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A NEW OPEN AND CLOSED MAPPING IN INTUITIONISTIC 

FUZZY TOPOLOGICAL SPACES  

M. Rameshkumar1 – R. Santhi2  

 

©NGMC 2021 

ABSTRACT:  In this paper we introduce a new open and closed mapping in intuitionistic fuzzy topological spaces 

and studied some of their properties. We also study the relationship between other existing mappings in intuitionistic 

fuzzy topological spaces. 

Keywords: Intuitionistic fuzzy topology, Intuitionistic fuzzy g*-open mapping, Intuitionistic fuzzy g*-closed 

mapping. 

1.  INTRODUCTION 

In 1965, Zadeh [14] introduced to the world the term fuzzy set (FS), as a formalization of vagueness and partial 

truth, and represents a degree of membership for each member of the universe of discourse to a subset of it. Later on 

Chang [2] introduced Fuzzy topology in 1968.  

After two decades, in 1983, Atanassov [1] introduced the concept of intuitionistic fuzzy sets(IFS) as a generalization 

of fuzzy sets. In 1997 intuitionistic fuzzy open sets, intuitionistic fuzzy closed sets and intuitionistic fuzzy 

topological space was introduced by Coker [3]. After this many concepts in fuzzy topological spaces extended to 

intuitionistic fuzzy topological spaces. 

In 1970, Levine [8] goes a step further and introduced g-closed, it is the generalization of closed sets in general 

topology. Whereas Veerakumar [12] in 2000, says that g*-closed sets is in between closed sets and g-closed sets in 

general topology. Rameshkumar [9] introduced g*-closed sets is in intuitionistic fuzzy topological spaces. In this 

paper we introduce g*-open and g*-closed mappings in intuitionistic fuzzy topological spaces and studied their 

properties. 

2. PRELIMINARIES 

Definition 2.1: [1] Let X be a non empty fixed set. An intuitionistic fuzzy set (IFS in short) A in X is an object 

having the form A = {  x, µA(x), νA(x)  / x ∈  X }, where the functions µA(x): X → [0,1] and νA(x): X → [0,1] 
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denote the degree of membership (namely µA(x)) and the degree of non-membership (namely νA(x)) of each 

element x ∈  X to the set A, respectively, and 0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈  X. Denote by IFS(X), the set of all 

intuitionistic fuzzy sets in X. 

Definition 2.2: [1] Let A and B be IFSs of the form A = {  x, µA(x), νA(x)  / x ∈  X } and B = { x, µB(x), νB(x)  

/ x ∈  X }. Then 

(a) A ⊆ B if and only if µA(x) ≤ µB (x) and νA(x) ≥ νB(x) for all x ∈  X 

(b) A = B if and only if A ⊆ B and B ⊆ A 

(c) Ac = {  x, µA(x), νA(x)   / x ∈  X } 

(d) A ∩ B = {  x, µA(x) ∧  µB(x), νA(x) ∨  νB(x)  / x ∈  X } 

(e) A ∪  B = {  x, µA(x) ∨  µB(x), νA(x) ∧  νB(x)  / x ∈  X } 

(f) 0 = { x, 0, 1  : x ∈  X } and 1 = { x, 1, 0  : x ∈  X } 

(g) 1~
𝑐 = 0 and 0~

𝑐  = 1 

For the sake of simplicity, we shall use the notation A =  x, µA, νA  instead of {x, µA(x), νA(x) / x ∈  X }. 

Also for the sake of simplicity, we shall use the notation A =  x, (µA, µB),(νA, νB) instead of A =  x, (A/µA, 

B/µB), (A/νA, B/νB) . 

Definition 2.3: [3] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the 

following axioms. 

(i) 0~, 1~ ∈ τ 

(ii) G1 ∩ G2 ∈ τ, for any G1, G2 ∈ τ 

(iii) ∪ Gi ∈ τ for any family { Gi / i ∈ J } ⊆ τ. 

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is 

known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement Ac of an IFOS A in an IFTS (X, τ) 

is called an intuitionistic fuzzy closed set  (IFCS in short) in X. 

Definition 2.4: [3] Let (X, τ) be an IFTS and A =  x, µA, νA  be an IFS in X. Then the intuitionistic fuzzy interior 

and an intuitionistic fuzzy closure are defined by 

int(A) = ∪  { G / G is an IFOS in X and G ⊆ A }, 

cl(A) = ∩ { K / K is an IFCS in X and A ⊆ K }. 

Definition 2.5: An IFS A of an IFTS (X, τ) is an 

(i) intuitionistic fuzzy pre closed set [7] (IFPCS in short) if cl(int(A)) ⊆ A, 

(ii) intuitionistic fuzzy α-closed set [6] (IFαCS in short) if cl(int(cl(A)) ⊆ A. 

(iii) intuitionistic fuzzy semi closed set [6] (IFSCS in short) if int(cl(A)) ⊆ A, 

(iv) intuitionistic fuzzy regular closed set [6] (IFRCS in short) if A = cl(int(A)), 

(v) intuitionistic fuzzy regular open set [6]  (IFROS in short) if A ⊆ int(cl(A)).  

Definition 2.6: [11] An IFS A of an IFTS (X, τ) is an intuitionistic fuzzy generalized closed set (IFGCS in short) if 

cl(A) ⊆ U whenever A ⊆ U and U is an IFOS in X. 
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Definition 2.7: [9] An IFS A in (X, τ) is said to be an intuitionistic fuzzy g*-closed set (IFGCS in short) if cl(A) ⊆ 

U whenever A ⊆ U and U is an IFGOS in (X, τ). 

Definition 2.8: [6] An IFP x(,) is said to be an intuitionistic fuzzy -cluster point of an IFS U if and only if 

cl(A)qU for each q-neighborhood A of x(,).The set of all intuitionistic fuzzy -cluster points of U is called an 

intuitionistic fuzzy -closure of U and is denoted by cl(U). An IFS U will be called an intuitionistic fuzzy -closed 

(IFCS for short) if and only if U = cl(U). The complement of an IFCS is called an intuitionistic fuzzy -open set 

(IFOS for short). 

Definition 2.9: [9] An IFTS (X, τ) is said to be an intuitionistic fuzzy 𝑇1

2

∗
 space (in short IF𝑇1

2

∗
) if every IFGCS of 

(X, ) is an IFCS of (X, ). 

Definition 2.10: [10] A mapping f: (X, τ) → (Y, σ) is called an intuitionistic fuzzy g*-continuous (IFG continuous 

in short) if f -1(B) is an IFGCS in (X, τ) for every IFCS B of (Y, σ). 

Definition 2.11: [5] A map f: X  Y is called an 

(i) intuitionistic fuzzy semi-open mapping (IFSOM for short) if f(A) is an IFSOS in Y for each IFOS A in X. 

(ii) intuitionistic fuzzy -open mapping (IFOM for short) if f(A) is an IFOS in Y for each IFOS A in X. 

(iii) intuitionistic fuzzy preopen mapping (IFPOM for short) if f(A) is an IFPOS in Y foreach IFOS A in X. 

Definition 2.12: [13] A mapping f: XY is called an intuitionistic fuzzy pre regular closed mapping (IFPRCM for 

short) if f(V) is an IFRCS in Y for every IFRCS V of X. 

3. INTUITIONISTIC FUZZY g* CLOSED SETS FIGURES AND OTHER ILLUSTRATIONS  

Definition 3.1: A mapping f : X → Y is said to be intuitionistic fuzzy g*-open mapping (IFGOM) if f (A) is an 

IFGOS in Y, for every IFOS A in X. 

Definition 3.2: A mapping f : X → Y is said to be intuitionistic fuzzy g*-closed mapping (IFGCM) if f (A) is an 

IFGCS in Y, for every IFCS A in X. 

Theorem 3.3: Every intuitionistic fuzzy open (resp. intuitionistic fuzzy closed) mapping is an intuitionistic fuzzy g*-

open (resp. intuitionistic fuzzy g*-closed) mapping. 

Proof: Obvious 

Remark 3.4: Converse of the Theorem 3.3 need not be true as seen from the following example. 

Example 3.5: Let X = {a, b} and Y = {u, v}. Let A = 〈 x, (0.2, 0.2), (0.7, 0.8) 〉 and B = 〈 y, (0.5, 0.3), (0.7, 0.8) 〉. 

Then τ = {0~, A, 1~} and  = {0~, B, 1~} are an IFTs on X and Y respectively. Define a mapping f : (X, ) → (Y, ) 

by f (a) = u and f (b) = v. Then f is an IFGOM but not an IFOM.  

Theorem 3.6: Every intuitionistic fuzzy g*-open (resp. intuitionistic fuzzy g*-closed) mapping is an intuitionistic 

fuzzy g-open (resp. intuitionistic fuzzy g-closed) mapping. 

Proof: Let f : X → Y be an IFGOM. Let A be an IFOS in X. Then f (A) is an IFGOS in Y. Since every IFGOS is 

an IFGOS, f (A) is an IFGOS in Y. Hence f  is an IFGOM.  

Remark 3.7: Converse of the Theorem 3.6 need not be true as seen from the following example. 
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Example 3.8: Let X = {a, b} and Y = {u, v}. Let A = 〈 x, (0.4, 0.2), (0.6, 0.6) 〉 and B = 〈 y, (0.5, 0.2), (0.4, 0.2) 〉. 

Then τ = {0~, A, 1~} and  = {0~, B, 1~} are an IFTs on X and Y respectively. Define a mapping f : (X, ) → (Y, ) 

by f (a) = u and f (b) = v. Then f is an IFGOM but not an IFGOM.  

Theorem 3.9: Every intuitionistic fuzzy g*-open (resp. intuitionistic fuzzy g*-closed) mapping is an intuitionistic 

fuzzy g-open (resp. intuitionistic fuzzy g-closed) mapping. 

Proof: Let f : X → Y be an IFGOM. Let A be an IFOS in X. Then f (A) is an IFGOS in Y. Since every IFGOS is 

an IFGOS, f (A) is an IFGOS in Y. Hence f  is an IFGOM.  

Remark 3.10: Converse of the Theorem 3.9 need not be true as seen from the following example. 

Example 3.11: Let X = {a, b} and Y = {u, v}. Let A = 〈 x, (0.1, 0.4), (0.6, 0.5) 〉 and B = 〈 y, (0.3, 0.4), (0.2, 0.5) 〉. 

Then τ = {0~, A, 1~} and  = {0~, B, 1~} are an IFTs on X and Y respectively. Define a mapping f : (X, ) → (Y, ) 

by f (a) = u and f (b) = v. Then f is an IFGOM but not an IFGOM.  

Theorem 3.12: Every intuitionistic fuzzy -open (resp. intuitionistic fuzzy -closed) mapping is an intuitionistic 

fuzzy g*-open (resp. intuitionistic fuzzy g*-closed) mapping. 

Proof: Let f : X → Y be an IFGOM. Let A be an IFOS in X. Since f  is an IFOM,  f (A) is an IFGOS in Y. Since 

every IFOS is an IFGOS, f (A) is an IFGOS in Y. Hence f  is an IFGOM.  

Remark 3.13: Converse of the Theorem 3.12 need not be true as seen from the following example. 

Example 3.14: Let X = {a, b} and Y = {u, v, w}. Let A = 〈 x, (0, 0, 0.5), (1, 1, 0) 〉, B = 〈 y, (1, 1, 0), (0, 0, 0.5) 〉 

and C = 〈 y, (0, 0.5, 1), (1, 0.5, 0) 〉. Then τ = {0~, A, 1~} and  = {0~, B, C, BC, 1~} are an IFTs on X and Y 

respectively. Define a mapping f : (X, ) → (Y, ) by f (a) = u and f (b) = v. Then f is an IFGOM but not an 

IFOM.  

Remark 3.15: The relation between various types of intuitionistic fuzzy open mapping is given in the following 

diagram.  

  IFOM   IFGOM   IFGOM 

 

           

`     

  IFOM    IFOM    IFGOM 

Theorem 3.16: Let f : X → Y be a mapping. Then the following are equivalent if Y is an IF𝑇1

2

∗ space: 

(i)  f  is an IFGCM. 

(ii) cl(f (A))  f (cl(A)) for each IFS A of X. 

Proof: (i)  (ii) Let A be an IFS in X. Then cl(A) is an IFCS in X. By assumption f (cl(A)) is an IFGCS in Y. 

Since Y is an IF𝑇1

2

∗ space, f (cl(A)) is an IFCS in Y. Therefore cl(f (cl(A))) =  f (cl(A)). Now, cl(f (A))  cl(f (cl(A))) 

=  f (cl(A)). Hence cl(f (A))  f (cl(A)) for each IFS A of X. 

(ii)  (i) Let A be an IFCS in X. Then cl(A) = A. By assumption, cl(f (A))  f (cl(A)) = f (A). This implies f (A) is 

an IFCS in Y. Since every IFCS is an IFGCS, f (A) is an IFGCS in Y. Hence f  is an IFGCM. 
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Theorem 3.17: Let f : X → Y be a bijection. Then the following are equivalent if Y is an IF𝑇1

2

∗ space: 

(i)  f  is an IFGCM. 

(ii) cl(f (A))  f (cl(A)) for each IFS A of X. 

(iii) f -1(cl(B))  cl(f -1(B)) for each IFS B of Y. 

Proof: (i)  (ii) is obvious from Theorem 3.16 

(ii)  (iii) Let B be an IFS in Y. Then f -1(B) is an IFS in X. Since f  is onto, cl(B) = cl(f ( f -1(B)). By assumption, 

cl(f ( f -1(B)))   f (cl( f -1(B))). Therefore cl(B)  f (cl( f -1(B))). Hence  f -1(cl(B))  cl(f -1(B)). 

(iii)  (ii) Let A be any IFS of X. Then f (A) is an IFS of Y. Since f  is one to one and by assumption  f -1(cl(f (A))) 

 cl(f -1(f (A))) = cl(A). Therefore f (f -1(cl(f (A))))  f (cl(A)). Since f  is onto cl(f (A)))  f (f -1(cl(f (A))))  f 

(cl(A)). 

Theorem 3.18: Let f : X → Y be an IFGCM where Y is an IF𝑇1

2

∗ space. Then f  is an IFCM. 

Proof: Let f  be an IFGCM. Then for every IFCS A in X, f (A) is an IFGCS in Y. Since Y is an IF𝑇1

2

∗ space, f (A) 

is an IFCS in Y. Hence f  is an IFCM. 

Theorem 3.19: Let f : X → Y be an IFGCM where Y is an IF𝑇1

2

∗ space. Then f  is an IFPRCM. 

Proof: Let A be an IFRCS in X. Since every IFRCS is an IFCS, A is an IFCS in X. By hypothesis,  f (A) is an  

IFGCS. Since Y is an IF𝑇1

2

∗ space, f (A) is an IFCS in Y and hence f (A) is an IFRCS in Y. This implies f  is an 

IFPRCM.  

Theorem 3.20: A mapping  f : X → Y is an IFGCM  if and only if  for every IFS B of Y and every IFOS U 

containing f -1(B), there  is an IFGOS A of Y such that B  A and f -1(A)  U. 

Proof: Necessity: Suppose f  is an IFGCM. Let S  Y and U be an IFOS of X such that  f -1(S)  U. Then A =

𝑓(U̅)̅̅ ̅̅ ̅̅  is an IFGOS of Y containing S such that f -1(A)  U. 

Sufficient: Let S be an IFCS of X. Then 𝑓−1((𝑓(S))̅̅ ̅̅ ̅̅ ̅̅ ̅  ⊆ S̅ and S̅  be an IFOS. By Assumption there exist an IFGOS 

V of Y such that 𝑓(S)̅̅ ̅̅ ̅̅  ⊆ 𝑉 and 𝑓−1(V) ⊆  S̅ and so 𝑆 ⊆  (𝑓−1(V))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Hence V̅  ⊆ 𝑓(S) ⊆ 𝑓( (𝑓−1(V))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) ⊆ V̅ implies 

𝑓(𝑆) =  V.̅ Since V̅ is an IFGCS, f (S) is an IFGCS in Y and therefore f  is an IFGCM. 

Theorem 3.21: If  f : X → Y is an IFCM and g: Y → Z is an IFGCM, then g ○ f is an IFGCM. 

Proof: Let A be an IFCS in X. Then f (A) is an IFCS in Y, since f is an IFCM. Also g is an IFGCM, g(𝑓(A)) is an 

IFGCM in Z. Therefore g ○ f= g(f (A))  is an IFGCM. 

Theorem 3.22: If  f : X → Y and g: Y → Z are an IFGCM and Y is an IF𝑇1

2

∗ space, then g ○ f is an IFGCM. 

Proof: Let A be an IFCS in X. Since f  is an IFGCM, f (A) is an IFGCS in Y. Since Y is an IF𝑇1

2

∗ space, f (A) is an 

IFCS in Y. By assumption g(f (A)) is an IFGCS in Z. Hence g ○ f = g(f (A)) is an IFGCS in Z. Therefore g ○ f  is 

an IFGCM. 
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