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Graduate and Research Institution, offering 26 UG, 12 PG, 13 M.Phil and 10 Ph.D Programmes, 
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Nano ∗N- Extremally disconnected ideal topological Spaces

V. Inthumathi1, R. Abinprakash2

Abstract: In this paper we introduce and study the concept of Nano δI-open sets and Nano δI-continuous function to

obtain Decompositions of nano αI-continuous, nano semi I-continuous in nano ideal topological spaces. Finally we introduce

the notion of Nano ∗N - Extremally disconnected ideal topological Spaces and discussd some of its properties.

Keywords : nanoδ-I-open sets,Nano weakly I-locally closed sets, Nano ∗N - Extremally disconnected ideal topological

Spaces. 2010 Subject classification: 54A05, 54A10, 54B05

1 Introduction

Njastad [18],Levine[15],Migual cladas[17] and Mashhour et al.[16] introduced respectively the notions
of α-open,semi open, regular open and pre open sets in topological spaces. The concept of ideal was first
introduced by Kuratowski[8] . Hamlet and Jankovic [9]introduced and investigated further properties of
ideal topological spaces. Dontchev[2] introduced the concept of pre I-continuous functions in ideal topo-
logical spaces. Hatir et. al. [4] introduced the notions of semi I-continuous and α-I-continuous functions
in ideal topological spaces.In 2009, Ekici and Noiri[3] introduced and studied the concept of *- Extreamly
disconnected ideal topological spaces. M.Lellis Thivagar and Carmel Richard[11],[12] introduced the no-
tions of nano topological spaces and later they introduced the nano continuity in nano topological spaces.
M.Lellis Thivagar and V.Sutha devi[13] defined the notions of nano ideal topological spaces by using nano
local functions. Recently many authors[23, 5, 7, 19] introduces weaker and stronger forms of nano open
sets in nano ideal topological spaces.
In this paper we introduce and study the concept of Nano δI-open sets and also we obtain Decompositions
of nano continuous, nano αI-continuous, nano semi I-continuous and nano regular I-continuous functions
in nano ideal topological spaces. Finally we introduce the notion of Nano ∗N - Extremally disconnected
ideal topological Spaces and discuss some of its properties.

1Associate Professor and Head, PG and Research Department of Mathematics,Nallamuthu Gounder Mahalingam College,
Pollachi-642001, Coimbatore, Tamilnadu, India.
E.mail: inthumathi65@gmail.com

2Research Scholar, PG and Research Department of Mathematics, Nallamuthu Gounder Mahalingam College, Pollachi-
642001, Coimbatore, Tamilnadu, India.
E.mail: abinprakash6343@gmail.com
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Nano ∗N - Extremally disconnected ideal topological Spaces

2 Preliminaries

Definition 2.1. [11] Let U be a non-empty finite set of objects called the universe and R be an equivalence
relation on U named as the indiscernibility relation. Elements belonging to the same equivalence class are
said to be indiscernible with one another. The pair (U, R ) is said to be the approximation space. Let
X ⊆ U .

1. The lower approximation of X with respect to R is the set of all objects, which can be for certain
classified as X with respect to R and it is denoted by LR(X).
That is, LR(X) =

⋃
x∈U
{R(x) : R(x) ⊆ X}, where R(x) denotes the equivalence class determined by x.

2. The upper approximation of X with respect to R is the set of all objects, which can be possibly classified
as X with respect to R and it is denoted by UR(X). That is, UR(X) =

⋃
x∈U
{R(x) : R(x) ∩X 6= φ}

3. The boundary region of X with respect to R is the set of all objects, which can be classified neither as
X nor as not-X with respect to R and it is denoted by BR(X). That is, BR(X) = UR(X)− LR(X)

Definition 2.2. [11] Let U be the universe, R be an equivalence relation on U and τR(X) = {φ, U, LR(X), UR(X), BR(X)}
where X ⊆ U . Then τR(X) satisfies the following axioms:

1. φ and U are in τR(X).

2. The union of elements of any subcollection of τR(X) is in τR(X).

3. The intersection of elements of any finite subcollection of τR(X) is in τR(X).

That is, τR(X) is a topology on U called the nano topology on U with respect to X. We call (U, τR(X))
as the nano topological space(briefly. NTS). The elements of τR(X) are called as nano open sets (briefly.
NO-sets).

Definition 2.3. [11] Let (U, τR(X)) be a NTS, the set B = {U,LR(X), BR(X)} is the basis for τR(X).

Definition 2.4. [8] An ideal I on a topological space is a non-empty collection of subsets of X which
satisfies
1. A ∈ I and B ⊆ A implies B ∈ I.
2. A ∈ I and B ∈ I implies A ∪B ∈ I.

Definition 2.5. [13] A NTS (U, τR(X)) with an ideal I on U is called a nano ideal topological space
(briefly. NITS)and denoted as (U, τR(X), I).

Definition 2.6. [13] Let(U, τR(X), I) be a NITS. A set operator (A)∗N : P (U)→ P (U) is called the nano
local function of I on U with respect to I on τR(X) is defined as (A)∗N = {x ∈ U : U ∩ A /∈ I ; for every
U ∈ τR(X)} and is denoted by (A)∗N , where nano closure operator (briefly. ∗N -closure ) is defined as
NCl∗(A) = A ∪ (A)∗N .

Definition 2.7. [26] A subset S of a ideal space is called δI-open if Int(Cl∗(S)) ⊆ Cl∗(Int(S)).
The complement of δI-open set is called NδI-closed set.
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Definition 2.8. A subset S of a NTS (U, τR(X)) is called Nano pre - open(briefly. NP-open)[11], if
S ⊆ Nint(NCl(S)).

Definition 2.9. [21] A subset A of a NITS (U, τR(X), I) is said to be nano I-open(briefly. NI-open) if
S ⊆ NInt((S)∗N).If its complement is nano I-open called nano I-closed.

Definition 2.10. A subset S of a NITS (U, τR(X), I) is said to be

1. NαI - open [13] if S ⊆ Nint(NCl∗(Nint(S))).

2. N S I - open [13] if S ⊆ NCl∗(Nint(S)).

3. NPI-open [5] if S ⊆ Nint(NCl∗(S)).

4. NβI - open [24] if S ⊆ NCl∗(Nint(NCl∗(S))).

5. NAI - open [19] if S ⊆ NCl(Nint(S)∗N).

6. NbI-open [24] if S ⊆ Nint(NCl∗(S)) ∪NCl∗(Nint(S)).

7. NWβI-open[7] if S ⊆ NCl(Nint(NCl∗(S))

8. NtI-set [23] if Nint(S) = Nint(NCl∗(S)).

9. NRI-open[13] if S = Nint(NCl∗(S)).

Family of all NαI-open (resp.NSI-open, NPI-open, NβI - open) sets are denoted by NαIO(U,X) (resp.
NSIO(U,X), NPIO(U,X), NβIO(U,X)). A subset A of a NITS (U, τR(X), I) is said to be NαI-closed
(resp. NSI-closed, NPI-closed,N βI -closed, NAI-closed, NbI-closed, NWβI-closed, NRI-closed), if its
complement is N αI-open (resp. NSI-open ,N PI-open, NβI - open, NAI-open, NbI-open, NWβI-open,
NRI-open).

Definition 2.11. [22] A subset S of a NITS is called Nano *-closed(briefly. ∗N -closed)(resp. Nano
*-perfect(briefly.∗N -perfect )) if A∗N ⊆ A(resp. A∗N = A).

Definition 2.12. [12] Let (U, τR(X)) and (V, τ ′R(Y )) be two NTS. A mapping σ : (U, τR(X))→ (V, τ ′R(Y ))
is said to be nano continuous(resp. Nano pre continuous[25](briefly. NP-continuous)) if the inverse image
of every NO-set in (V, τ ′R(Y )) is NO-set(NP-open set) in (U, τR(X))

Definition 2.13. [19] Let (U, τR(X), I) be NITS. A mapping σ : (U, τR(X), I)→ (V, τR′(Y )) is said to be
nano almost-I-continuous (briefly. NAI-continuous)if σ−1(T ) is NAI-open set in (U, τR(X), I) for every
NO-set T in (V, τR′(Y )).

Definition 2.14. [21] A mapping σ : (U, τR(X), I) → (V, τR′(Y )) is called nano I-continuous (briefly.
NI-continuous)if σ−1(T ) is NI-open set in (U, τR(X), I) for every NO-set T in (V, τR′(Y )).

Definition 2.15. [6] A mapping σ : (U, τR(X), I) → (V, τR′(Y )) is said to be N αI-continuous (resp.,N
SI-continuous, NPI-continuous) if σ−1(T ) is NαI-open (resp., NSI-open, NPI-open ) set in (U, τR(X), I)
for every NO-set T in (V, τR′(Y )).

Definition 2.16. [11] A NTS (U, τR(X)) is called Nano extremally disconnected topological space (briefly.
N.E.D space)if nano closure of each NO-set is a NO-set.

Theorem 2.17. [20] A subset S of NITS is NWILC-set if and only if there exist a NO-set T such that
S = T ∩NCl∗(S).
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3 Nano δI-open sets

Definition 3.1. A subset S of a NITS(U, τR(X), I) is said to be Nano δI-open (briefly.NδI-open) if
Nint(NCl∗(S)) ⊆ NCl∗(Nint(S)).
The complement of NδI-open set is called NδI-closed set.
The family of all NδI-open ( resp. NδI-closed) subsets of U is denoted by NδIO(U,X)(resp.NδIC(U,X)).

Theorem 3.2. Let S be a subset of a NITS (U, τR(X), I), then the following are hold.

1. Every NO-set is a NδI-open set.

2. Every NαI-open set is a NδI-open set.

3. Every NSI-open set is a NδI-open set.

4. Every NtI-set is a NδI-open set.

Proof: (1). Let S be a NO-set.
Since Nint(NCl∗((S))) ⊆ NCl∗(S) = NCl∗(Nint(S)).
Thus S is NδI-open.
(2). Since S is a NαI-open set,
S ⊆ Nint(NCl∗(Nint(S))) ⊆ NCl∗(Nint(S)).
Now, NCl∗(S) ⊆ NCl∗(NCl∗(Nint(S))) = (NCl∗(Nint(S))).
Also we have, Nint(NCl∗(S)) ⊆ NCl∗(S) ⊆ NCl∗(Nint(S)).
Thus, Nint(NCl∗(S) ⊆ NCl∗(Nint(S)).
Therefore S is NδI-open.
(3) Let S be a NSI-open set, S ⊆ NCl∗(Nint(S)).
Since Nint(NCl∗((S))) ⊆ NCl∗(S) ⊆ NCl∗(NCl∗(Nint(S))) = NCl∗(Nint(S)).
Thus S is NδI-open.
(4). Since S is a NtI-set,
Nint(S) = Nint(NCl∗(S)).
Therefore, Nint(NCl∗(S)) = Nint(S) ⊆ NCl∗(Nint(S)).
i.e., Nint(NCl∗(S)) ⊆ NCl∗(Nint(S)).
Thus S is NδI-open .

Remark 3.3. Converses of the above theorem need not be true as shown in the following example.

Example 3.4. Let U = {a1, a2, a3, a4} be the universe X = {a1, a4}, U/R = {{a3}, {a4}, {a1, a2}}, τR(X) =
{{φ, {a4}, {a1, a2}, {a1, a2, a4}, U}with an ideal I = {φ, {a1}}.
(i). The set {a1}is a NδI- open set but not a NαI-open set.
(ii). The set {a1, a2, a4} ∈ NδIO(U,X) but {a1, a2, a4} 6∈ NtI(U,X).
(iii).The set {a1, a3, a4} ∈ NδIO(U,X) but not a NO-set.

Theorem 3.5. Let S be both NPI-open and NδI- open sets in NITS (U, τR(X), I) then S is a NSI-open
set in (U, τR(X), I) .

Proof: Let S be both NPI-open and NδI-open sets in (U, τR(X), I).
Then S ⊆ Nint(NCl∗(S)) ⊆ NCl∗(Nint(S)).
Thus S is a NSI-open set.
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Theorem 3.6. Let S and T be two subsets of a NITS (U, τR(X), I). If S is a NδI-open set and S ⊆ T ⊆
NCl∗(S) then T is a NδI-open set.

Proof: Suppose that S ⊆ T ⊆ NCl∗(S) and let S is NδI-open set in (U, τR(X), I).
Then we have, Nint(NCl∗(S)) ⊆ NCl∗(Nint(S)).
Since S ⊂ T ,NCl∗(Nint(S)) ⊆ NCl∗(Nint(T )).
Since T ⊆ NCl∗(S), NCl∗(T ) ⊆ NCl∗(S).
Now, Nint(NCl∗(T )) ⊆ Nint(NCl∗(S)).
By hypothesis, Nint(NCl∗(T )) ⊆ Nint(NCl∗(S)) ⊆ NCl∗(Nint(S)) ⊆ NCl∗(Nint(T )).
Thus, T is a NδI-open set.

Theorem 3.7. [13] In a NITS (U, τR(X), I),every NRI-open set is a NO-set.

Theorem 3.8. In a NITS (U, τR(X), I),every NRI-open set is NαI-open(NSI-open,NPI-open , NδI-
open, NtI-set).

Proof: Proof is obvious.

Remark 3.9. The converses of Theorem 3.8 need not be true as shown in the following example.

Example 3.10. Let U = {a1, a2, a3, a4} be the universe with U/R = {φ, {a1}, {a4}, {a2, a4}} and X =
{a1, a2}, I = {φ, {a1}}. Now, τR(X) = {φ, {a1}, {a2, a4}, {a1, a2, a4}, U}.
(i) The set {a1, a2, a4} is NαI-open set, NSI-open set ,NPI-open set,NδI-open set. But not a NRI-open
set.
(ii) {a2, a3, a4} are NtI-set but not a NRI-open set.

Theorem 3.11. Let S be a subset of NITS (U, τR(X), I) , then the following are equivalent.

1. S is a NαI-open set .

2. S is both NδI-open set and NPI-open set.

Proof: (1)⇒ (2)
Let S be a NαI-open set .
Then S ⊆ Nint(NCl∗(Nint(S))) ⊆ Nint(NCl∗(S)) and S is NδIopen by theorem 3.2(ii). Thus S is both
NδI-open set and NPI-open set.
(2)⇒ (1)
Let S be a NPI-open set and NδI-open set.
We have, S ⊆ Nint(NCl∗(S)) and Nint(NCl∗(S)) ⊆ NCl∗(Nint(S)). Thus S ⊆ NCl∗(Nint(S))
Then, S ⊆ Nint(NCl∗(S)) ⊆ Nint(NCl∗(NCl∗(Nint(S)))) ⊆ Nint(NCl∗(Nint(S))).
Hence S ⊆ Nint(NCl∗(Nint(S))). Thus S is a NαI-open set.

Remark 3.12. The notions of NPI-open set and NδI-open set are independent.

Example 3.13. Let U = {a1, a2, a3, a4} be the universe X = {a1, a4}, U/R = {{a3}, {a4}, {a1, a2}}, τR(X) =
{{φ, {a4}, {a1, a2}, {a1, a2, a4}}with an ideal I = {φ, {a1}}. Then the set {a2} is a NPI-open set but not
NδI-open. And the set {a3} is a NδI-open set but not NPI-open.

Theorem 3.14. Let S be a subset of a NITS (U, τR(X), I), then the following are equivalent.
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1. S is a NSI-open set .

2. S is both NδI-open and NβI-open.

Proof: (1) ⇒ (2) Let S be a NSI-open set in (U, τR(X), I). By Theorem 3.2, S is NδI-open . Since
S ⊆ NCl∗(Nint(S)) ⊆ NCl∗(Nint(NCl∗(S))). Thus S is NβI-open.
(2)⇒ (1) Let S be NδI-open and NβI-open, we have Nint(NCl∗(S)) ⊆ NCl∗(Nint(S)). Thus we obtain
that NCl∗(Nint(NCl∗(S))) ⊆ NCl∗(NCl∗(Nint(S))) = NCl∗(Nint(S)). Since S is NβI-open, we have
S ⊆ NCl∗(Nint(NCl∗(S))) ⊆ NCl∗(NCl∗(Nint(S))) = NCl∗(Nint(S)). Hence S is a NSI-open set.

Remark 3.15. The notions of NβI-open set and NδI-open set are independent.

Example 3.16. Let U = {a1, a2, a3, a4} be the universe X = {a1, a4}, U/R = {{a3}, {a4}, {a1, a2}}, τR(X) =
{{φ, {a4}, {a1, a2}, {a1, a2, a4}}with an ideal I = {φ, {a1}}. Then the set {a2} is NβI-open but not NδI-
open. And the set {a3}is NδI-open but not NβI-open.

Theorem 3.17. Let S be a subset of a NITS (U, τR(X), I), then the following are equivalent.

1. S is a NRI-open set.

2. S is a NO-set and NtI-set.

Proof: (1)⇒ (2) obviously true by the Theorem 3.7 and Theorem 3.8 .
(2)⇒ (1) suppose that S is a NO-set and NtI-set.
Then S = Nint(S) and Nint(S) = Nint(NCl∗(S)).
Thus S = Nint(NCl∗(S)). Hence S is a NRI-open set.

Remark 3.18. The notions of NO-set and NtI-set are independent.

Example 3.19. Let U = {a1, a2, a3, a4} be the universe X = {a1, a4}, U/R = {{a3}, {a4}, {a1, a2}}, τR(X) =
{{φ, {a4}, {a1, a2}, {a1, a2, a4}}with an ideal I = {φ, {a1}}. Then the set {a1, a2, a4} is a NO-set but not
NtI-set and {a1} is a NtI-set but not a NO-set.

Definition 3.20. A subset S of a NITS is called

1. Nano weakly I-locally closed set[20](briefly. NWILC-set) if S = P ∪Q, where P is a NO-set and Q
is a ∗N -closed set.

2. Nano locally closed set[1](briefly. NLC-set) if S = P ∪Q, where P is a NO-set and Q is a NC-set.

3. Nano I-locally closed set(briefly. NILC-set) if S = P ∪Q, where P is a NO-set and Q is a ∗N -perfect.

Theorem 3.21. In a NITS (U, τR(X), I),

1. Every NLC-set is a NWILC-set.

2. Every NILC-set is a NWILC-set.

Proof: Proof is obvious from the definitions.

Theorem 3.22. Let S ⊂ U in NITS(U, τR(X), I), the following are equivalent.
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1. S is NO-set.

2. S is a NαI-open set and NWILC-set.

3. S is a NPI-open set and NWILC-set.

Proof:(1) =⇒ (2) =⇒ (3) is obvious.
(3) =⇒ (1). Let S be a NWILC-set in (U, τR(X), I) then S = P ∩Q where P is NO-set and Q is ∗N -closed
set. Since S is NPI-open set, we have S ⊆ Nint(NCl∗(S)) = Nint(NCl∗(P ∩ Q)) = Nint(NCl∗(P ) ∩
NCl∗(Q)). Now Q is ∗N -closed set we have S ⊆ Nint(NCl∗(P )) ∩ Nint(Q). Now S = P ∩ S ⊆
P ∩ Nint(NCl∗(P )) ∩ Nint(Q). Since P is a NO-set, S ⊆ Nint(P ∩ NCl∗(P )) ∩ Nint(Q) = Nint(P ) ∩
Nint(Q) = Nint(P ∩Q) = Nint(S). Thus S is NO-set.

Remark 3.23. In a NITS,

1. The notions of NαI-open sets and NWILC-sets are independent.

2. The notions of NPI-open sets and NWILC-sets are indipentent.

Example 3.24. In example 3.19,the set {a3} is NWILC- set but not NαI-open and NPI-open set and the
set {a2, a3, a4} is a NPI-open set but not NWILC- set.

Example 3.25. Let U = {a1, a2, a3, a4} be the Universe set with U/R = {{a1, a2}, {a2}, {a3}} and X =
{a1, a4}. The nano topology τR(X) = {φ, {a1, a4}, U} with Ideal I = {φ, {a1}}.Then the set {a1, a2, a4} is a
NαI-open set but not a NWILC- set.

4 Nano ∗N- Extremally disconnected ideal topological Spaces

Definition 4.1. A NITS (U, τR(X), I) is called Nano ∗N -Extremally disconnected ideal topological space
(briefly. ∗N -E.D space) if the ∗N -closure of every NO-set is a NO-set in (U, τR(X), I).

Example 4.2. Let U = {a1, a2, a3, a4} be the Universe set with U/R = {{a1, a2}, {a2}, {a3}} and X =
{a1, a4}. The nano topology τR(X) = {φ, {a1, a4}, U} with Ideal I = {φ, {a1}} is Nano ∗N -Extremally
disconnected space.

Note 4.3. Let (U, τR(X), I) be a NITS and if I = τR(X) then it is a ∗N -E.D space.

Theorem 4.4. Let (U, τR(X), I) be a NITS and I = {φ}. Then (U, τR(X), I) is a ∗N -E.D space if and
only if (U, τR(X), I) is N.E.D space.

Proof : If I = {φ},then we know that NCl∗(S) = NCl(S). So we obtain NCl∗(S) = NCl(S) ∈ τR(X)
for every S ∈ τR(X).Thus (U, τR(X), I) is ∗N -E.D space if and only if (U, τR(X), I) is N.E.D space.

Theorem 4.5. For a NITS (U, τR(X), I), the following are equivalent.

1. (U, τR(X), I) is ∗N - E.D space.

2. Nint∗(S) is a NC-set for every NC-set S of U.

3. NCl∗(Nint(S)) ⊆ Nint(NCl∗(S)) for every subset S of U.
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4. Every NSI-open set is a NPI-open set.

5. ∗N -closure of every NβI-open set is a NO-set in U.

6. Every NβI-open set is a NPI-open set.

7. For any set S in U is a NαI-open set if and only if S is a NSI-open set.

Proof :(1) =⇒ (2). Let S be a NC- set in U. Now U − S is NO-set in U. By (1), NCl∗(U − S) =
U −Nint∗(S) is a NO-set in U.Thus Nint∗(S) is NC-set in U.
(2) =⇒ (3). Let S be any set and U − Nint(S) is a NC-set in U. By (2), Nint∗(U − Nint(S)) =
U − NCl∗(Nint(S)) is NC-set in U then NCl∗(Nint(S))is a NO-set in U. Thus NCl∗(Nint(S)) =
Nint(NCl∗(Nint(S))) ⊆ Nint(NCl∗(S)).
(3) =⇒ (4). Let S be a NSI-open set , S ⊆ NCl∗(Nint(S)) ⊆ Nint(NCl∗(S)). Thus S is a NPI-open
set.
(4) =⇒ (5). We know that every NSI-open set is a NβI-open set in U. Suppose that NCl∗(S) is a NSI-
open set , by (4) NCl∗(S) is a NPI-open set. Then NCl∗(S) ⊆ Nint(NCl∗(S)). Now Nint(NCl∗(S)) ⊂
NCl∗(S), we have NCl∗(S) = Nint(NCl∗(S)) is a NO-set in U.
(5) =⇒ (6). Let NCl∗(S) be a NβI-open set in U. By (5), S ⊆ NCl∗(S) = Nint(NCl∗(S)). Thus S is
a NPI-open set.
(6) =⇒ (7). Every NαI-open set is a NSI-open set. Conversly suppose that S be a NSI-open set in U. We
know that every NSI-open set is a NβI-open set. By (6), S is a NPI-open set. Since S is both NSI-open
set and NPI-open set then it is a NαI-open set.
(7) =⇒ (1). Suppose that NCl∗(S) is a NSI-open set and by (7), NCl∗(S) is a NαI-open set in U.
Then NCl∗(S) ⊆ Nint(NCl∗(Nint(NCl∗(S)))) ⊆ Nint(NCl∗(NCl∗(S))) ⊆ Nint(NCl∗(S)). Since
Nint(NCl∗(S)) ⊆ NCl∗(S), we have NCl∗(S) = Nint(NCl∗(S)).Thus NCl∗(S) is a NO-set.

Theorem 4.6. Let (U, τR(X), I) be a NITS. Then the following Properties are equivalent.

1. (U, τR(X), I) is a ∗N -E.D. Space.

2. Every NRI-open subset of (U, τR(X), I) is a ∗N -closed set in (U, τR(X), I).

3. Every NRI-closed subset of (U, τR(X), I) is a ∗N -open set in (U, τR(X), I).

Proof :(1) =⇒ (2). Let (U, τR(X), I) be a ∗N -E.D space. Let S be a NRI-open subset of (U, τR(X), I),
then S = Nint(NCl∗(S)). Let S is a NO-set,then NCl∗(S) is a NO-set. Thus S = Nint(NCl∗(S)) =
NCl∗(S), is a ∗N -closed set.
(2) =⇒ (1). Suppose every NRI-open subset of U is a ∗N -closed subset of U. Since Nint(NCl∗(S)) is a
NRI-open set in U then it is a ∗N -closed subset of U. This implies NCl∗(S) ⊆ NCl∗(Nint(NCl∗(S))) =
Nint(NCl∗(S)) .Thus NCl∗(S) = Nint(NCl∗(S)) is a NO-set in (U, τR(X), I).Hence (U, τR(X), I) is a
∗N -E.D space.
(3) ⇐⇒ (1). Proof is obvious.

Theorem 4.7. For a ∗N -E.D. Space (U, τR(X), I),then

1. If S and T are NRI-closed sets then S ∩ T is a NRI- closed set.

2. If S and T are NRI-open sets then S ∪ T is a NRI-open set.
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Proof :. (1). Let S and T are NRI-open sets and (U, τR(X), I) be a ∗N -E.D. Space. Now S and T are
closed then by Theorem 4.5, Nint∗(S) and Nint∗(T ) are NC-sets in U. Then S ∩ T = NCl(Nint∗(S)) ∩
NCl(Nint∗(T )) = Nint∗(S) ∩Nint∗(T ) = Nint∗(S ∩ T ) ⊆ NCl(Nint∗(S ∩ T )).
On the other hand, we have NCl(Nint∗(S ∩ T )) = NCl(Nint∗(S)) ∩ (Nint∗(T ))
⊆ NCl(Nint∗(S)) ∩NCl(Nint∗(T )) = S ∩ T . Hence S ∩ T is a NRI-closed set.
(2). Proof follows from case(1)

Theorem 4.8. For a NITS (U, τR(X), I) then the following properties are equivalent

1. (U, τR(X), I) is a ∗N -E.D. Space

2. For every NSI-open subset S of U then NCl∗(S) is a NO-set.

3. For every NPI-open subset S of U then NCl∗(S) is a NO-set.

4. For every NRI-open subset S of U then NCl∗(S) is a NO-set.

Proof :. (1) =⇒ (2) and (1) =⇒ (3). Let S be a NSI-open(resp. NPI-open) subset of U. We know that
every NSI-open (resp. NPI-open) set is a NβI-open set. By Theorem 4.5, NCl∗(S) is a NO-set.
(2) =⇒ (4) and (3) =⇒ (4).Let S be a NRI-open set in U. We know that every NRI-open set is NSI-open
and NPI-open. By Theorem 4.5, NCl∗(S) is a NO-set.
(4) =⇒ (1) Suppose that for every NRI-open subset S of U then NCl∗(S) is a NO-set in U.Let S =
Nint(NCl∗(S)) is NRI-open subset of U then NCl∗(Nint(NCl∗(S)) is a NO-set in U. Now NCl∗(S) ⊆
NCl∗(Nint(NCl∗(S)) = Nint(NCl∗(Nint(NCl∗(S))) = Nint(NCl∗(S)). This implies that NCl∗(S) is a
NO-set in U.

Theorem 4.9. Let (U, τR(X), I) be a ∗N -E.D. space and I = {φ}, then the following are hold.

1. Every NWβI-open set is NP-open .

2. Let S be a NI-open set if and only if S be a NAI-open set.

Proof :(1).Let S be a NWβI-open set in ∗N -E.D. space (U, τR(X), I). Then S ⊆ NCl(Nint(NCl∗(S))).
Now, S ∈ τR(X) ,we have NCl∗(S) ∈ τR(X). Since NCl∗(S) is a NO-set in U, NCl∗(S) = Nint(NCl∗(S)).
This implies S ⊆ NCl∗(S) = Nint(NC∗(NCl(Nint(NCl∗(S))))) ⊆ Nint(NCl∗(NCl(NCl∗(S)))). Since
I = {φ}, we have,S ⊆ Nint(NCl(S)). Thus S is NP- open.
(2). Suppose that S is NI-open then S ⊆ Nint(S∗N). Now we have,S ⊆ Nint(S∗N) ⊆ NCl(Nint(S∗N)).
Thus S is NAI-open. Conversly suppose that S is NAI-open then S ⊆ NCl(Nint(S∗N)). Since (U, τR(X), I)
is ∗N -E.D. space , S ∈ τR(X) then NCl∗(S) ∈ τR(X). Now,S ⊆ NCl∗(S) = Nint(NCl∗(S)).
This implise that S ⊆ NCl∗(S) ⊆ Nint(NCl∗(NCl(Nint(S∗N)))).
Now I = {φ}, we have S ⊆ Nint(NCl(Nint(S∗N))) ⊆ Nint(NCl(S∗N)). Since S∗N = NCl(S∗N) =
NCl∗(S∗N), S ⊆ Nint(S∗N). Thus S is NI-open.

Theorem 4.10. A Subset S of ∗N - E.D. space (U, τR(X), I). Then the following are equivalent.

1. S is a NO-set

2. S is NαI-open and NWILC-set.

3. S is NSI-open and NWILC-set.
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4. S is NPI-open and NWILC-set.

5. S is NbI-open and NWILC-set.

6. S is NβI-open and NWILC-set.

Proof:(1) =⇒ (2).Since every NO-set is NαI-open and NWILC-set.
(2) =⇒ (3). Since every NαI-open set is NPI-open, proof is obvious.
(3) =⇒ (4). Since (U, τR(X), I) is a ∗N -E.D. space and by Theorem4.5, proof is obvious.
(4) =⇒ (5). Since every NPI-open set is NbI-open, proof is obvious.
(5) =⇒ (6). Since every NbI-open set is NβI-open, proof is obvious.
(6) =⇒ (1). Suppose that S is NβI-open and NWILC-set, then S ⊆ NCl∗(Nint(NCl∗(S))) and by The-
orem 2.17, we have S = T ∩ NCl∗(S). This implies that S ⊆ T ∩ NCl∗(NCl∗(Nint(NCl∗(S)))) =
T ∩ NCl∗(Nint(NCl∗(S))). Now using Theorem 4.5, There exists a NO-set T such that S ⊆ T ∩
Nint(NCl∗(NCl∗(S))) = T ∩ Nint(NCl∗(S)). Now S ⊆ Nint(T ) ∩ Nint(NCl∗(S)) = Nint(T ∩
NCl∗(S) = Nint(S). Thus S is a No-set.

Theorem 4.11. A Subset S of ∗N - E.D. space (U, τR(X), I). Then the following are equivalent.

1. S is a NO-set

2. S is NαI-open and NILC-set.

3. S is NSI-open and NILC-set.

4. S is NPI-open and NILC-set.

5. S is NbI-open and NILC-set.

6. S is NβI-open and NILC-set.

Proof: Proof follows from Theorem 3.21 and Theorem 4.10.

Theorem 4.12. A Subset S of ∗N - E.D. space (U, τR(X), I). Then the following are equivalent.

1. S is a NO-set

2. S is NαI-open and NLC-set.

3. S is NSI-open and NLC-set.

4. S is NPI-open and NLC-set.

5. S is NbI-open and NLC-set.

6. S is NβI-open and NLC-set.

Proof: Proof follows from Theorem 3.21 and Theorem 4.10.

ETIST 2021 205



Dr.V.inthumathi and R. Abinprakash

5 Decompositions of some stronger and weaker forms of nano

continuous mappings

Definition 5.1. A map σ : (U, τR(X), I) → (V, τR′(Y )) is said to be NRI-continuous (resp. NδI-
continuous, NtI-continuous, NbI-continuous, NβI-continuous, NILC-continuous, NWILC-continuous) if
σ−1(T ) is NRI-open(resp. NδI-open ,NtI-set, NbI-open, NβI-open, NILC-set, NWILC-set) in (U, τR(X), I)
for every NO-set T in (V, τR′(Y )).

Definition 5.2. [1] A mapping σ : (U, τR(X), I) → (V, τR′(Y )) is called NLC-continuous if σ−1(T ) is
NLC-set in (U, τR(X), I) for every NO-set set T in (V, τR′(Y )).

Theorem 5.3. In a NITS, a mapping σ : (U, τR(X), I)→ (V, τR′(Y )) the following are hold.

1. Every NαI-continuous mapping is NδI-continuous.

2. Every NtI-continuous mapping is NδI-continuous.

3. Every nano continuous mapping is NδI-continuous.

Proof: It is immediate from Theorem 3.2.

Theorem 5.4. If σ : (U, τR(X), I) → (V, τR′(Y )) is both NPI-continuous and NδI-continuous then it is
NSI-continuous.

Proof: Let T be a NO-set in (V, τR′(Y )). Since σ is NPI-continuous and NεI-continuous, σ−1(T ) is both
NδI-open and NPI-open. By Theorem 3.5, σ−1(T ) is NSI-open. Thus, σ is NSI-continuous.

Theorem 5.5. Let σ : (U, τR(X), I) → (V, τR′(Y )) is NRI-continuous then σ is NαI-continuous(NSI-
continuous, NδI- continuous, Nt-I-continuous ).

Proof: Proof is immediate from the Theorem 3.8.

Remark 5.6. The converses of the above theorem need not be true as shown in the following example.

Example 5.7. Let U = {a1, a2, a3, a4} be the universe with U/R = {φ, a1}, {a3}, {a2, a4}} and X =
{a1, a2}, I = {φ, {a1}}. Now, τR(X) = {φ, {a1}, {a2, a4}, {a1, a2, a4}, U}. and V = {a1, a2, a3}with V/R′ =
{{a1}{a2, a4}},Y = {a1}and τR′(Y ) = {φ, {a1}, V }.
(i)Define a map σ : (U, τR(X), I) → (V, τR′(Y )) σ(a1) = σ(a2) = σ(a4) = a1 and σ(a3) = a2 then σ is
NαI-continuous, NSI-continuous, NPI-continuous, NδI- continuous but not NRI-continuous.
(ii)Define a map σ : (U, τR(X), I) → (V, τR′(Y )) σ(a2) = σ(a3) = σ(a4) = a1 and σ(a1) = a2 then σ is N
tI-continuous but not NR I-continuous.

Theorem 5.8. A mapping σ : (U, τR(X), I) → (V, τR′(Y )) is NαI-continuous if and only if σ is both
NδI-continuous and NP I-continuous.

Proof: Proof follows immediately from Theorem 3.11.

Theorem 5.9. A mapping σ : (U, τR(X), I) → (V, τR′(Y )) is NSI-continuous if and only if σ is both
NδI-continuous and NβI-continuous.
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Proof: Proof follows immediately from Theorem 3.14.

Theorem 5.10. A mapping σ : (U, τR(X), I) → (V, τR′(Y )) is NRI-continuous if and only if σ is both
nano continuous and NtI-continuous.

Proof: Proof follows immediately from Theorem 3.17.

Theorem 5.11. For a mapping σ : (U, τR(X), I)→ (V, τR′(Y )),then the following are equivalent.

1. Nano continuous.

2. NαI-continuous set and NWILC-continuous.

3. NPI-continuous and NWILC-continuous.

Proof: Proof follows immediately from Theorem 3.22.

Theorem 5.12. Let (U, τR(X), I) ∗N -E.D. space. Then the mapping σ : (U, τR(X), I)→ (V, τR′(Y )) is

1. NPI-continuous if and only if Nβ I-continuous.

2. NPI-continuous if and only if NSI-continuous.

3. NαI-continuous if and only if NSI-continuous .

Proof: Proof follows from Theorem 4.5.

Theorem 5.13. If the mapping σ : (U, τR(X), I)→ (V, τR′(Y )) and (U, τR(X), I) is ∗N - E.D. space then
the following properties are equivalent.

1. σ is nano continuous

2. σ is NαI-continuous and NWILC-continuous.

3. σ is NSI-continuous and NWILC-continuous.

4. σis NPI-continuous and NWILC-continuous.

5. σ is NbI-continuous and NWILC-continuous.

6. σ is NβI-continuous and NWILC-continuous.

Proof: Proof is immediate from Theorem 4.10.

Theorem 5.14. If the mapping σ : (U, τR(X), I)→ (V, τR′(Y )) and (U, τR(X), I) is ∗N - E.D. space then
the following properties are equivalent.

1. σ is nano continuous

2. σ is NαI-continuous and NILC-continuous.

3. σ is NSI-continuous and NILC-continuous.

4. σis NPI-continuous and NILC-continuous.
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5. σ is NbI-continuous and NILC-continuous.

6. σ is NβI-continuous and NILC-continuous.

Proof: Proof is immediate from Theorem 4.11.

Theorem 5.15. If the mapping σ : (U, τR(X), I)→ (V, τR′(Y )) and (U, τR(X), I) is ∗N - E.D. space then
the following properties are equivalent.

1. σ is nano continuous

2. σ is NαI-continuous and NLC-continuous.

3. σ is NSI-continuous and NLC-continuous.

4. σis NPI-continuous and NLC-continuous.

5. σ is NbI-continuous and NLC-continuous.

6. σ is NβI-continuous and NLC-continuous.

Proof: Proof is immediate from Theorem 4.12.
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