NPI-open ) set in (U, τR(X), I) for
every N-O set B in (V, τR′(Y )).

Definition 2.9. [8] A mapping ψ : (U, τR(X), I) → (V, τR′(Y )) is called NβI-continuous if ψ−1(B) is
NβI-open set in (U, τR(X), I) for every N-O set B in (V, τR′(Y )).

Definition 2.10. [7] A mapping ψ : (U, τR(X), I) → (V, τR′(Y ), J) is called NαI-irresolute (resp., NSI-
irresolute, NPI -irresolute) if ψ−1(B) is NαI-open (resp., NSI-open, NPI-open) set in (U, τR(X), I) for
every NαI-open (resp., NSI-open, NPI-open) set B in (V, τR′(Y ), J)

Definition 2.11. [18] Let (U, τR(X)) be a NTS. If V is a subset of (U, τR(X)) and the collection τR(V,X) =
{V ∩ B : B ∈ τR(X)} is a NT on V with respect to X, then τR(V,X) is called a nano subspace topol-
ogy(NST).

Definition 2.12. [10] A NTS (U, τR(X)) is called nano connected if (U, τR(X)) cannot be expressed as
a disjoint union of two non empty N-O sets. A subset of (U, τR(X)) is nano connected as a subspace. A
subset is said to be nano disconnected if and only if it is not nano connected.

3 NαI-connected spaces

Definition 3.1. Two non empty subsets A and B of (U, τR(X), I) is called nano αI-separated(briefly.
NαI-separated)sets if A ∩NαICl(B) = ϕ and B ∩NαICl(A) = ϕ.
Any two NαI-separated sets are disjoint.

Definition 3.2. A NITS (U, τR(X), I) is called nano αI-connected(briefly. NαI-connected) space if U
can not be expressed as a union of two NαI-separated sets. A subset of (U, τR(X), I) is NαI-connected as
a subspace.

Definition 3.3. A NITS (U, τR(X), I) is said to be nano αI-disconnected if it is not NαI-connected.
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Definition 3.4. Two non empty subsets A and B of (U, τR(X), I) is called nano pre I-separated(briefly.NPI-
separated)sets if A ∩NPICl(B) = ϕ and B ∩NPICl(A) = ϕ.
Any two NPI-separated sets are disjoint.

Definition 3.5. Two non empty subsets A and B of (U, τR(X), I) is called nano semi I-separated(briefly.
NSI-separated)sets if A ∩NSICl(B) = ϕ and B ∩NSICl(A) = ϕ.
Any two NSI-separated sets are disjoint.

Definition 3.6. Two non empty subsets A and B of (U, τR(X), I) is called nano βI-separated(briefly.
NβI-separated)sets if A ∩NβICl(B) = ϕ and B ∩NβICl(A) = ϕ.
Any two NβI-separated sets are disjoint.

Definition 3.7. A NITS (U, τR(X), I) is called nano pre I-connected(resp., nano semi I-connected, nano
β I-connected)(briefly. NPI-connected, NSI-connected, NβI-connected) space if U can not be expressed
as a union of two NPI-separated sets(resp., NSI-separated sets, NβI-separated sets).

Definition 3.8. A NITS (U, τR(X), I) is said to be nano pre I-disconnected(resp., nano semi I-disconnected,
nano βI-disconnected) if and only if it is not NPI-connected (resp., NSI-connected, N βI-connected).

Theorem 3.9. A NITS (U, τR(X), I) is NαI-connected if and only if U cannot be written as a disjoint
union of NαI-open sets of (U, τR(X), I).

Proof : Let (U, τR(X), I) be a NαI-connected space. Contrarily assume that U = A∪B, where A and B
are non empty disjoint NαI-open sets in (U, τR(X), I). Since A and B are NαI-closed sets in (U, τR(X), I),
A ∩NαICl(B) = ϕ = NαICl(A) ∩ B. Which is contradiction to the fact. Hence U cannot be written as
a disjoint union of NαI-open sets of (U, τR(X), I).
Conversely, Suppose that U = A∪B, where A and B are non empty disjoint NαI-open sets in (U, τR(X), I)
and A ∩NαICl(B) = ϕ = NαICl(A) ∩ B.Which implies that A and B are NαI-separated sets. Thus U
is not NαI-connected.

Theorem 3.10. Let C be a NαI-connected subset of (U, τR(X), I). If U = A ∪ B, where A and B are
NαI-separated sets then either C ⊂ A or C ⊂ B.

Proof : Let U = A ∪ B, where A and B are NαI-separated sets of (U, τR(X), I). Since C ⊂ U = A ∪ B.
Now C = C ∩ (A∪B)=(C ∩A)∪ (C ∩B).We know that C is NαI-connected, then either (C ∩A) = ϕ or
(C ∩B) = ϕ. Thus either C ⊂ A or C ⊂ B.

Proposition 3.11. If A is NαI-connected subset of a NαI-connected space (U, τR(X), I) such that U−A =
B ∪ C, B and C are NαI-separated sets then A ∪B and A ∪ C are NαI-connected.

Proof : Let A ∪ B is not NαI-connected, there exist NαI-separated sets G and H , A ∪ B = G ∪ H
and A ⊂ G ∪ H. Since A is NαI-connected, by Theorem 3.10 we have A ⊂ G or A ⊂ H. Suppose
A ⊂ G =⇒ A ∪B ⊆ G ∪B, Also A ∪B = G ∪H ⊆ G ∪B =⇒ H ⊆ B.
Since B and C are NαI-separated sets, H and C are NαI-separated sets. Thus H is NαI-separated
from G as well as C. Now we have to prove NαICl(H) ∩ (G ∪ C) = NαICl(G ∪ C) ∩ H = ϕ. Thus,
NαICl(H) ∩ (G ∪ C) = (NαICl(H) ∩ G) ∪ (NαICl(H) ∩ C) = ϕ. Also NαICl(G ∪ C) ∩ (H) =
{NαICl(G) ∪NαICl(C)} ∩H = {NαICl(G) ∩H} ∪ {NαICl(C) ∩H} = ϕ. Hence H and (G ∪ C) are
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NαI-separated sets. Since U−A = B∪C =⇒ U = A∪(B∪C) = (A∪B)∪C = (G∪H)∪C = H∪(G∪C)
.
Thus U is not a NαI-Connected. Which is contradiction to the hypothisis. Hence A∪B is NαI-Connected.
Simillerly, We can prove A ∪ C is NαI-Connected.

Theorem 3.12. A non empty proper subset A of a NITS (U, τR(X), I) is both NαI-open and NαI-closed
if and only if A is both N-O set and N-C set in (U, τR(X), I).

Proof : Let A be a both NαI-open and NαI-closed in (U, τR(X), I). Now, NCl∗(Nint(A)) = A and
Nint(NCl∗(A)) = A.Hence A is N-O set and N-C set.
Conversly suppose that A is both N-O set and N-C set. Since every N-O set is NαI-open. Hence A is
both NαI-open and NαI-closed in (U, τR(X), I).

Theorem 3.13. If (U, τR(X), I) be a NITS then the following are equivalent.

1. (U, τR(X), I) is NαI-connected.

2. U and ϕ are the only both NαI-open and NαI-closed subsets of (U, τR(X), I).

3. Each NαI-continuous mapping of (U, τR(X), I) into a nano discrete space (V, τ ′R(Y )) with atleast
two points is a constant mapping.

Proof :(1) =⇒ (2). Let as assume that A be both NαI-open and NαI-closed subset of (U, τR(X), I).
Also, we have U − A is both NαI-open and NαI-closed subset of (U, τR(X), I). Thus U = A ∪ (U − A),
where A and U − A are the disjoint non empty NαI-open subsets of U. Which is a contradiction to
(U, τR(X), I) is NαI-connected. Hence A = ϕ or A = U .
(2) =⇒ (1). Conversly suppose that U = A∪B,where A and B are disjoint non empty NαI-open sets of
(U, τR(X), I). Let B = U − A, A be a both NαI-open and NαI-closed set. Since A = ϕ or A = U , thus
(U, τR(X), I) is a NαI-connected space.
(2) =⇒ (3). Let ψ : (U, τR(X), I) → (V, τ ′R(Y )) be a NαI-continuous mapping. Now (U, τR(X), I) is
covered by NαI-open and NαI-closed covering {ψ−1(v) : v ∈ V }. By assumption {ψ−1(v) = ϕ or U
∀v ∈ V }. If ψ−1(v) = ϕ then ψ fails to be a mapping. Then there exsits only one point v ∈ V such that
ψ−1(v) ̸= ϕ and hence ψ−1(v) = U . This shows that ψ is constant mapping.
(3) =⇒ (2). Let A be a NαI-open and NαI-closed set in U. Let ψ : (U, τR(X), I) → (V, τ ′R(Y )) be
a NαI-continuous mapping defined by ψ(A) = {xi} and ψ(U − A) = {xi+1}. By our assumption ψ is
constant mapping. Thus A = U .

Theorem 3.14. Let (U, τR(X), I) be a NITS and A and B be NαI-connected subsets of (U, τR(X), I). If
A ∩B ̸= ϕ then A ∪B is NαI-connected.

Proof : If A ∪ B is not NαI-connected then there exist two disjoint non empty NαI-open sets C and
D such that A ∪ B = C ∪ D. Since A is a NαI-connected subset of U. By Theorem 3.10, we have
A ⊆ C and B ⊆ D or A ⊆ D and B ⊆ C. Suppose that A ⊆ C and B ⊆ D. Since A ∩ B ̸= ϕ,
xi ∈ A ∩ B =⇒ xi ∈ Aand xi ∈ B. Thus xi ∈ C and xi ∈ D. Which is contradiction to the fact C and
D are disjoint . Hence A ∪B is a NαI-connected.

Theorem 3.15. Let (U, τR(X), I) be a NITS and {Ai}be the family of NαI-connected subspaces of
(U, τR(X), I),If

∩
∀i
Ai ̸= ϕthen

∪
∀i
Ai is a NαI-connected space.

It’s proof is similar to proof of Theorem 3.14.
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4 Properties of NαI-connected spaces

Definition 4.1. A mapping ψ : (U, τR(X), I) → (V, τR′(Y ), J) is called NβI-irresolute if ψ−1(B) is NβI-
open set in (U, τR(X), I) for every NβI-open set B in (V, τR′(Y ), J).

Theorem 4.2. Every NPI-connected space (U, τR(X), I) is nano connected.

Proof : Let (U, τR(X), I) be a NPI-connected space.Contrarily assume that (U, τR(X), I) is not nano
connected, there exists a separation U = A ∪ B, where A and B be two disjoint non empty N-O sets.
We know that every N-O set is NPI-open. Which is contradiction to the fact, (U, τR(X), I) be a NPI-
connected. Hence (U, τR(X), I) is connected.

Corollary 4.3. In a NITS (U, τR(X), I),the following are hold.

1. Every NSI-connected space is nano connected.

2. Every NβI-connected space is nano connected.

Proof : It follows from the fact that every N-O set is a NSI-open set and NβI-open set.

Corollary 4.4. Every NPI-connected(resp.NSI-connected) space (U, τR(X), I) is NαI-connected.

Proof : Proof follows from the fact that every NαI-open set is NPI-open set and NSI-open) set.

Corollary 4.5. Every NβI-connected space (U, τR(X), I) is

1. NαI-connected.

2. NSI-connected.

3. NPI-connected.

Proof : It is obvious from the fact that every NαI-open(resp. NSI-open, NPI-open) set is NβI-open.

Remark 4.6. From Theorem 3.12, we have NαI-connected space and nano connected space are equivalent
in (U, τR(X), I).

Remark 4.7. The notions of NPI-connected spaces and NSI-connected spaces are independent.

NSI-connected

NPI-connected

NβI-connected

NαI-connected nano connected

The above figure illustrates the relations of nano connectedness.
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Remark 4.8. The following Examples show the converse of above implications are not true.

Example 4.9. Let U = {a1, a2, a3, a4} be the universe with U/R = {{a1}, {a4}, {a2, a3}} and X = {a1, a4}.
Let τR(X) = {ϕ, {a1, a4}, U}with I = {ϕ, {a1}} . Now (U, τR(X), I) is NSI-connected but not NPI-
connected and NβI-connected.

Example 4.10. Let U = {a1, a2, a3, a4} be the universe with U/R = {{a4}, {a3}, {a1, a2}}. Let X =
{a1, a4} ⊆ U and τR(X) = {ϕ, {a4}, {a1, a2}, {a1, a2, a4}, U}be a nano topology with ideal I = {ϕ, {a1}} .
Now (U, τR(X), I) is NPI-connected but not NSI-connected and NβI-connected.

Example 4.11. Let U = {a1, a2, a3, a4} be the universe with U/R = {{a1}, {a3}, {a2, a4}}. Let X =
{a1, a2} ⊆ U and τR(X) = {ϕ, {a1}, {a2, a4}, {a1, a2, a4}, U} be a nano topology with ideal I = {ϕ, {a1}} .
Now (U, τR(X), I) is nano connected but not NPI-connected, NSI-connected and NβI-connected.

Theorem 4.12. If ψ : (U, τR(X), I) → (V, τ ′R(Y )) is a NαI-continuous surjection mapping and (U, τR(X), I)
is NαI-connected then (V, τ ′R(Y )) is nano connected.

Proof : Let (V, τ ′R(Y )) be not a nano connected space, then there exist a separation V = A ∪ B,
where A and B are nonempty disjoint N-O sets in V. Since ψ is NαI-continuous surjection mapping then
U = ψ−1(A) ∪ ψ−1(B), where ψ−1(A) and ψ−1(B) are nonempty disjoint NαI-open sets in U. Which is
contrdiction to the fact (U, τR(X), I) is NαI-connected. Thus (V, τ ′R(Y )) is nano connected.

Corollary 4.13. If ψ : (U, τR(X), I) → (V, τ ′R(Y )) is a NαI-continuous surjection mapping and (V, τ ′R(Y ))
is nano connected then (U, τR(X), I) is NαI-connected.

Proof : Let (U, τR(X), I) be not a NαI-connected space, then there exist a separation U = ψ−1(A) ∪
ψ−1(B), where ψ−1(A) and ψ−1(B) are nonempty disjoint NαI-open sets in U. Since ψ is nano αI-
continuous surjection mapping then V = A∪B, where A and B are nonempty disjoint N-O sets in V. This
contrdicts the fact (V, τ ′R(Y )) is nano connected. Hence (U, τR(X), I) a NαI-connected space.

Corollary 4.14. If ψ : (U, τR(X), I) → (V, τ ′R(Y )) is a NPI-continuous(resp. NβI-continuous, NSI-
continuous) surjection mapping and (U, τR(X), I) is NPI-connected (resp. NβI-connected ,NSI-connected
)then (V, τ ′R(Y )) is nano connected.

Proof : Proof is similar to proof of Theorem 4.12.

Theorem 4.15. If ψ : (U, τR(X), I) → (V, τ ′R(Y ), J) is a NαI-irresolute surjection mapping and (U, τR(X), I)
is NαI-connected then (V, τ ′R(Y ), J) is NαI-connected.

Proof : Let (V, τ ′R(Y ), J) is not a nano αI-connected space, then there exist a separation V = A ∪ B,
where A and B are nonempty disjoint NαI-open sets in V. Since ψis NαI-irresolute surjection mapping
then U = ψ−1(A)∪ψ−1(B), where ψ−1(A) and ψ−1(B) are nonempty disjoint NαI-open sets in U. Which
is contrdiction to the fact (U, τR(Y ), I) is NαI-connected. Thus (V, τ ′R(Y ), J) is NαI-connected.

Corollary 4.16. If ψ : (U, τR(X), I) → (V, τ ′R(Y ), J) is a NPI-irresolute(resp. NβI-irresolute, NSI-
irresolute) surjection mapping and (U, τR(X), I) is NPI-connected(resp. NβI-connected,NSI-connected)
then (V, τ ′R(Y ), J) is NPI-connected(resp. NβI-connected,NSI-connected).

Proof : Proof is simillar to proof of Theorem 4.15
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