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COMPLETELYπg* CONTINUOUS MAPPINGS IN 

INTUITIONISTIC FUZZY TOPOLOGICAL SPACES 

K. Sakthivel1, M. Manikandan2,R. Santhi3 

 

©NGMC 2021 

ABSTRACT:In this paper we have introduced a new class of mappings called as an Intuitionistic Fuzzy Completely 

πg

intuitionistic fuzzy completely πg* continuous mapping if f -1(B) is an intuitionistic fuzzy regular closed set in (X, 

τ) for every intuitionistic fuzzy πg

Intuitionistic Fuzzy Completely πg* continuous mappings and existing intuitionistic fuzzy continuous mappings 

with suitable examples. 

Keywords:Intuitionistic fuzzy topology, Intuitionistic fuzzy closed set, Intuitionistic fuzzy continuous mappings, 

Intuitionistic fuzzy πg* closed set, Intuitionistic fuzzy πg* continuous mappings and Intuitionistic fuzzy 

completely πg* continuous mappings. 

1. INTRODUCTION 

The concept of intuitionistic fuzzy sets was introduced by Atanassov [1] using the notion of fuzzy sets. On the other 

hand Coker [2] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. In this 

paper, we introduce intuitionistic fuzzy completely πg*continuous mappings and studied some of their basic 

properties. We have analyzed the relations of intuitionistic fuzzy completely πg*continuous mappings with existing 

intuitionistic fuzzy continuous mappings and intuitionistic fuzzy irresolute mappings. 

 

2. PRELIMINARIES 

Definition 2.1: [1] An intuitionistic fuzzy set (IFS in short) A in X is an object having the form  
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                                 A = { x, μA(x), νA(x)  / x X} 

where the functions μA(x): X [0, 1] and νA(x): X  [0,1] denote the degree of membership (namely μA(x)) and the 

degree of non-membership (namely νA(x)) of each element xX to the set A, respectively, and 0 ≤ μA(x) + νA(x) ≤ 1 

for each x X. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X. 

Definition 2.2: [1] Let A and B be IFSs of the form   

A = { x, μA(x), νA(x)  / xX} and B = { x, μB(x), νB(x)  / xX}. 

Then 

(i) A  B if and only if μA(x) ≤ μB(x) and νA(x) ≥ νB(x) for all xX 

(ii) A = B if and only if A   B and B   A 

(iii) Ac = { x, νA(x), μA(x)  / xX}        

(iv) A  B = { x, μA(x) μB (x), νA(x) νB(x)  / x  X} 

(v) A  B = { x, μA(x) μB (x), νA(x) νB(x)   / x  X} 

For the sake of simplicity, we shall use the notation A =  x, μA, νA instead of A = { x, μA(x), νA(x)  / x X. Also 

for the sake of simplicity, we shall use the notation A = { x, (μA, μB), (νA, νB)} instead of A =  x,(A/μA, 

B/μB),(A/νA, B/νB). 

The intuitionistic fuzzy sets 0~ = { x, 0, 1  / x X} and 1~ = { x, 1, 0  / x  X}   are respectively the empty set 

and the whole set of X. 

Definition 2.3: [2] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the 

following axioms. 

(i)  0~, 1~ τ  

(ii)  G1  G2  τ for any G1, G2  τ 

(iii)  Gi τ for any family {Gi/ i J}  τ. 

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is 

known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement Ac of an IFOS A in IFTS (X, τ) is 

called an intuitionistic fuzzy closed set (IFCS in short) in X. 

Definition 2.4: [2] Let (X, τ) be an IFTS and A =  x, μA, νA be an IFS in X. Then the intuitionistic fuzzy interior 

and intuitionistic fuzzy closure are defined by  

(i) int(A) =   { G / G is an IFOS in X and G  A }, 

(ii) cl(A)  =  {K / K is an IFCS in X and A  K }. 

Note that for any IFS A in (X, τ), we have cl(Ac) = [int(A)]c and int(Ac) = [cl(A)]c. 

Definition 2.5: [6] An IFS A = {  x, μA, νA } in an IFTS (X, τ) is said to be an 

(i) intuitionistic fuzzy semi open set (IFSOS in short) if A cl(int(A)), 

(ii) intuitionistic fuzzy α-open set (IFOS in short) if A int(cl(int(A))), 

(iii) intuitionistic fuzzy regular openset (IFROS in short) if A = int(cl(A)). 

Definition 2.6: [6] The union of IFROSs is called intuitionistic fuzzy 𝜋-open set (IF𝜋OS in short) of an IFTS (X, τ). 

The complement of IF𝜋OS is called intuitionistic fuzzy 𝜋-closed set (IF𝜋CS in short). 
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Definition 2.7: [6] An IFS A =  x, μA, νA in an IFTS (X, τ) is said to be an 

(i) intuitionistic fuzzy semi closed set (IFSCS in short) if int(cl(A))  A, 

(ii)  intuitionistic fuzzy α-closed set (IFCS in short) if cl(int(cl(A))  A, 

(iii) intuitionistic fuzzy regular closedset (IFRCS in short) if A = cl(int((A). 

Definition 2.8: [5] An IFS A of an IFTS (X, τ) is an  

(i)  intuitionistic fuzzy -open set (IFOS in short) if  A int(cl(A)) ∪ cl(int(A)), 

(ii) intuitionistic fuzzy -closed set (IFCS in short) if  cl(int(A)) ∩ int(cl(A))  A. 

Definition 2.9: [14] Let A be an IFS in an IFTS (X, τ). Then  

(i) sint(A) =   { G / G is an IFSOS in X and G  A }, 

(ii) scl(A)  =   { K / K is an IFSCS in X and A  K }. 

Note that for any IFS A in (X, τ), we have scl(Ac) = (sint(A))c and sint(Ac) = (scl(A))c. 

Definition 2.10: [15] An IFS Ain an IFTS (X,τ)  is an  

(i)intuitionistic fuzzy generalized closed set (IFGCS in short) if  cl(A)  U whenever A  U 

and U is an IFOS in X. 

(ii) intuitionistic fuzzy regular generalized closed set (IFRGCS in short) if cl(A)  Uwhenever  

A  U and U is an IFROS in X. 

Definition 2.11: [14] An IFS A in an IFTS (X,τ) is said to be an intuitionistic fuzzy generalized semi closed set 

(IFGSCS in short) if  scl(A)  U whenever A  U and U is an  IFOS in(X, τ). 

Definition 2.12: [11] An IFS A in (X, τ) is said to be an intuitionistic fuzzy πg* closed set (IFπg*CS in short) if 

cl(int(A)) ∩ int(cl(A))   U whenever A  U and U is an  IFπOS in (X, τ). The family of all IFπg*CSs of an IFTS 

(X, τ) is denoted by IFπg*C(X). 

Result 2.13: Every IFCS, IFGCS, IFRCS, IFCS is an IFπg*CS but the converses may not be true in general.  

Definition 2.14: [11] An IFS A is said to be an intuitionistic fuzzy πg* open set (IFπg*OS in short) in (X, τ) if the 

complement Ac is an IFπg*CS in X. The family of all IFπg*OSs of an IFTS (X, τ) is denoted by IFπg*O(X). 

Definition 2.15: [4] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, ). Then f is said to be intuitionistic 

fuzzy continuous (IF continuous in short) if f -1(B)  IFO(X) for every B. 

Definition 2.16: [14] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, ). Then f is said to be  

(i) intuitionistic fuzzy semi continuous (IFS continuous in short) if f-1(B)  IFSO(X) for every B Y. 

(ii) intuitionistic fuzzy α-continuous (IF continuous in short) if  f-1(B)  IFO(X) for every B Y. 

(iii) intuitionistic fuzzy pre continuous (IFP continuous in short) if f-1(B)  IFPO(X) for every B Y. 

(iv) intuitionistic fuzzy almost continuous (IFA continuous in short) if f-1(B) is an IFOS in X for each 

IFROS B  Y. 

(v) intuitionistic fuzzy almost  generalized continuous (IFAG continuous in short) if f-1(B) is an 

IFGOS in X for each IFROS B  Y. 
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Definition 2.17: [5] A mapping f: (X, τ)  (Y,) is called an intuitionistic fuzzy  continuous (IF continuous in 

short) if f -1(B) is an IFOS in (X, τ) for every B. 

Definition 2.18: [15] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, ). Then f is said to be an 

intuitionistic fuzzy generalized continuous (IFG continuous in short) if f -1(B)  IFGCS(X) for every IFCS B in Y. 

Definition 2.19: [10] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, ). Then f is said to be an 

intuitionistic fuzzy alpha generalized continuous (IFG continuous in short) if f -1(B) is an IFGCS for every IFCS 

B in Y. 

Definition 2.20: [14] A mapping f: (X, τ)  (Y,) is called an intuitionistic fuzzy generalized semi continuous 

(IFGS continuous in short) if f -1(B) is an IFGSCS in (X, τ) for every IFCS B of (Y,). 

Definition 2.21: [10] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, ). Then f is said to be an 

intuitionistic fuzzy alpha irresolute (IF irresolute in short) if f -1(B)  IFCS(X) for every IFCS B in Y. 

Definition 2.22: [12] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, ). Then f is said to be an 

intuitionistic fuzzy πg* irresolute (IFπg* irresolute in short) if  f -1(B)  IFπg*CS(X) for every IFπg*CS B in Y. 

Definition 2.23: [10] An IFTS (X, τ) is an intuitionistic fuzzyαdT1/2(IFαdT1/2) space if every IFPCS is an IFOS in X.  

Definition 2.24: [10] An IFTS (X, τ) is said to be an intuitionistic fuzzy πg*cT1/2 (in short IFπg*cT1/2) space if 

every IFπg*CS in X is an IFCS in X. 

 

3. INTUITIONISTIC FUZZY COMPLETELY πg* CONTINUOUS MAPPINGS 

In this section we have introduced intuitionistic fuzzy completely πg* continuous mapping and studied some of its 

properties. 

Definition 3.1: A mapping f: (X, τ)  (Y,) is called an intuitionistic fuzzy completely πg* continuous (IFcπg* 

continuous in short) mapping if f -1(B) is an IFRCS in (X, τ) for every IFπg*CS B of (Y,). 

Theorem 3.2: Every IFcπg* continuous mapping is an IF continuous mapping but converse is not true. 

Proof: Let us consider a mapping f: (X, τ)  (Y,) is an IFcπg* continuous mapping. Let B be an IFCS in Y. Then 

B is an IFπg*CS in Y. Since f is an IFcπg*continuous mapping, f -1(B) is an IFRCS in X. This implies f -1(B) is an 

IFCS in X. Hence the mapping f is an IF continuous mapping. 

Example 3.3: Let X = {a, b}, Y = {u, v} and G1 =  x, (0.2, 0.2), (0.5 0.7), G2 =  x, (0.1, 0.3), (0.8, 0.6)  and G3 = 

 y, (0.1, 0.3), (0.8, 0.6). Then τ = {0~, G1, G2, 1~} and  = {0~, G3, 1~} are IFT on X and Y respectively. Define a 

mapping f: (X, τ)  (Y,) by f (a) = u and f (b) = v. Then f is an IF continuous mapping. But f is not an IFcπg* 

continuous mapping, since B =  y, (0.7, 0.8), (0.1, 0.2)  is an IFπg*CS in Y but f -1(B) =  x, (0.7, 0.8), (0.1, 0.2)   

is not an IFRCS in X. 

Theorem 3.4: Every IFcπg* continuous mapping is an IFS continuous mapping but not conversely. 
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Proof: Assume that f: (X, τ)  (Y,) is an IFcπg* continuous mapping. Let B be an IFCS in Y. Then B is an 

IFπg*CS in Y. Since f is an IFcπg* continuous mapping, f -1(B) is an IFRCS in X. This implies f -1(B) is an IFSCS 

in X. Hence f is an IFS continuous mapping. 

Example 3.5: Let X = {a, b}, Y = {u, v} and G1 =  x, (0.4, 0.2), (0.6, 0.6), G2 =  x, (0.3, 0.2), (0.6, 0.7)  and G3 = 

 y, (0.3, 0.2), (0.6, 0.7). Then τ = {0~, G1, G2, 1~} and  = {0~, G3, 1~} are IFT on X and Y respectively. Define a 

mapping f: (X, τ)  (Y,) by f (a) = u and f (b) = v. Then f is an IFS continuous mapping. But f is not an IFcπg* 

continuous mapping since B =  y, (0.4, 0.7), (0.4, 0.2)  is an IFπg*CS in Y but f -1(B) = x, (0.4, 0.7), (0.4, 0.2)   

is not an IFRCS in X. 

Theorem 3.6: Every IFcπg* continuous mapping is an IFG continuous mapping but converse does not exist. 

Proof: Let us assume that f: (X, τ)  (Y,) is an IFcπg* continuous mapping. Let B be an IFCS in Y. This implies 

B is an IFπg*CS in Y. Since f is an IFcπg*continuous mapping,          f -1(B) is an IFRCS in X. This implies f -1(B) 

is an IFGCS in X. Hence f is an IFG continuous mapping. 

Example 3.7: Let X = {a, b}, Y = {u, v} and G1 =  x, (0.4, 0.2), (0.6, 0.6),   G2 =  x, (0.3, 0.2), (0.6, 0.8)  and G3 

=  y, (0.3, 0.2), (0.6, 0.8). Then   τ = {0~, G1, G2, 1~} and  = {0~, G3, 1~} are IFT on X and Y respectively. Define a 

mapping f: (X, τ)  (Y,) by f (a) = u and f (b) = v. Then f is an IFG continuous mapping. But f is not an IFcπg* 

continuous mapping since B =  y, (0.5, 0.5), (0.4, 0.2)  is an IFπg*CS in Y but f -1(B) = x, (0.5, 0.5), (0.4, 0.2)   

is not an IFRCS in X. 

Theorem 3.8: Every IFcπg* continuous mapping is an IF continuous mapping but not conversely. 

Proof: Assume that f: (X, τ)  (Y,) is an IFcπg* continuous mapping. Let B be an IFCS in Y. This implies B is 

an IFπg*CS in Y. Since f is an IFcπg* continuous mapping, f-1(B) is an IFRCS in X. This implies f -1(B) is an 

IFCS in X. Hence f is an IF continuous mapping. 

Example 3.9: Let X = {a, b}, Y = {u, v} and G1 =  x, (0.4, 0.2), (05, 0.6), G2 =  x, (0.3, 0.1), (0.6, 0.2)  and G3 = 

 y, (0.3, 0.1), (0.6, 0.2). Then we define τ = {0~, G1,G2, 1~} and  = {0~, G3, 1~} are IFT on Xand Y respectively. 

Define a mapping f: (X, τ)  (Y,) by f (a) = u and f (b) = v. Then f is an IF continuous mapping. But f is not an 

IFcπg* continuous mapping since B =  y, (0.5, 0.7), (0.2, 0.1)  is an IFπg*CS in Y butf -1(B) = x, (0.5, 0.7), (0.2, 

0.1)   is not an IFRCS in X. 

Theorem 3.10: Every IFcπg* continuous mapping is an IFGS continuous mapping but converse is not true. 

Proof: Assume that f: (X, τ)  (Y,) is an IFcπg* continuous mapping. Let B be an IFCS in Y. This implies B is 

an IFπg*in Y. Since f is an IFcπg* continuous mapping, f -1(B) is an IFRCS in X. This implies f -1(B) is an 

IFGSCS in X. Hence f is an IFGS continuous mapping. 

Example 3.11: Let X = {a, b}, Y = {u, v} and G1 =  x, (0.4, 0.2), (0.6, 0.6), G2 =  x, (0.1, 0.2), (0.6, 0.8)  and G3 

=  y, (0.1, 0.2), (0.6, 0.8). Then we define τ = {0~, G1,G2, 1~} and  = {0~, G3, 1~} are IFT on Xand Y respectively. 

Define a mapping f: (X, τ)  (Y,) by f (a) = u andf (b) = v. Then f is an IFGS continuous mapping. But f is not an 

IFcπg* continuous mapping since B =  y, (0.6, 0.8), (0.1, 0.1)  is an IFπg*CS in Y butf -1(B) = x, (0.6, 0.8), (0.1, 

0.1)   is not an IFRCS in X. 
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Theorem 3.12: Every IFcπg* continuous mapping is an IFG continuous mapping but not conversely. 

Proof: Assume thatf: (X, τ)  (Y,) is an IFcπg* continuous mapping. Let B be an IFCS in Y. Then B is an 

IFπg*CS in Y. Since f is an IFcπg* continuous mapping, f -1(B) is an IFRCS in X. This implies f -1(B) is an 

IFGCS in X. Hence f is an IFG continuous mapping. 

Example 3.13: Let X = {a, b}, Y = {u, v} and G1 =  x, (0.4, 0.2), (0.4, 0.6), G2 =  x, (0.3, 0.1), (0.6, 0.7)  and G3 

=  y, (0.3, 0.1), (0.6, 0.7). Then we define τ = {0~, G1,G2, 1~} and  = {0~, G3, 1~} are IFT on Xand Y respectively. 

Define a mapping f: (X, τ)  (Y,) by f (a) = u and f (b) = v. Then f is an IFG continuous mapping. But f is not an 

IFcπg* continuous mapping since B =  y, (0.7, 0.7), (0.2, 0.2)  is an IFπg*CS in Y but f-1(B) = x, (0.7, 0.7), (0.2, 

0.2)  is not an IFRCS in X. 

Theorem 3.14: Every IFcπg*continuous mapping is an IFγ continuous mapping but converse is not true. 

Proof: Assume that f: (X, τ)  (Y,) is an IFcπg* continuous mapping. Let B be an IFCS in Y. This implies B is 

an IFπg*CS in Y. Since f is an IFcπg* continuous mapping, f -1(B) is an IFRCS in X. This implies f -1(B) is an 

IFγCS in X. Hence f is an IFγ continuous mapping. 

Example 3.15: Let X = {a, b}, Y = {u, v} and G1 =  x, (0.4, 0.2), (0.6, 0.6), G2 =  x, (0.2, 0.1), (0.6, 0.4)  and G3 

=  y, (0.2, 0.1), (0.6, 0.4). Then we define τ = {0~, G1,G2, 1~} and  = {0~, G3, 1~} are IFT on X and Y respectively. 

Define a mapping f: (X, τ)  (Y,) by f (a) = u and f (b) = v. Then f is an IFγ continuous mapping. But f is not an 

IFcπg* continuous mapping since B =  y, (0.5, 0.8), (0.2, 0.1)  is an IFπg*CS in Y butf-1(B) = x, (0.5, 0.8), (0.2, 

0.1)   is not an IFRCS in X. 

Theorem 3.16: Amapping f: X  Y is an IFcπg* continuous mapping if and only if the inverse image of each 

IFπg*OS in Y is anIFROS in X. 

Proof: Necessity: Let A be an IFπg*OS in Y. This implies Ac is an IFπg*CS in Y. Since f is an IFcπg* 

continuous, f-1(Ac) is IFRCS in X. Since f-1(Ac) = (f-1(A))c, f-1(A) is an IFROS in X. 

Sufficiency: Let A be an IFπg*CS in Y. This implies Ac is an IFπg*OS in Y.  By hypothesis   f-1(Ac) is an IFROS 

in X. Since f-1(Ac) = (f-1(A))c, f-1(A) is an IFRCS in X. Hence f is an IFcπg*continuous mapping. 

Remark3.17: Every IFcπg* continuous mapping is an IFA continuous mapping but not conversely. 

Proof: Assume that f: (X, τ)  (Y,) is an IFcπg* continuous mapping. Let B be an IFRCS in Y. Then B is an 

IFπg*CS in Y. Since f is an IFcπg* continuous mapping, f -1(B) is an IFRCS in X. This implies f -1(B) is an IFCS 

in X. Hence f is an IFA continuous mapping. 

Example 3.18: Let X = {a, b}, Y = {u, v} and G1 =  x, (0.2, 0.2), (0.6, 0.7), G2 =  x, (0.1, 0.2), (0.8, 0.8)  and G3 

=  y, (0.1, 0.2), (0.8, 0.8). Then   τ = {0~, G1, G2, 1~} and  = {0~, G3, 1~} are IFT on Xand Y respectively. Define a 

mapping f: (X, τ)  (Y,) by f (a) = u and f (b) = v. Then f is an IFA continuous mapping. But f is not an 

IFcπg*continuous mapping since B =  y, (0.7, 0.8), (0.1, 0.2)  is an IFπg*CS in Y but f-1(B) = x, (0.7, 0.8), (0.1, 

0.2)   is not an IFRCS in X. 

Theorem 3.19: Every IFcπg* continuous mapping is an IFπg* continuous mapping but not conversely. 
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Proof: Assume that f: (X, τ)  (Y,) is an IFcπg* continuous mapping. Let B be an IFCS in Y. This implies B is 

an IFπg*CS in Y. Since f is an IFcπg* continuous mapping, f-1(B) is an IFRCS in X. This implies f-1(B) is an 

IFπg*CS in X. Hence f is an IFπg*continuous mapping. 

Example 3.20: Let X = {a, b}, Y = {u, v} and G1 =  x, (0.4, 0.2), (0.6, 0.6), G2 =  x, (0.2, 0.1), (0.6, 0.4)  and G3 

=  y, (0.2, 0.1), (0.6, 0.4). Then we define τ = {0~, G1,G2, 1~} and  = {0~, G3, 1~} are IFT on Xand Y respectively. 

Define a mapping f: (X, τ)  (Y,) by f (a) = u and f (b) = v. Then f is an IFπg* continuous mapping. But f is not 

an IFcπg* continuous mapping since B =  y, (0.6, 0.8), (0.2, 0.1)  is an IFπg*CS in Y but f -1(B) =  x, (0.6, 0.8), 

(0.2, 0.1)   is not an IFRCS in X. 

Theorem 3.21: If f : (X, τ)  (Y, ) is an IFAG continuous mapping and   g : (Y, )  (Z, )  is an IFcπg* 

continuous mapping, then  g o f :(X, τ)   (Z, )  is an IFAαG continuous mapping. 

Proof: Let A be an IFRCS in Z. Then A is an IFπg*CS in Z. Since g is an IFcπg* continuous mapping, g-1(A) is 

an IFRCS in Y. Since f is an IFAG continuous mapping, f-1(g-1(A)) is an IFGCS in X. Hence g o f is an IFAG 

continuous   mapping. 

 

The relations between various types of intuitionistic fuzzy continuity are given in the following diagram. In this 

diagram ‘cts’ means continuous mapping. 

 

 
 

The reverse implications are not true in general. 

 

Theorem 3.22: If f : (X, τ)  (Y, ) is an IFA continuous mapping and  g : (Y, )  (Z, ) is an 

IFcπg*continuous mapping, then  g o f:(X, τ)   (Z, )  is an IF continuous mapping. 

IFcπg*cts

IF cts

IFGS cts

IFG cts

IF cts

IF cts

IF 
πg* cts
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Proof: Let A be an IFCS in Z. Then A is an IFπg*CS in Z. Since g is an IFcπg* continuous mapping, g -1(A) is an 

IFRCS in Y. As f is an IFA continuous mapping, f -1(g -1(A)) is an IFCS in X. Hence g o f is an IF continuous 

mapping. 

Theorem 3.23: Let f: (X, τ)  (Y,) be a mapping from an IFTS X into an IFTS Y. Then the following conditions 

are equivalent if X is an IFαdT1/2 space. 

(i) f is an IFcπg* continuous mapping 

(ii) If B is an IFπg*CS in Y then f -1(B) is an IFRCS in X 

(iii) cl(int(f -1(B)))f -1(B) for every IFπg*CS B in Y.   

Proof: (i)  (ii):is obviously true. 

(ii)  (iii):  Let B be any IFπg*CS in Y. Then by hypothesis f -1(B) is an IFRCS in X. This implies f -1(B) is an 

IFCS in X. Hence cl(int(cl(f -1(B)))) f -1(B).This implies cl(int(f -1(B)))  f -1(B). 

(iii)  (i): Let B be an IFπg*OS in Y. Then its complement Bc is an IFπg*CS in Y.   By hypothesis cl(int(f -

1(Bc)))f -1(Bc). Then f -1(Bc) is an IFPCS in X. Since X is   an IFαdT1/2 space, f -1(Bc) is IFOS in X. That is f -1(Bc) = 

int(f -1(Bc)). Therefore   cl(int(f -1(Bc)))f -1(Bc) = int(f -1(Bc))cl(int(f -1(Bc))). Hence f -1(Bc) = cl(int(f -1(Bc)). 

Therefore f -1(Bc) is an IFRCS in X. Therefore f -1(B) is an IFROS in X. Hence f is an IFcπg* continuous mapping. 

Theorem 3.24: Every IFcπg*continuous mapping is an IF irresolute mapping but not conversely. 

Proof: Assume that f: (X, τ)  (Y, ) is an IFcπg* continuous mapping. Let B be an IFCS in Y. Then B is an 

IFπg*CSin Y. Since f is an IFcπg* continuous mapping, f-1(B) is an IFRCS in X. This implies f -1(B) is an IFCS 

in X. Hence f is an IF irresolute mapping. 

Example 3.25: Let X = {a, b}, Y = {u, v} and G1 =  x, (0.4, 0.2), (0.6, 0.7) ,  G2 =  x, (0.1, 0.2), (0.8, 0.8)  and G3 

=  y, (0.1, 0.2), (0.8, 0.8) . Then τ = {0~, G1, G2, 1~} and  = {0~, G3, 1~} are IFT on Xand Y respectively. Define a 

mapping f: (X, τ)  (Y, ) by f(a) = u and f(b) = v. Then f is an IF irresolute mapping. But f is not an IFcG 

continuous mapping, since B =  y, (0.7, 0.8), (0.1, 0.2)  is an IFπg*CS in Y but f -1(B) =  x, (0.7, 0.8), (0.1, 0.2)  

is not an IFRCS in X. 

Theorem 3.26: Every IFcπg* continuous mapping is an IFπg* irresolute mapping. 

Proof: Assume that f: (X, τ)  (Y, ) is an IFcπg*continuous mapping. Let B be an IFπg*CS in Y. Since f is an 

IFcπg* continuous mapping, f -1(B) is an IFRCS in X. This implies f -1(B) is an IFπg*CS in X. Hence f is an 

IFπg* irresolute mapping. 
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