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ABSTRACT:  A set 𝑺 of vertices is defined to be a power dominating set of a graph 𝑮 if every vertex and every 

edge in the system is monitored by the set 𝑺 (following a set of rules for power system monitoring). The minimum 

cardinality of a power dominating set of a graph 𝑮 is the power domination number 𝜸𝒑(𝑮). When operations on 

graphs are performed new kinds of graphs result from the initial graphs considered. The splitting and degree 

splitting are such operations, having some applications as well. In this paper, we investigate the power domination 

number 𝜸𝒑 of the splitting and degree splitting graphs of certain classes of graphs. 

Keywords: Domination, Power Domination, Splitting graphs, Degree splitting graphs. 

 

1.  INTRODUCTION 

Let 𝐺 = (𝑉, 𝐸) be a finite, undirected and simple graph, with the number of vertices |𝑉(𝐺)| = 𝑛. A 

subset 𝑆 ⊆ 𝑉 is a dominating set of 𝐺 [2, 3] if every vertex in 𝑉 − 𝑆 has at least one neighbour in 𝑆. A dominating 

set 𝑆 of 𝐺 is called a minimum dominating set, if 𝑆 consists of a minimum number of vertices among all 

dominating sets of 𝐺. Based on the concept of domination in graphs, Haynes et al. [2] developed the concept of 

power domination while formulating in graph theoretical terms, a problem related to electric power system. There 

has been a number of studies on the power domination number for common graph classes [3] and also on the 

relationship between domination number and power domination number.  

A subset 𝑆 ⊆ 𝑉is a power dominating set [2] of 𝐺 if all the vertices of 𝑉 can be observed recursively by the 

following rules: i) all vertices in the neighbour set 𝑁[𝑆] are observed initially and ii) if an observed vertex 𝑢 has 

all its neighbours observed except for one non-observed neighbour 𝑣, then 𝑣 is observed (by 𝑢).  

Given a graph 𝐺, while the domination number 𝛾(𝐺) represents the number of vertices in a minimum dominating 

set of 𝐺, the power domination number 𝛾𝑝(𝐺) is the minimum number of vertices required for a power dominating 

set of 𝐺.  Let 𝑃𝑛 , 𝐶𝑛, 𝑊1,𝑛, 𝐾𝑛 , 𝐾𝑚,𝑛 , 𝐾1,𝑛, 𝐵(𝑛, 𝑛), and 𝐹𝑛 denote respectively, the path, cycle, wheel, complete 
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graph, complete bipartite graph, star graph, bistar graph and friendship graphs of order 𝑛 [1, 7, 9, 10]. For 

undefined terminology and notation, we refer the reader to [1]. In this paper, we investigate power domination 

number of some splitting and degree splitting graphs.  

 

2. MAIN RESULTS 

2.1 Splitting Graphs 

The splitting graph 𝑆(𝐺) was introduced by Sampathkumar and Walikar [6].  

Definition 1.  Let G be a (x, y) graph . The splitting graph S(G) of G is obtained as follows. For each vertex 

v of a graph G, take a new vertex v′ and join v′ to all the vertices of G that are adjacent to v. Observe that 

S(G) is a (2x, 3y) graph. 

Theorem 2 [3] For any graph 𝐺, 1 ≤ 𝛾𝑝(𝐺) ≤ 𝛾(𝐺).  

Theorem 3  For a connected graph 𝐺 of order 𝑛 ≥ 2,  

    𝛾𝑝(𝐺) ≤ 𝛾𝑝(𝑆(𝐺)) ≤ 𝛾(𝐺). 

  Proof.  Let 𝐺 be a connected graph with 𝑉(𝐺) = {𝑣1, 𝑣2, . . . , 𝑣𝑛}. By the definition of 𝑆(𝐺) of a graph 𝐺, 

new vertices 𝑣1
′ , 𝑣2

′ , ⋯ , 𝑣𝑛
′  are introduced and for all 𝑖, (1 ≤ 𝑖 ≤ 𝑛) the vertex 𝑣𝑖

′ is adjacent to the 

neighbours of 𝑣𝑖 in 𝐺. This newly constructed graph 𝑆(𝐺) consists of 𝑉 ∪ 𝑉′(= 2𝑛) vertices.                              

If 𝐷𝑆(𝐺) = 𝑋 ∪ 𝑋′ is a 𝛾𝑝-set for 𝑆(𝐺) such that 𝑋 ⊆ 𝑉 and 𝑋′ ⊆ 𝑉′, then 𝐷𝐺 = 𝑋 ∪ 𝑌 is a power 

dominating set for 𝐺 such that 𝑌 ⊆ 𝑉. So 𝛾𝑝(𝐺) ≤ 𝛾𝑝(𝑆(𝐺)).  

The upper bound is consequence of the following Theorem 5  

Theorem 4 [4]  If a graph 𝐺 has no isolated vertices, then 𝛾(𝐺) ≤ 𝑛/2.  

Theorem 5  For a path graph 𝑃𝑛 of order 𝑛 ≥ 2,  

      𝛾𝑝(𝑆(𝑃𝑛)) = 1. 

 Proof. Consider a path 𝑃𝑛 with 𝑛 vertices and 𝑛 − 1 edges. Let the vertices be denoted by 𝑣1, 𝑣2, 𝑣3, . . . , 𝑣𝑛. 

By the construction of splitting graph 𝑆(𝑃𝑛) of the path graph, new vertices 𝑣1
′ , 𝑣2

′ , ⋯ , 𝑣𝑛
′  are introduced 

and for all 𝑖, (1 ≤ 𝑖 ≤ 𝑛) the vertex 𝑣𝑖
′ is adjacent to the neighbours of 𝑣𝑖 in 𝑃𝑛. We claim that 𝐷 = {𝑣2} is 

a 𝛾𝑝-set for 𝑆(𝑃𝑛) because {𝑣1, 𝑣3, 𝑣1
′ , 𝑣3

′ } are dominated initially and other vertices of 𝑆(𝑃𝑛) are power 

dominated by 𝑣2. Hence 𝛾𝑝(𝑆(𝑃𝑛)) = 1.  

Remark 6 From Theorem 4, we note that for a path 𝑃𝑛 , 𝑛 ≥ 4, the domination number 𝛾(𝑃𝑛) ≥ 2 while 

𝛾𝑝(𝐷𝑆(𝑃𝑛)) is 1. 

2.2 Degree Splitting Graphs 

Ponraj and Somasundaram [5] introduced the concept of degree splitting graph 𝐷𝑆(𝐺) of a graph 𝐺.  

Definition 7 Given a graph G = (V, E) with V = S1 ∪ S2 ∪ … St ∪ T where t is an integer ≥ 1, each          

Si, 1 ≤ i ≤ t, is a set of at least two vertices of G of the same degree and T = V −∪ Si, then the degree 

splitting graph DS(G) of the graph G is defined as a graph which is obtained from G by adding vertices 

w1, w2 … , wt and joining wi, for each i, 1 ≤ i ≤ t, to each vertex of Si. Note that if V(G) = ⋃t
i=1 Si then 

T = ϕ. 

Theorem 8  If 𝐺 be a connected graph, then  

     𝛾𝑝(𝐷𝑆(𝐺)) ≤ 𝛾𝑝(𝐺) 
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Proof. Let 𝐺 be a connected graph with 𝑉(𝐺) = {𝑣1, 𝑣2, . . . , 𝑣𝑛}. Let 𝐷 = {𝑣𝑖 : 1 ≤ 𝑖 < 𝑛} be the minimum 

power dominating set of 𝐺. Then 𝛾𝑝(𝐺) = |𝐷|. By the definition of 𝐷𝑆(𝐺), we have                          

𝑉(𝐷𝑆(𝐺)) = 𝑆1 ∪ 𝑆2 ∪, ⋯ ,∪ 𝑆𝑡 ∪ 𝑇, where 𝑡 is an integer ≥ 1 and 𝑇 is as in the definition of 𝐷𝑆(𝐺). Let 

𝑤𝑖  be the set of vertices of all the corresponding sets of 𝑆𝑖; 1 ≤ 𝑖 ≤ 𝑡.  

If  𝑇 = ∅, then 𝑤𝑖 ; 1 ≤ 𝑖 ≤ 𝑡 is maximal independent set in 𝐷𝑆(𝐺). Since every maximal independent set 

𝑤𝑖  is a minimum dominating set it is also a minimum power dominating set. Therefore,                                     

𝐷′ = {𝑤𝑖 ; 1 ≤ 𝑖 ≤ 𝑡} is the minimum power dominating set of 𝐷𝑆(𝐺).  

If 𝑇 ≠ ∅. There is at least one vertex in 𝐺 which is not in 𝑆𝑖; 1 ≤ 𝑖 ≤ 𝑡. Since 𝐺 is an induced subgraph of 

𝐷𝑆(𝐺) to power dominate all the vertices of 𝐷𝑆(𝐺), we require at least |𝑤𝑖 ∪ 𝑇| vertices. Therefore,          

𝐷′ = {𝑤𝑖 ; 𝑖 ≤ 𝑖 ≤ 𝑡} ∪ 𝑇, becomes a minimum power dominating set of 𝐷𝑆(𝐺) and also noted that        

|𝐷′| ≤ |𝐷|.  Hence, 𝛾𝑝(𝐷𝑆(𝐺)) ≤ 𝛾𝑝(𝐺).  

Theorem 9 For any connected graph 𝐺 of order 𝑛 ≥ 2,  

 𝛾𝑝(𝐷𝑆(𝐺)) ≤ 𝛾𝑝(𝐺) ≤ 𝛾𝑝(𝑆(𝐺)) ≤ 𝛾(𝐺).   

Proof. From Theorem 3 and Theorem 8, we get the required inequality.  

Theorem 10  If 𝐺 is a regular graph, then  

 𝛾𝑝(𝐷𝑆(𝐺)) = 𝛾(𝐷𝑆(𝐺)) = 1  

 Proof. If 𝐺 is a regular graph, then by definition, in the degree splitting graph 𝐷𝑆(𝐺), only one vertex 𝑤1 

is newly introduced and is adjacent to all the vertices of 𝐺. We claim that 𝐷′ = {𝑤1} is a 𝛾𝑝-set for 𝐷𝑆(𝐺) 

because all vertices in a graph 𝐷𝑆(𝐺) are dominated and power dominated by 𝑤1.  

Theorem 11  For the complete bipartite graph 𝐾𝑚,𝑛, 𝑚 ≠ 𝑛, 𝑚, 𝑛 ≥ 3,  

    𝛾𝑝(𝐷𝑆(𝐾𝑚,𝑛)) = 2. 

Proof. Let 𝑉1 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑚} and 𝑉2 = {𝑢1, 𝑢2, ⋯ , 𝑢𝑛} be the partition of 𝑉(𝐾𝑚,𝑛). The complete 

bipartite graph 𝐾𝑚,𝑛 contains two types of vertices - vertices of degree 𝑛 and vertices of degree 𝑚. Thus 

𝑉(𝐾𝑚,𝑛) = 𝑆1 ∪ 𝑆2, where 𝑆1 = {𝑣𝑖; 1 ≤ 𝑖 ≤ 𝑚} and 𝑆2 = {𝑢𝑗; 1 ≤ 𝑗 ≤ 𝑛}. For obtaining 𝐷𝑆(𝐾𝑚,𝑛) from 

𝐾𝑚,𝑛, we add 𝑤1 and 𝑤2 corresponding to 𝑆1 and 𝑆2 respectively. We claim that 𝐷′ = {𝑤1, 𝑤2} is a 

minimum power dominating set for 𝐷𝑆(𝐾𝑚,𝑛) because the vertices in 𝑣𝑖(1 ≤ 𝑖 ≤ 𝑚) dominate and hence 

power dominate by the vertex 𝑤1 while the vertices of 𝑢𝑗, (1 ≤ 𝑗 ≤ 𝑛) dominate and hence power dominate 

the vertex 𝑤2. Thus 𝛾𝑝(𝐷𝑆(𝐾𝑚,𝑛)) = 2.  

On the other hand, while computing 𝛾𝑝-set of 𝐾𝑚,𝑛, note that every vertex of 𝑉1  power dominates every 

vertex of 𝑉2 and vice versa. Therefore, we could choose one vertex from 𝑉1 and another vertex in 𝑉2 for 

𝛾𝑝-set. Thus 𝛾𝑝(𝐷𝑆(𝐾𝑚,𝑛)) = 𝛾𝑝(𝐾𝑚,𝑛). 

Corollary 12 𝛾𝑝(𝐷𝑆(𝐾𝑛,𝑛)) = 1, 𝑚 = 𝑛 ≥ 3.  

Proof. In a complete bipartite graph 𝐾𝑛,𝑛 with a bipartition 𝑉1 ∪ 𝑉2 of its vertex set, we construct 𝐷𝑆(𝐾𝑛,𝑛) 

by introducing a new vertex 𝑤 and join this to all the vertices of 𝐾𝑛,𝑛 as all the vertices of 𝐾𝑛,𝑛 have the 

same degree 𝑛. We observe that the vertex 𝑤 dominates and hence power dominates all the vertices of 

𝐷𝑆(𝐾𝑛,𝑛).  

Theorem 13 If 𝐺 is a 𝑘-regular bipartite graph with 𝑘 ≥ 3, then  

     𝛾𝑝(𝐷𝑆(𝐺)) < 𝛾𝑝(𝐺). 
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Proof. Let 𝐺 be a 𝑘-regular bipartite graph with bipartition (𝑉1, 𝑉2). Since 𝐺 is 𝑘-regular, 𝑘|𝑉1| = |𝐸| =

𝑘|𝑉2| and so, since 𝑘 ≥ 3, |𝑉1| = |𝑉2|. In order to construct 𝐷𝑆(𝐺) from 𝐺, we add 𝑤 corresponding to 𝑉1. 

Thus 𝑉(𝐷𝑆(𝐺)) = 𝑆1 ∪ {𝑤}. We claim that 𝐷′ = {𝑤} is a 𝛾𝑝-set for 𝐷𝑆(𝐺), because 𝑤 dominates and 

hence power dominates all the vertices of 𝐷𝑆(𝐺). Hence 𝛾𝑝(𝐷𝑆(𝐺)) = 1. 

On the other hand, we observe that any single vertex 𝑣𝑖 of 𝐺 cannot power dominate the entire 𝑘-regular 

bipartite graph 𝐺. Hence 𝛾𝑝(𝐺) ≥ 2.  Thus 𝛾𝑝(𝐷𝑆(𝐺)) < 𝛾𝑝(𝐺).  

Definition 14 [8] A binary tree is a tree in which there is exactly one vertex of degree two, namely the root 

vertex v0 and each of the remaining vertices is of degree one or three. A complete binary tree is a binary 

tree in which all leaves are on the same level or all leaves have same distance to the root vertex v0. We 

denote a complete binary tree with diameter 2k by BT(k), where k ≥ 1.  

A graph 𝐵𝑇(𝑘) can be constructed recursively from two copies of 𝐵𝑇(𝑘 − 1) by joining their root vertices 

to a new vertex 𝑣0.  

 

Figure 1: Complete binary tree BT(3) and its Degree splitting graph DS(BT(3)) 

Theorem 15 Let 𝐵𝑇(𝑘) be a complete binary tree with height 𝑘 ≥ 3. Then 𝛾𝑝(𝐷𝑆(𝐵𝑇(𝑘)) = 2  

Proof.  Let 𝐵𝑇(𝑘) be a complete binary tree with diameter 2𝑘, where 𝑘 ≥ 1. Each of the vertices 

𝑣1, 𝑣2, ⋯ , 𝑣𝑛 of 𝐵𝑇(𝐾), other than the root vertex 𝑣𝑜 is of degree one or three. The vertex set of 𝐵𝑇(𝑘) is 

𝑉 = 𝑆1 ∪ 𝑆2 ∪ 𝑇 where 𝑇 = {𝑣0}, 𝑆1 = {𝑣𝑖|𝑑𝑒𝑔(𝑣𝑖) = 3} and 𝑆2 = {𝑣𝑖|𝑑𝑒𝑔(𝑣𝑖) = 1}. The degree 

splitting graph 𝐷𝑆(𝐵𝑇(𝑘) is constructed by introducing the new vertices 𝑤1 and 𝑤2 corresponding to 𝑆1 

and 𝑆2 respectively. Let 𝐷′ = {𝑤1, 𝑤2} is 𝛾𝑝-set for 𝐷𝑆(𝐵𝑇(𝑘)) because each vertex in 𝑆1 and 𝑆2 are 

dominated by 𝑤1 and 𝑤2 respectively, while the root vertex 𝑣0 is power dominated by 𝑆2. Thus 

𝛾𝑝(𝐷𝑆(𝐵𝑇(𝑘)) = 2.  

Remark 16 Note that for a complete binary tree 𝐵𝑇(𝑘) with height 𝑘 ≥ 3, the power domination number 

𝛾𝑝(𝐵𝑇(𝐾)) = 2𝑛−1.  

Definition 17 [9] The bistar Bn,n is the graph obtained by joining the center vertices of two copies of K1,n 

by an edge.  

Theorem 18 For 𝑛 ≥ 2, 𝛾𝑝(𝐷𝑆(𝐵𝑛,𝑛)) = 1.  

Proof. Let 𝐵𝑛,𝑛 be a bistar graph with 𝑉 = 𝑆1 ∪ 𝑆2 where 𝑆1 = {𝑢, 𝑣} with 𝑢 and 𝑣 adjacent and                   

𝑆2 = {𝑢𝑖 , 𝑣𝑖|1 ≤ 𝑖 ≤ 𝑛}. Here for 1 ≤ 𝑖 ≤ 𝑛, 𝑢𝑖 and 𝑣𝑖 , are pendant vertices with all 𝑢𝑖 joined to 𝑢 and all 

𝑣𝑖 joined to 𝑣. In order to obtain the degree splitting graph of 𝐵𝑛,𝑛, we introduce new vertices 𝑤1 and 𝑤2 
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corresponding to 𝑆1 and 𝑆2. The vertex 𝑤1 is joined to 𝑢 and 𝑣 while 𝑤2 is joined to all the remaining 

vertices of 𝐵(𝑛, 𝑛). We claim that 𝐷′ = {𝑤1} is a 𝛾𝑝-set for 𝐷𝑆(𝐵𝑛,𝑛), because 𝑉(𝐷𝑆(𝐵𝑛,𝑛)) are power 

dominated by 𝑤1. Hence 𝛾𝑝(𝐷𝑆(𝐵𝑛,𝑛)) = 1. On the other hand, while computing 𝛾𝑝-set of 𝐵𝑛,𝑛, add the 

vertices 𝑤1 and 𝑤2 to 𝐷. Hence 𝛾𝑝(𝐵(𝑛, 𝑛)) = 2 

2.3 Graphs with 𝜸𝒑(𝑫𝑺(𝑮)) = 𝜸𝒑(𝑮). 

For any graph 𝐺, we have 𝛾𝑝(𝐷𝑆(𝐺)) ≤ 𝛾𝑝(𝐺). In this section we investigate graphs for which 

𝛾𝑝(𝐷𝑆(𝐺)) = 𝛾𝑝(𝐺). In particular, for a path, cycle and complete graph with 𝛾𝑝(𝐷𝑆(𝐺)) = 𝛾𝑝(𝐺).  

It follows from Theorem 11 that for a complete bipartite graph 𝐾𝑚,𝑛, 𝑚 ≠ 𝑛, of order   𝑚, 𝑛 ≥ 3, 

𝛾𝑝(𝐷𝑆(𝐾𝑚,𝑛)) = 𝛾𝑝(𝐾𝑚,𝑛). In the following theorems we characterize the graphs with 𝛾𝑝(𝐷𝑆(𝐺)) =

𝛾𝑝(𝐺). 

Theorem 19 Let 𝑃𝑛 , 𝑛 ≥ 2 be a path on 𝑛 vertices. Then 𝛾𝑝(𝐷𝑆(𝑃𝑛)) = 1  

Proof. Let 𝑃𝑛 , 𝑛 ≥ 2 be a path with 𝑉 = 𝑆1 ∪ 𝑆2 where 𝑆1 = {𝑣1, 𝑣𝑛} and 𝑆2 = {𝑣𝑖|2 ≤ 𝑖 ≤ 𝑛 − 1}. The 

degree splitting graph 𝐷𝑆(𝑃𝑛) of 𝑃𝑛 is obtained by adding two new vertices 𝑤1 and 𝑤2 corresponding to 𝑆1 

and 𝑆2 respectively. Thus 𝑉(𝐷𝑆(𝑃𝑛)) = 𝑉(𝑃𝑛) ∪ {𝑤1, 𝑤2} and 𝐸(𝐷𝑆(𝑃𝑛)) = 𝐸(𝑃𝑛) ∪ {𝑤1𝑣1, 𝑤1𝑣𝑛} ∪

{𝑤2𝑣𝑖|𝑣𝑖 , 2 ≤ 𝑖 ≤ 𝑛 − 2. } The number of vertices in 𝐷𝑆(𝑃𝑛) is therefore 𝑛 + 2 and the number of edges is 

2𝑛 − 1. We claim that 𝐷′ = {𝑤2} is a 𝛾𝑝-set for 𝐷𝑆(𝐺) because {𝑣𝑖|2 ≤ 𝑖 ≤ 𝑛 − 1} are observed in 

domination step and {𝑣1, 𝑣𝑛 , 𝑤1} are observed in power domination step. Haynes et al. [2] have obtained a 

characterization of path graphs 𝑃𝑛 , 𝑛 ≥ 2 with 𝛾𝑝(𝑃𝑛) = 1.   Hence 𝛾𝑝(𝐷𝑆(𝑃𝑛)) = 𝛾𝑝(𝑃𝑛) = 1.  

Theorem 20 (𝑖) Let 𝐶𝑛, 𝑛 ≥ 3 be a cycle on 𝑛 vertices. Then 𝛾𝑝(𝐷𝑆(𝐶𝑛)) = 1. 

  (𝑖𝑖) Let 𝐾𝑛 be a complete graph on 𝑛 vertices. Then 𝛾𝑝(𝐷𝑆(𝐾𝑛)) = 1.  

Proof. (𝑖) The cycle 𝐶𝑛 is a two regular graph. Hence by Theorem 10, we have 𝛾𝑝(𝐷𝑆(𝐶𝑛)) = 1.  

(𝑖𝑖) If 𝐾𝑛 is a complete graph, then 𝐷𝑆(𝐾𝑛) = 𝐾𝑛+1. The graph 𝐾𝑛+1 being a 𝑛-regular graph, and by 

Theorem 10, we have 𝛾𝑝(𝐷𝑆(𝐾𝑛) = 1. It is known [3] that 𝛾𝑝(𝐾𝑛) = 1 and hence 𝛾𝑝(𝐷𝑆(𝐾𝑛)) = 𝛾𝑝(𝐾𝑛).  

Theorem 21 If 𝐺 ∈ {𝑊1,𝑛 , 𝐾1,𝑛, 𝐹𝑛} and 𝑛 be an any arbitrary positive integer, then     

   𝛾𝑝(𝐷𝑆(𝐺)) = 𝛾𝑝(𝐺) = 1. 

3. CONCLUSION 

We have computed power domination number of the degree splitting graph of several standard graphs. And we 

have compared the power domination number of splitting and degree splitting graphs with the power domination 

for standard graphs and obtained interesting and useful results in this paper. 
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