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OSCILLATORY BEHAVIOR OF FORTH ORDER MIXED 

NEUTRAL DELAY DIFFERENCE EQUATIONS 
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ABSTRACT:  This paper is concerned with the forth order mixed neutral delay difference equation of the form 

    ,0
2121 11

2  






 ypyqycybyda  

we obtain some new oscillation criteria by using riccati transformation technique. Examples are given to illustrate 

the results. 

KEYWORDS: Difference equation, Oscillation, Nonoscillation, Mixed type neutral delay difference equation. 

 

 

1.  INTRODUCTION 

Consider the oscillation for certain forth order neutral delay difference equation 

    ,0
2121 11

2  






 ypyqycybyda   (1.1) 

where  ,...1, 000   N  0 - is nonnegative integer. Here 1,21,   and 2  are nonnegative integers and 

  is forward difference operator. .1  yyy    Throughout this paper the following conditions are assumed 

to hold: 

[H1]  a  and  d  are positive nondecreasing sequences and  










0 0

.
11

   da
 

[H2]  b  and  c  are positive real sequences such as bb  0  and cc  0  with .1 cb  

[H3]  p  and  q  are real positive sequences. 

[H4]  ,  are positive integers. 121 ,,   and 2  are nonnegative integers. For the basic theory of difference 

equations one can refer the monographs by Agarwal, Bohner and Grace [1]. The oscillation solution for third order 

and higher order difference equations [2, 3, 4, 5, 6, 8, 9, 10, 11, 12,13] has recaused more attention in the last few 
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years. Let  .,max 11    A solution of equation (1.1) we mean a real sequence  y  which is defined for all 

  0  and satisfying equation (1.1) for all N . A solution  y  is said to be oscillatory. If it is neither 

eventually positive nor eventually negative. Otherwise it is called nonoscillatory. Recently Kaleeswari [7] deals with 

oscillation for third order difference equation of the form 

   0
2121 11

2  





 nnnnnnnnnn xpxqxcxbxa  

and discussed some oscillatory properties by assuming 





0

.
1

nn na
 Our aim in this paper is to discuss the 

oscillatory behavior of fourth order difference equation when 





0

1

nn na
 and  






0

.
1

nn nd
 

So, the author is concerned fourth order mixed neutral delay difference equation of the form  

    ,0
2121 11

2  






 ypyqycybyda
 

where   










0 0

.
11

   da
 

 

2. OSCILLATION RESULTS 

In this section, we present some new oscillation criteria for equation (1.1) will be established. For simplicity, we use 

the following notations: 

,
21    ycybyz

 
, RQP    ,,,min

21   qqqQ   
21

,,min   pppP . 

We need the following lemma to prove the main results.  

Lemma 2.1. 

Assume 0A  and ,0B .1  Then  

     
BABA  12 . 

The proof of lemma is simple and it is omitted. 

Lemma 2.2. Let  y  be a positive solution of equation (1.1). Then there are two cases for N 1  

sufficiently large n . 

       .0,0,0,0,0)1 22   zdazdzdzz  

       .0,0,0,0,0)2 22   zdazdzdzz  

Proof. 

Let  y  be a positive solution of (1.1). Then there is an integer 01    such that ,0,0
1
  yy  

0,0
12
   yx and 0

2
y  for all .1   Then 0z  for all .1   It follows from equation (1.1) 

that  
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   ;0
21 11

2  





 ypyqzda  1              (2.1) 

Therefore   zda 2
 is strictly decreasing for all 1  . We can proved that   02   zd  for all 1  . 

If not, then there is an integer 12    and 0G  such that 

    ,
222

22 Gzdazda    .2   

Summing the last inequality from 2 to ,1  we get 

    









1 1

22

2 2

222

1









s s s

ss zda
a

zd  

       

    





1

2

22
.

1





s sa
Gzdzd  

Letting ,  then   .  zd  Then there exist an integer 23    and 0L  such that 

             
;

33
Lzdzd    

 .3   

Summing the last inequality from 3  to ,1  we have 

,
11 1

3 3

33 



















s s s

s zd
d

z  

         







1

3

3
.

1





s sd
Lzz  

Letting ,n  then ,z  which is contradiction. Hence   02   zd  for .1   

Lemma 2.3. 

Let ,0z  ,0 z  ,02  z  03  z  and 04  z  for all .Nmn   Then for any )1,0(k  and 

for some integer .1m  

.
22

1 



 kmn

z

z








 





               (2.2) 

Proof. 

Since 





1

2 ,
n

ms

sm zzz
 

we have    .2

  zmz 
 
 

Summing the last inequality 

      

  









1 1

2


ms

n

ms

ss zmnz
 

         
  mm zzzmzz     
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             (or)
  zzz m 22  

                    



z

m
z 







 


2
1 ;

2



z

k


 
.1 mm 
 

The proof is now complete. 

 

Theorem 2.4.  

Assume that there exist a positive real sequence    and  ,11       and 1,   holds. If 

   
 













































1

2

1
1

1

,
4

2
1

2

1


















Ns

a
c

b
khR

             (2.3)
 

                                          
  










1

,
1

s st

tt

s

qp
a                                             (2.4)

 

holds, then every solution  y  of equation (1.1) oscillates or .0lim 





y   

Proof.  

Let  y  be a nonoscillatory solution of equation (1.1). Without loss of generality, we may assume that there exists 

an integer 0N  such that ,0y  ,0
1
y  ,0

2
y  0

1
y  and 0

2
y  for all .N  Then 

we have  0z  and (2.1) for all .N  From (1.1) for all N  we have 

       









 11111121 1

2

11

2

  yqbzdabypyqzda  

   0
222 222122222211 1111

2

11  

















 yp

c
yq

c
zda

c
ypb  (2.5) 

Using lemma 2.1 in (2.5), we have 

         
222111

2

1

22

2







   zda
c

zdabzda  

.0
44 21 1111

 








z

P
z

Q
              (2.6) 

By lemma 2.2, there are two cases for .z  First assume that case 1 holds for all .1 NN   It follows from 

0 z  that 01   zz  then .
12    zz  Thus, by (2.6) we obtain 

         .0
42 1222111 12

2

1

22  















 z
R

zda
c

zdabzda       (2.7) 
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Define 

 
 
  

.
1

2

1













zd

zda
w                     (2.8) 

Then   01 w  for .1N  Then from (2.8) we obtain 

            

   
  

 
 

 
 

.11

1

1

1

2

1

2

1

1

1

























 












zd

zd
w

zd

zda
ww  

By equation (2.1), we have    .11

2

1

2

111    zdazda  Thus from (2.8), we obtain 

   
  

 
 

 
.

1
1

2

1

2

1

2

1

1

1

1 




































a

w

zd

zda
ww               (2.9) 

Next we define 

   

 
 

 
1

111

2

2















zd

zda
w               (2.10) 

Then   02 w  for .1N  Then from (2.10), we obtain 

 
    

 
 

 
 

.1
1

1

1

1

111

2

2

2

1

2
2



























 












zd

zd
w

zd

zdaw
w  

By equation (2.1) and 11    we have 

    .
111111 11

2

1

2

   zdazda  

Thus from (2.10), we get 

   
  

 
 

.
1

1

11

111

2

1

2

2

2

2

1

2










































a

w

zd

zda
ww            (2.11) 

In the following we define 

 
 
 

.

1

222

2

3















zd

zda
w                 (2.12)  

Then   03 w  for .1N  From (2.12) we obtain 

            

 
      

   
11

2221

11

2

1

3
3

1





















 







zdzd

zdazdw
w  

                                  

   
   

.

11

1222

11

22














zdzd

zdzda
 

By equation (2.1), we obtain    .
222111 11

2

1

2

   zdazda  Hence by (2.12) we obtain 
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   
  

 
 

11

222

2

1

2

3

2

3

1

3

1
1










































a

w

zd

zda
ww        (2.13) 

 

Therefore (2.9), (2.11) and (2.13),  we obtain 

     
 

 

11

1

2

1

2

1

1

1

1

23121

1
)1(

42 


















































a

w
w

zd

zR
w

c
wbw  

          
 













 





 1

2

1

2

2

2

1

1
1


















a

w
wb  

      
 

.
1

1
2

1

2

1

2

3

3

1

1 











 






























a

w
w

c

       (2.14)

 

On the other hand  a  and  d  nondecreasing 03  z  for 1m  we have 04  z  for .1m  Then by  

lemma 2.3 for any  1,0k  and   is sufficiently large 

                                                               

 
.

2

11

1

1




 


 

 k

z

z

                               (2.15)

 

Due to (2.2) . Since ,0z ,0 z 02  z  and 03  z  for 1m  we have 

 
21

1

1

1

1








h
zmzzz m

ms

sm  




       (2.16) 

for some 0h  and   is sufficiently large. From (2.15) and (2.16) and 1,   we have 

   
.

2

1

1

1

1

1









 









 




kh

z

z

 

(2.14) becomes 

     
   

 
 

1

2

1

2

1

1

1

1

1

3121

1
1

22 












































a

w
w

khR
w

c
wbw

 

     
 

 












 





 1

2

1

2

2

2

1

1
1


















a

w
wb

   

 

     
 

.
1

1
2

1

2

1

2

3

3

1

1 











 






























a

w
w

c
 

By using completing the square in the right hand side of the above inequality, we get 
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     
   

 
























4

2
1

22

1

2

1
1

1

3121
























a
c

b
khR

w
c

wbw  

Summing the last inequality from 12 NN   to ,1  we obtain 

   
 

     












































1

2312221

2

1
1

1

2

1

.
24

2
1

2

























Ns

Nw
c

NwbNw

a
c

b
khR

 

Taking limsup in the last inequality, we get a contradiction to (2.3). Assume that lemma 2.2(2) holds. Let  y  be a 

positive solution of equation (1.1). Since 0z  and ,0 z  then 0lim 


lz


 exists. We shall prove that 

.0l  Assume 0l  then for any ,0  we have  zl   eventually. Choose 
 

.0
cb

cbll




   It is 

easy to verify that 

        lcbly .kz  

Where 
 

.0









l

lcbl
k  Using the above inequality, we obtain from (2.1) 

         .
11

2 









  zpqkzda  

Summing the last inequality from   to   and using ,lz   we obtain 

     











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 


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

s s

zpqkzda
11

2
 

          

















s

pq
a

klzd .
12

 

Summing again 1  to ,  1   we obtain 
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
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
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
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 











st

tt

s s

zqp
a

.
1

11

1





 

This contradicts to (2.4).  So the proof is complete. 

 

3. APPLICATIONS 

Example 3.1.  

Consider the forth order mixed neutral type difference equation of the form  

  .0222
2

1

4

1
11

3

21

32 















    yyyyy            (3.1) 

Let .1,2,1,2,22,2,1,
2

1
,

4

1
, 21

3

21

2    qpdcba  Take 

.1  Then condition (2.3) holds. On the other hand, condition (2.4) also holds. We can easily see that the 

conditions of Theorem 2.4 are satisfied. Hence all the solutions of equation (3.1) are oscillatory. In fact 

    1y  is one such a solution of equation (3.1).  

Example 3.2.  

Consider the forth order mixed neutral type difference equation of the form 

  .022
4

1

3

2
2

2

2

1

23

32

2 

























   


yyyyy           (3.2) 

Let .1,2,1,2,2,3,2,2,
4

1
,

3

2
,

2
1

32

21  


 qpdcba  Take 

condition (2.3) holds. On the other hand condition (2.4) also holds. We can easily see that the conditions of Theorem 

2.4 are satisfied. Hence all the solutions of equation (3.2) are oscillatory. In fact     1y  is one such a 

solution of equation (3.2). 
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