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ON AMPLY SOFT TOPOLOGICAL SPACES

A. Revathy1, S. Krishnaprakash2 V. Inthumathi3

Abstract - In this paper we study the properties of amply soft neighbourhood, amply soft open sets, amply soft closed

sets, amply soft interior and amply soft closure. Also we define the notion of amply soft exterior, amply soft boundary and

investigate their properties.

Keywords soft sets, amply soft sets, amply soft topology

2010 Subject classification:54A05, 54A10, 54B05

1 Introduction

In 1999 Molodtsov [7] initiated the theory of soft sets as a new mathematical tool to deal with uncertainties
while modeling problems in engineering physics, computer science, economics, social sciences and medical
sciences. In particular, to keep some classical set-theoretic laws true for soft sets, Ali et al[1] defined
some restricted operations on soft sets such as the restricted intersection, the restricted union, and the
restricted difference and improved the notion of complement of a soft set. Later other authors like Maji
et al. [5,6]have further studied the theory of soft sets and used this theory to solve some decision making
problems. In 2011, Shabir and Naz [10] initiated the concept of soft topological spaces using soft sets
that are defined over an initial universe set with a fixed set of parameters. After the inception of soft
topology, many authors have investigated soft topological concepts analogously with their counterparts on
classical topology. The different types of belong and non-belong relations on soft setting leads to introduce
several types of soft axioms in terms of ordinary points and soft points. Cagman et al. [2] defined a soft
topology in that they use different parameter sets in their soft sets that are finite because of the definition
of soft operations. Orhan Gocur(8) introduced a new topology called Amply soft topology by which he has
proved that it is not necessary for the topologies of each dimension have to be same of any space. Amply
soft sets use any kind of universal parameter set or initial universe (such as finite or infinite, countable or
uncountable).

1Assistant Professor, Department of Mathematics, Sri Eshwar College of Engineering, Coimbatore-641202,
Tamilnadu, India.
E.mail: revsabs@gmail.com

2Associate Professor of Mathematics, Karpagam College of Engineering, Coimbatore-641032,
Tamilnadu, India.
mskrishnaprakash@gmail.com

3Associate Professor, Department of Mathematics, Nallamuthu Gounder Mahalingam College, Pollachi-642001,
Coimbatore, Tamilnadu, India.
E.mail: inthumathi65@gmail.com
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2 Preliminaries

Definition 2.1. [8] Let P (X) denote the power set of X. If F : E → P (X) is a mapping given by

F (e) =

{
F (e), ∀e ∈ A;

∅,∀e ∈ E − A

then F with A is called as an amply soft set over X and it is denoted by F ∗ A.

Definition 2.2. [8] Let F ∗ A and G ∗B be two amply soft sets sets over X.

1. F ∗ A is a subset of G ∗B, denoted by F ∗ A ⊆̃ G ∗B, if F (e) ⊆̃ G(e), for all e ∈ A.

2. F ∗ A is a superset of G ∗B, denoted by F ∗ A ⊇̃ G ∗B, if F (e) ⊇̃ G(e), for all e ∈ B.

Definition 2.3. [8] Let F ∗A and G ∗B be two amply soft sets over X. If F ∗A is a subset of G ∗B and
G ∗B is a subset of F ∗ A, then F ∗ A and G ∗B are said to be an equal and denoted by F ∗ A =̃ G ∗B.

Definition 2.4. [8] An amply soft F ∗ A over X is said to be an

1. empty amply soft set denoted by ∅̃ if F (e) = ∅ for all e ∈ E.

2. absolute amply soft set denoted by X̃ if for all e ∈ E, F (e) = X.

Definition 2.5. [8] The union of two amply soft sets F ∗A and G ∗B over a common universe X is the
amply soft set H ∗ C, where C = A ∪B and for all e ∈ E,

H(e) =


F (e), ∀e ∈ A−B
G(e), ∀e ∈ B − A
F (e) ∪G(e),∀e ∈ A ∩B
∅, ∀e ∈ E − C

We can write (F ∗ A) ∪̃ (G ∗B) =̃ (F ∪G) ∗ (A ∪B) =̃ (H ∗ C).

Definition 2.6. [8] The intersection of two amply soft sets F ∗A and G ∗B over a common universe X
is the amply soft set H ∗ C, where C = A ∩B and for all e ∈ E,

H(e) =

{
F (e) ∩G(e), ∀e ∈ C
∅,∀e ∈ E − C

We can write (F ∗ A) ∩̃ (G ∗B) =̃ (F ∩G) ∗ (A ∩B) =̃ (H ∗ C).

Definition 2.7. [8] The difference H ∗ A of two amply soft sets F ∗ A and G ∗ B over X denoted by

(F ∗ A)\̃(G ∗B) and it is defined as

H(e) =


F (e), ∀e ∈ A−B
F (e) \G(e), ∀e ∈ A ∩B
∅,∀e ∈ E − A
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We can write (F ∗ A) \ (G ∗B) =̃ (F \G) ∗ A =̃ (H ∗ A).

Definition 2.8. [8] Let F ∗ A be an amply soft set X. The complement of an amply soft set F ∗ A over

X is denoted by (F ∗ A)
′́

=̃ F
′ ∗ E where F

′
: E → P (X) a mapping is defined by F

′
(e) = X − F (e) for

all e ∈ A.

Definition 2.9. [8] Let F ∗ E be an amply soft set over X and x ∈ X. We say that x ∈̃ F ∗ E read as
amply soft point x belongs to the amply soft set F ∗ E if x ∈ F (e) for all e ∈ E

Definition 2.10. An amply soft point x ∈ X is called an amply limit point of F ∗ E iff every amply soft
open set containing x, contains atleast one point of F ∗ E, other than x. The set of all amply limit point

point of F ∗ E is called the amply soft derived set of F ∗ E and is denoted as (F ∗ E)d̃.

Definition 2.11. [8]Let τ be the collection of amply soft sets over X, then τ̃ is said to be an amply soft
topology (or briefly AS topology) on X if,

1. ∅̃, X̃ belong to τ̃
2. The union of any number of amply soft sets in τ̃ belongs to τ̃ .
3. The intersection of any two amply soft sets in τ̃ belongs to τ̃ .
The triplet (X̃, τ̃ , E) is called as an amply soft topological space over X̃. We will use AS topological

space X̃ instead of amply soft topological space (X̃, τ̃ , E) for shortly. The members of τ̃ are said to be
amply soft open sets in an amply soft topological space X̃. An amply soft set F ∗ A over X is said to be
an amply soft closed set in an amply soft topological space X̃, if its complement (F ∗A)

′́
belongs to τ̃ . The

union of all amply soft open subsets of F ∗A is an amply soft interior of F ∗A denoted by (F ∗A)◦̃. And
the intersection of all amply soft closed supersets of F ∗ A is an amply soft closure of F ∗ A denoted by
(F ∗ A). The collection τe = {F (e)| (F ∗ E) ∈̃ τ̃} for each e ∈ E, defines topologies on X.

3 Amply Soft Topological Spaces

Theorem 3.1. The intersection of arbitrary collection of amply soft topologies for a common universe X
is an amply soft topology over X̃.

Proof. Let {(X̃, τ̃λ, E) : λ ∈ Λ} be any family of amply soft topologies each defined over common
universe X. It is clear that each τ̃λ is coarser than the discrete amply soft topology. If Λ = ∅, then⋂
{τ̃λ : λ ∈ Λ = ∅} is a discrete amply soft topology. Let Λ 6= ∅

(1). ∅̃, X̃ belong to
⋂
{τ̃λ : λ ∈ Λ}

(2). If {(Fα ∗ E) : α ∈ Λ1} is any family of amply soft sets in
⋂
{τ̃λ : λ ∈ Λ}, then

⋃
{(Fα ∗ E) : α ∈

Λ1}∈̃
⋂
{τ̃λ : λ ∈ Λ}.

(3). Let F1 ∗ E and F2 ∗ E are any two amply soft sets in
⋂
{τ̃λ : λ ∈ Λ} then (F1 ∗ E)∩̃(F2 ∗ E)∈̃τ̃λ for

each λ ∈ Λ and hence (F1 ∗ E)∩̃(F2 ∗ E)∈̃
⋂
{τ̃λ : λ ∈ Λ}.

Therefore
⋂
{τ̃λ : λ ∈ Λ} is an amply soft topology over X̃.

Remark 3.2. The union of two amply soft topologies for a common universe X is not necessarily an
amply soft topology over X

Example 3.3. Let X = R be universal set and E = {e1, e2} a parameter set. Let τ̃1 and τ̃2 be amply soft

topologies defined as τ̃1 = {∅̃, R̃, {Q{e1}, (1, 10){e2}}} and τ̃2 = {∅̃, R̃, {{R−Q}{e1}, {5}{e2}}}. Then τ̃1 and
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τ̃2 are amply soft topologies over X. But τ̃1 ∪ τ̃2 = {∅̃, R̃, {Q{e1}, (1, 10){e2}}, {{R−Q}{e1}, {5}{e2}}} is
not an amply soft topology, Since {Q{e1}, (1, 10){e2}} ∪ {{R−Q}{e1}, {5}{e2}} = {R{e1}, (1, 10){e2}} is not
an amply soft open set in τ̃1 ∪ τ̃2.

Theorem 3.4. Let (X̃, τ̃ , E) be an amply soft topological space. Let F ∗ A be an amply soft set on X.

Then (F ∗ A)∪̃(F ∗ A)d̃ is an amply soft closed set.

Proof. To prove (F ∗A)∪̃(F ∗A)d̃ is an amply soft closed set it is enough to prove that ((F ∗A)∪̃(F ∗A)d̃)
′́

is an amply soft open set. If ((F ∗A)∪̃(F ∗A)d̃)
′́
=̃ ∅̃ then it is an amply soft open set. Let ((F ∗A)∪̃(F ∗

A)d̃)
′́ ˜6= ∅̃ and x ∈̃ ((F ∗ A)∪̃(F ∗ A)d̃)

′́ ⇒ x /̃∈ (F ∗ A)∪̃(F ∗ A)d̃ ⇒ x /̃∈ (F ∗ A) and x /̃∈ (F ∗ A)d̃.

x /̃∈ (F ∗A)⇒ ∃ an amply soft open set G∗B 3 x ∈̃ (G∗B) and (G∗B)∩̃(F ∗A) =̃ φ̃⇒ x∈̃(G∗B) ⊆̃ (F ∗A)
′̃
.

Again x /̃∈ (F ∗ A)d̃ ⇒ x ∈̃ G ∗ B ⊆̃ ((F ∗ A)d̃)
′̃
. Therefore x ∈̃(G ∗ B) ⊆ ((F ∗ A)∪̃(F ∗ A)d̃)

′́
and hence

((F ∗ A)∪̃(F ∗ A)d̃)
′́

is amply soft open set.

Theorem 3.5. Let (X̃, τ̃ , E) be an amply soft topological space and F*A be an amply soft set over X then

(F ∗ A) =̃(F ∗ A)∪̃(F ∗ A)d̃.

Proof. We know that (F ∗A)∪̃(F ∗A)d̃ is an amply soft closed set. So (F ∗A)∪̃(F ∗A)d̃ is an amply soft
closed superset of F ∗A and (F ∗ A) is the smallest amply soft closed superset of F ∗A. Therefore (F ∗ A)

⊆̃((F ∗ A)∪̃(F ∗ A)d̃). Again F ∗ A ⊆̃ (F ∗ A) ⇒ (F ∗ A)d̃⊆̃((F ∗ A))d̃ ⊆̃(F ∗ A).

Thus((F ∗ A)∪̃(F ∗ A)d̃) ⊆̃ (F ∗ A). Hence (F ∗ A) =̃((F ∗ A)∪̃(F ∗ A)d̃)

Theorem 3.6. Let (X̃, τ̃ , E) be an amply soft topological space and F ∗ A be an amply soft set over X
then F ∗ A is amply soft an closed iff F ∗ A=̃F ∗ A

Proof. If F ∗A is an amply soft closed set then the smallest amply soft closed super set of F ∗A is F ∗A
itself. Therefore F ∗ A =̃ F ∗ A. Converesely if F ∗ A =̃ F ∗ A then F ∗ A being closed so as F ∗ A.

Theorem 3.7. Let (X̃, τ̃ , E) be an amply soft topological space and F ∗ A, G ∗ B be amply soft sets over
X then

1. ∅̃ =̃ ∅̃,X̃ =̃ X̃ and
(

(F ∗ A)
)

=̃F ∗ A.

2. F ∗ A ⊆̃ G ∗B ⇒ F ∗ A ⊆̃ G ∗B.

3. (F ∗ A)∩̃(G ∗B) ⊆̃(F ∗ A)∩̃(G ∗B).

4. (F ∗ A)∪̃(G ∗B)=̃(F ∗ A)∪̃(G ∗B).

Proof.

1. Obvious, since ∅̃, X̃ and F ∗ A are amply soft closed sets.

2. F ∗A ⊆̃ G∗B ⊆̃ G ∗B i.e,G ∗B is an amply soft closed superset of F ∗A. And F ∗ A. is the smallest
amply soft closed superset of F ∗ A. Therefore F ∗ A ⊆̃ G ∗B.

3. (F ∗ A) ∩̃ (G ∗ B) ⊆̃ (F ∗ A) ⇒ (F ∗ A)∩̃(G ∗B) ⊆̃ (F ∗ A) and (F ∗ A) ∩̃(G ∗ B) ⊆̃ (G ∗ B) ⇒
(F ∗ A) ∩̃ (G ∗B) ⊆̃ (G ∗B). Therefore (F ∗ A)∩̃(G ∗B) ⊆̃ (F ∗ A)∩̃(G ∗B).
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4. F ∗ A ⊆̃ (F ∗ A)∪̃(G ∗ B) ⇒ (F ∗ A)⊆̃(F ∗ A)∪̃(G ∗B) and G ∗ B ⊆̃ (F ∗ A)∪̃(G ∗ B) ⇒
(G ∗B)⊆̃(F ∗ A)∪̃(G ∗B). On the other hand F ∗ A ⊆̃ F ∗ A and G ∗B ⊆̃ G ∗B implies
(F ∗ A)∪̃(G ∗B) ⊆̃ (F ∗ A)∪̃(G ∗B) . Since (F ∗ A)∪̃(G ∗B) is an amply soft closed set,

(F ∗ A)∪̃(G ∗B) ⊆̃ (F ∗ A)∪̃(G ∗B) . Therefore(F ∗ A)∪̃(G ∗B) =̃ (F ∗ A)∪̃(G ∗B).

Theorem 3.8. Let (X̃, τ̃ , E) be an amply soft topological space and F ∗ A be an amply soft set over X
then F ∗ A is amply soft open set iff (F ∗ A)◦̃ = F ∗ A.

Proof. Let F ∗ A be an amply soft open set. Then the largest amply soft subset of F ∗ A is F ∗ A itself.
Therefore (F ∗A)◦̃=̃F ∗A. Conversely, Let (F ∗A)◦̃=̃F ∗A. Since (F ∗A)◦̃is amply soft open set so asF ∗A.

Theorem 3.9. Let (X̃, τ̃ , E) be an amply soft topological space and F ∗ A ,G ∗ B be amply soft sets over
X then

1. (∅̃)◦̃ =̃ ∅̃,(X̃)◦̃ =̃ X̃ and ((F ∗ A)◦̃)◦̃=̃ F ∗ A.

2. F ∗ A ⊆̃ G ∗B ⇒ (F ∗ A)◦̃ ⊆̃ (G ∗B)◦̃.

3. (F ∗ A)◦̃ ∪̃ (G ∗B)◦̃ ⊆̃ ((F ∗ A) ∪̃ (G ∗B))
◦̃
.

4. ((F ∗ A) ∩̃ (G ∗B))
◦̃

=̃(F ∗ A)◦̃ ∩̃ (G ∗B)◦̃

Proof.

1. Obvious, since ∅̃, X̃ and (F ∗ A)◦̃ are amply soft open sets.

2. Let F ∗A ⊆̃ G ∗B and x ∈ (F ∗A)◦̃. Then F ∗A is an amply soft nbd of x so as G ∗B which implies
x is an amply soft interior point of G ∗B i.e, x ∈ (G ∗B)◦̃. Therefore (F ∗ A)◦̃ ⊆̃ (G ∗B)◦̃.

3. (F ∗A) ⊆̃ (F ∗A) ∪̃ (G∗B)⇒ (F ∗A)◦̃ ⊆̃ ((F ∗A) ∪̃ (G∗B))◦̃ and (G∗B) ⊆̃ (F ∗A) ∪̃ (G∗B) ⇒
(G ∗B)◦̃ ⊆̃ ((F ∗ A) ∪̃ (G ∗B))◦̃ implies ((F ∗ A)◦̃ ∪̃ (G ∗B)◦̃) ⊆̃ ((F ∗ A) ∪̃ (G ∗B))◦̃.

4. ((F ∗A) ∩̃ (G∗B)) ⊆̃ (F ∗A) ⇒ ((F ∗A) ∩̃ (G∗B))◦̃ ⊆̃ (F ∗A)◦̃ and ((F ∗A) ∩̃(G∗B)) ⊆̃ (G∗B) ⇒
((F ∗ A) ∩̃ (G ∗ B))◦̃⊆̃ (G ∗ B)◦̃ implies ((F ∗ A) ∩̃ (G ∗ B))◦̃ ⊆̃ ((F ∗ A)◦̃ ∩̃ (G ∗ B)◦̃). Again
(F ∗ A)◦̃ ⊆̃ (F ∗ A) and (G ∗ B)◦̃ ⊆̃(G ∗ B) implies ((F ∗ A)◦̃ ∩̃(G ∗ B)◦̃) ⊆̃ ((F ∗ A) ∩̃ (G ∗ B))

implies ((F ∗A)◦̃ ∩̃ (G ∗B)◦̃)◦̃ ⊆̃ ((F ∗ A) ∩̃ (G ∗B))
◦̃
. Since ((F ∗A)◦̃∩̃ (G ∗B)◦̃ is amply soft open

set ((F ∗ A)◦̃ ∩̃(G ∗B)◦̃) =̃((F ∗ A) ∩̃ (G ∗B))◦̃. Hence ((F ∗ A) ∩̃ (G ∗B))
◦̃

=̃(F ∗ A)◦̃ ∩̃ (G ∗B)◦̃.

Theorem 3.10. Let (X̃, τ̃ , E) be an amply soft topological space and F ∗ A be an amply soft set over X

then(F ∗ A)◦̃ is the set of all those point of F ∗ A which are not the amply soft limit point of (F ∗ A)
′̃
.

Proof. Let x ∈̃ F ∗A and x is not an amply soft limit point of (F ∗A)
′̃
. Then x /̃∈ (F ∗A)

′̃
. So, there exist

an amply soft open set G∗B such that x ∈̃ G∗B and G∗B is disjoint from (F ∗A)
′̃
. i.e, x ∈̃ G∗B ⊆̃ F ∗A.

Therefore x ∈̃ (F ∗A)◦̃. Again let x ∈̃ (F ∗A)◦̃. Then (F ∗A)◦̃ is an amply soft open set containing x and

not containing any point of F ∗ A, which is not an amply soft limit point of (F ∗ A)
′̃
.

Theorem 3.11. Let (X̃, τ̃ , E) be an amply soft topological space and F ∗ A be an amply soft set over X,
then
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1. (F ∗ A)◦̃ =̃ {((F ∗ A)′)}′̃ .

2. F ∗ A =̃ {((F ∗ A)̃′)◦̃}′̃ .

Proof.

1. Since (F ∗ A)◦̃ is the set of all those point of F ∗ A which are not the amply soft limit point of

(F ∗ A)
′̃
. i.e, (F ∗ A)◦̃ = (F ∗ A) ∩̃ {((F ∗ A)

′̃
)
′}′̃ . Taking complements and using De-morgans

law,(F ∗ A)◦̃ =̃ {((F ∗ A)′)}′̃ .

2. Replacing F ∗ A by (F ∗ A)̃′ and taking complements in the above result F ∗ A =̃ {((F ∗ A)̃′)◦̃}′̃ .

4 Amply Soft Exterior

Definition 4.1. Let (X̃, τ̃ , E) be an AS topological space and F ∗ A be an amply soft set over X̃. Then

the amply soft exterior of F ∗ A denoted by (F ∗ A)ẽ is
(

(F ∗ A)
′̃
)◦̃
.

Example 4.2. Let X = (1, 10) be universal set and E = {e1, e2} a parameter set.

Let τ̃ =
{
φ̃, X̃,

{
[1, 2]{e1} , [4, 5]{e2}

}
,
{

(0, 3]{e1} , [2, 7]{e2}

}}
be an amply soft topology. Consider an amply

soft set F ∗ A =
{

(3, 5){e1} , (4, 5){e2}

}
. Then (F ∗ A)ẽ is

{
(0, 3){e1} , [2, 7]{e2}

}
Theorem 4.3. Let (X̃, τ̃ , E) be an AS topological space and F ∗ A ,G ∗B be AS sets over X̃ then

1.
(
φ̃
)ẽ

=̃ X̃;
(
X̃
)ẽ

=̃ φ̃

2. (F ∗ A)ẽ ⊆̃ (F ∗ A)
′̃

3. (F ∗ A)ẽ =̃

((
(F ∗ A)ẽ

)′̃)ẽ
4. F ∗ A ⊆̃ G ∗B ⇒ (G ∗B)ẽ ⊆̃ (F ∗ A)ẽ

5. (F ∗ A)◦̃ ⊆̃
(

(F ∗ A)ẽ
)ẽ

6. (((F ∗ A) ∪̃ (G ∗B)))
ẽ
=̃ (F ∗ A)ẽ ∩̃ (G ∗B)ẽ

Proof.

1.
(
φ̃
)ẽ

=̃

((
φ̃

′̃
)◦̃)

=̃X̃;
(
X̃
)ẽ

=̃

((
X̃

′̃
)◦̃)

=̃φ̃

2. (F ∗ A)ẽ =̃
(

(F ∗ A)
′̃
)◦̃
⊆̃ (F ∗ A)

′̃

3.

((
(F ∗ A)ẽ

)′̃)ẽ
=̃

(((
(F ∗ A)

′̃
)◦̃)′̃)ẽ

= (F ∗ A) ẽ=̃ (F ∗ A)ẽ
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4. F ∗ A ⊆̃ G ∗B ⇒ (G ∗B)
′̃ ⊆̃ (F ∗ A)

′̃ ⇒
(

(G ∗B)
′̃
)◦̃
⊆̃
(

(F ∗ A)
′̃
)◦̃
⇒ (G ∗B)ẽ ⊆̃ (F ∗ A)ẽ

5. (F ∗ A)ẽ ⊆̃ (F ∗ A)
′̃ ⇒

(
(F ∗ A)

′̃
)ẽ
⊆̃
(

(F ∗ A)ẽ
)ẽ
⇒ (F ∗ A)◦̃ ⊆̃

(
(F ∗ A)ẽ

)ẽ
6. ((F ∗ A) ∪̃ (G ∗B))

ẽ
=̃
(

((F ∗ A) ∪̃ (G ∗B))
′̃
)◦̃

=̃ (F ∗ A)ẽ ∩̃ (G ∗B)ẽ

5 Boundary of an Amply Soft Set

Definition 5.1. Let (X̃, τ̃ , E) be an amply soft topological space and F ∗ A be an amply soft set over X̃.
A point x ∈ X is called amply soft boundary point of F ∗ A if every amply soft open set containing x

intersects both F ∗A and (F ∗ A)
′̃
. The set of all amply soft boundary points of F ∗A is called amply soft

boundary of F ∗ A denoted by (F ∗ A)b̃.

Example 5.2. Let X = (1, 10) be universal set and E = {e1, e2} a parameter set.

Let τ̃ =
{
φ̃, X̃,

{
[1, 2]{e1} , [4, 5]{e2}

}
,
{

(0, 3]{e1} , [2, 7]{e2}

}}
be an amply soft topology. Consider an amply

soft set F ∗ A =
{

(3, 5){e1} , (4, 5){e2}

}
. Then (F ∗ A)b̃ is

{
(3, 10){e1} , {(0, 2) ∪ (7, 10)}{e2}

}
Theorem 5.3. Let (X̃, τ̃ , E) be an AS topological space and F ∗ A be an amply soft set over X̃. Then

(F ∗ A)b̃ = F ∗ A ∩̃ (F ∗ A)
′̃
.

Proof. Let x ∈ (F ∗ A)b̃ ⇔ every open set containing x intersects both F ∗ A and (F ∗ A)
′̃ ⇔ neither

F ∗A nor (F ∗ A)
′̃

is an amply soft nbd of x⇔ x /∈ (F ∗ A)◦̃ and x /∈
(

(F ∗ A)
′̃
)◦̃
⇔ x ∈

(
(F ∗ A)◦̃

)′̃

and{(
(F ∗ A)

′̃
)◦̃}′̃

. Therefore (F ∗ A)b̃ = F ∗ A ∩̃ (F ∗ A)
′̃

Corollary 5.4. (F ∗ A)b̃ =
(

(F ∗ A)
′̃
)b̃

Theorem 5.5. Let (X̃, τ̃ , E) be an AS topological space and F ∗ A be an amply soft set over X̃. Then

(F ∗ A)◦̃, (F ∗ A)ẽ and (F ∗ A)b̃ are mutually disjoint and X = (F ∗ A)◦̃ ∪̃ (F ∗ A)ẽ ∪̃ (F ∗ A)b̃.

Proof. (F ∗ A)b̃ =̃(F ∗ A)∩̃(F ∗ A)
′̃

=̃

[(
F ∗ A

)′̃
∪̃
(

(F ∗ A)
′̃
)′̃]′̃

=̃

[(
(F ∗ A)

′̃
)◦̃
∪̃ (F ∗ A)◦̃

]′̃

=̃
[
(F ∗ A)ẽ ∪̃ (F ∗ A)◦̃

]′̃
.

Therefore X̃=̃ (F ∗ A)b̃ ∪̃
(

(F ∗ A)b̃
)′̃

⇒ X̃ = (F ∗ A)b̃ ∪̃ (F ∗ A)ẽ ∪̃ (F ∗ A)◦̃ .
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Clearly (F ∗ A)b̃ ∩̃ (F ∗ A)◦̃ =̃ ∅̃ and

(F ∗ A)b̃ ∩̃ (F ∗ A)ẽ =̃ ∅̃.
More over (F ∗ A)◦̃ ∩̃ (F ∗ A)ẽ

=̃ (F ∗ A)◦̃∩̃
(

(F ∗ A)
′̃
)◦̃

⊂̃(F ∗ A)∩̃(F ∗ A)
′̃

=̃∅̃.

Theorem 5.6. Let (X̃, τ̃ , E) be an amply soft topological space and F ∗ A be an amply soft set over X̃.
Then

1. (F ∗ A)b̃ is an amply closed set.

2. ∅̃b̃=̃X̃ b̃=̃∅̃

3.
(

(F ∗ A)b̃
)b̃
⊆̃ (F ∗ A)b̃

4. (F ∗ A)b̃ =̃F ∗ A \̃ (F ∗ A)◦̃

5. (F ∗ A)◦̃ =̃(F ∗ A)\̃ (F ∗ A)b̃

6.
(

(F ∗ A)◦̃
)b̃
⊆̃ (F ∗ A)b̃ and

(
F ∗ A

)b̃ ⊆̃ (F ∗ A)b̃

7. F ∗ A=̃(F ∗ A)∪̃(F ∗ A)b̃=̃(F ∗ A)◦̃∪̃(F ∗ A)b̃

Proof.
1. From Theorem 5.3 (F ∗A)b̃ is the intersection of two amply soft closed sets and so it is also amply soft
closed set.
2. obvious
3. obvious from the definition of (F ∗ A)b̃.

4. (F ∗ A)b̃=̃F ∗ A∩̃(F ∗ A)′̃

=̃F ∗ A \̃
(

(F ∗ A)′̃
)′̃

=̃F ∗ A \̃(F ∗ A)◦̃.

5. (F ∗ A) \̃ (F ∗ A)b̃ =̃(F ∗ A) \̃
(

(F ∗ A)∩̃(F ∗ A)′̃
)

=̃(F ∗ A) ∩̃
(

(F ∗ A)∩̃(F ∗ A)′̃
)′̃

=̃(F ∗ A) ∩̃
((

(F ∗ A)
′̃
)◦̃
∪̃(F ∗ A)◦̃

)
=̃(F ∗ A)◦̃.

6.
(

(F ∗ A)◦̃
)b̃

=̃(F ∗ A)
◦̃
∩̃
(

(F ∗ A)◦̃
)′̃

⊆̃F ∗ A∩̃(F ∗ A)
′̃

=̃F ∗ A∩̃(F ∗ A)
′̃
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=̃(F ∗ A)b̃ and(
F ∗ A

)b̃
=̃F ∗ A∩̃

(
F ∗ A

)′̃
⊆̃F ∗ A∩̃(F ∗ A)

′̃

=̃ (F ∗ A)b̃ .

7. (F ∗ A) ∪̃ (F ∗ A)b̃ =̃ (F ∗ A) ∪̃
(
F ∗ A∩̃(F ∗ A)

′̃
)

=̃
(

(F ∗ A)◦̃∪̃F ∗ A
)
∩̃
(

(F ∗ A)◦̃∪̃(F ∗ A)
′̃
)

=̃F ∗ A∩̃
(

(F ∗ A)◦̃ ∪̃
(
(F ∗ A) ◦̃

)′̃)
=̃F ∗ A∩̃X̃
=̃F ∗ A.

Theorem 5.7. Let (X̃, τ̃ , E) be an amply soft topological space and F ∗ A be an amply soft set over X̃.
Then

1. (F ∗ A) is an amply soft open if and only if (F ∗ A) ∩̃ (F ∗ A)b̃ =̃∅̃

2. (F ∗ A) is an amply soft closed if and only if (F ∗ A)b̃ ⊆̃F ∗ A

3. (F ∗ A) is an amply soft clopen if and only if (F ∗ A)b̃ =̃∅̃

Proof. 1. Let (F ∗ A) is an amply soft open set. Then (F ∗ A)
′̃
is an amply soft closed set. (F ∗ A)

′̃
=̃ (F ∗ A)

′̃
.

Consequently (F ∗ A) ∩̃ (F ∗ A)b̃ =̃ (F ∗ A) ∩̃
(
F ∗ A∩̃(F ∗ A)

′̃
)

=̃∅̃. Conversely, let (F ∗ A) ∩̃ (F ∗ A)b̃ =

∅̃. Then (F ∗ A) ∩̃
(
F ∗ A∩̃(F ∗ A)

′̃
)

=̃∅̃.

(F ∗ A) ∩̃(F ∗ A)
′̃
=̃∅̃

(F ∗ A) ⊆̃
(

(F ∗ A)
′̃
)′̃

=̃ (F ∗ A)◦̃ .

Thus (F ∗ A) ⊆̃ (F ∗ A)◦̃ but (F ∗ A)◦̃ ⊆̃F ∗ A. Therefore F ∗ A ia an amply soft set.
2. Let (F ∗ A) be an amply soft closed set.

Then (F ∗ A) = (F ∗ A) . (F ∗ A)b̃ =̃(F ∗ A)∩̃(F ∗ A)
′̃

=̃ (F ∗ A) ∩̃(F ∗ A)
′̃⊆̃ (F ∗ A) .

Conversely (F ∗ A)b̃ ⊆̃ (F ∗ A) and therefore (F ∗ A) ∪̃ (F ∗ A)b̃ =̃ (F ∗ A) but (F ∗ A) ∪̃ (F ∗ A)b̃ =̃(F ∗ A).
Therefore (F ∗ A)=̃(F ∗ A). Hence (F ∗ A) is an amply soft closed set.

3. Let (F ∗ A) be an amply soft clopen set. Then (F ∗ A) and (F ∗ A)
′̃

are amply soft closed set.

i.e., F ∗ A=̃F ∗ A and (F ∗ A)
′̃
=̃ (F ∗ A)

′̃
. Therefore (F ∗ A)b̃ =̃F ∗ A∩̃(F ∗ A)

′̃
=̃∅̃

Conversely let (F ∗ A)b̃ =̃∅̃
(F ∗ A) \̃ (F ∗ A)◦̃ =̃∅̃
(F ∗ A)⊆̃ (F ∗ A)◦̃ ⊆̃ (F ∗ A)

(F ∗ A) ∪̃ (F ∗ A)b̃ ⊆̃ (F ∗ A)◦̃
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(F ∗ A) ⊆̃ (F ∗ A)◦

From (1) and (2) (F ∗ A) is both amply soft open and closed. Therefore (F ∗ A) is amply soft clopen.

Theorem 5.8. Let (X̃, τ̃ , E) be an amply soft topological space, F ∗ A and F ∗ B be the amply soft sets
over X̃. Then

1. ((F ∗ A) ∪̃ (F ∗B))
b̃ ⊆̃(F ∗ A)b̃ ∪̃ (F ∗B)b̃

2. ((F ∗ A) ∩̃ (F ∗B))
b̃ ⊆̃(F ∗ A)b̃ ∩̃ (F ∗B)b̃

Proof. 1. ((F ∗ A) ∪̃ (F ∗B))
b̃
=̃
(

(F ∗ A) ∪̃ (G ∗B)
)
∩̃((F ∗ A) ∪̃ (G ∗B))

′̃

⊆̃
(

(F ∗ A) ∪̃ (G ∗B)
)
∩̃(F ∗ A)

′̃∩̃(G ∗B)
′̃

=̃

[
(F ∗ A)∩̃(F ∗ A)

′̃∪̃(G ∗B)∩̃(F ∗ A)
′̃
]
∩̃(G ∗B)

′̃

=̃

(
(F ∗ A)b̃ ∩̃(G ∗B)

′̃
)
∪̃
(

(G ∗B)b̃ ∩̃(F ∗ A)
′̃
)

⊆̃ (F ∗ A)b̃ ∪̃ (G ∗B)b̃

2. ((F ∗ A) ∩̃ (F ∗B))
b̃
=̃(F ∗ A) ∩̃ (G ∗B)∩̃

[
((F ∗ A) ∩̃ (G ∗B))

′̃
]

⊆̃
(

(F ∗ A)∩̃(G ∗B)
)
∩̃
(

(F ∗ A)
′̃∩̃(G ∗B)

′̃
)

=̃

[
(F ∗ A)∩̃(G ∗B)∩̃

(
(F ∗ A)

′̃
)]
∪̃
[
F ∗ A∩̃G ∗B∩̃G ∗B

]
=̃
[
(F ∗ A)b̃ ∩̃G ∗B

]
∪̃
[
F ∗ A∩̃ (G ∗B)b̃

]
⊆̃(F ∗ A)b̃ ∩̃ (F ∗B)b̃
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