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An Analysis of Stability of an Impulsive delay differential system  
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ABSTRACT:First order linear impulsive delay differential equation with constant delays is investigated. The linear theory is the 

primary focus, for which theorems analogous to ordinary and impulsive differential equations are derived. Results explicitly 

connecting the asymptotic stability of impulsive differential equations to related impulse equations are proven. This work analyses a 

delay differential system under the impulsive effect, in which asymptotic behavior is analyzed with the aid of eigenvalue of the 

characteristic equation method. Numerical examples were presented to explain the theory.  

 

Keywords:Impulsive, Delay, Differential systems, Asymptotic Stability 

 

1. INTRODUCTION 

In modern years differential calculus has fascinated the consideration of numerous investigators. It is an outstanding tool in modelling 

many phenomena in practical systems. Any physical system can be represented more accurately through a differential system. The 

differential equation involving an impulse effect, appear as a natural description of observed evolution phenomena of real word 

problems such as bursting rhythm models, optimal control models and frequency modulation etc. In everyday life, under particular 

conditions, an effect creates some changes instantaneously. When an instantaneous effects change the position or velocity of the 

moving body, such system is known as impulsive system. Also it has been found that study of impulsive delay is more appropriate to 

capture the real dynamical behaviour rather than differential calculus. It should be pointed out that delay system with impulse has 

gained the popularity due to its peculiar properties and recent progress of research in this area. For more details, one can see [1-5].  

The impulsive delay differential equation is considered as: 

𝑢′(𝑡) = 𝑎𝑢(𝑡) + 𝑏𝑢(𝑡 − 𝜏 ),𝑡 ≥ 0, 𝑡 ≠ 𝑡𝑘,(1) 

∆𝑢(𝑡𝑘) = ℓ𝑘 , 𝑘 ∈ ℤ+ = {1,2, … . },(2) 

where Ι is the initial segment of natural numbers, 𝑎 and b be the constant functions,and furthermore, ℓ𝑘 for 𝑘 ∈ ℤ+ are real constants 

and ∆𝑢(𝑡𝑘) = 𝑢(𝑡𝑘
+) − 𝑢(𝑡𝑘

−) .The impulsive positive points 𝑡𝑘satisfy 

0 < 𝑡1 <∙∙∙< 𝑡𝑘 < 𝑡𝑘+1 <∙∙∙ and lim
𝑘→∞

𝑡𝑘 = ∞, 

Assume that the initial function 𝜙 is a given continuous real-valued function at the interval [−τ, 0], then an initial condition is 

imposed, that is, along with Equation(1): 

𝑢(𝑡) = 𝜙(𝑡), −𝜏 ≤ 𝑡 ≤ 0.(3) 

 

2. PRELIMINARIES 

Basic definitions and lemmas are given in preliminary section. 

Lemma 1: Suppose that 𝜆0 is a real root of the characteristic equation  𝜆 = 𝑎 + 𝑏𝑒−𝜆𝜏(4)  
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and set ℎ𝜆0
= 𝑎 + 𝑏𝑒−𝜆0𝜏  𝑓𝑜𝑟 𝑡 ≥ −𝜏.                                                                                                                  (5)  

Thus 𝑦 is the single solution of the initial value problem  

𝑣′(𝑡) =  −𝑏 𝑒−𝜆0𝜏[𝑣(𝑡) − 𝑣(𝑡 − 𝜏) ; 𝑣( 𝑡) = 𝜙(𝑡) exp[−ℎ𝜆0
𝑡]                                                                                                             (6) 

with impulsive condition 𝑣(𝑡𝑘) − 𝑣(𝑡𝑘
−

) = 𝑙𝑘 exp[−ℎ𝜆0
𝑡𝑘] , 𝑘 ∈ 𝑍+(7)  

and only if v is a solution of the following system 𝑣(𝑡) = 𝜙(𝑡) exp[−𝜆0𝑡], if−𝜏 ≤ 𝑡 ≤ 0(8)  

and with 𝑛(𝑡) = max {𝑘 ∈ ℤ+: 𝑡𝑘 ≤ 𝑡} 𝑎𝑛𝑑𝑛(𝑡) = 0 𝑖𝑓𝑡 < 𝑡1.(9)  

and𝑣(𝑡) = 𝜙(0) + 𝑒−𝜆0𝜏 ∫ 𝑏
0

−𝜏
(𝑠)𝜙(𝑠) exp[−𝜆0𝑠] 𝑑𝑠 − 𝑒−𝜆0𝜏 ∫ 𝑏

𝑡

𝑡−𝜏
(𝑠)𝑣(𝑠) + ∑ 𝑙𝑗

𝑛(𝑡)
𝑗=1 exp[−𝜆0𝑡] , 𝑖𝑓𝑡 ≥ 0                       (10) 

Corollary 1. Suppose that 𝜆0 is a real root of the characteristic Equation (4) and set (5). Thus, uis the single solution of the initial 

value problem (1–3) if and only if the function v defined by 𝑣(𝑡) = 𝑢(𝑡) exp[−ℎ𝜆0
𝑡] 𝑓𝑜𝑟𝑡 ≥ −𝜏 

is the solution of the integral Equation (10) which gives the initial condition 

𝑣(𝑡) = 𝜙(𝑡) exp[−ℎ𝜆0
𝑡] , 𝑡 ∈ [−𝜏, 0].(11) 

Theorem 1. Assume that Lemma 1 is valid and that the root 𝜆0 satisfies 

𝜇(𝜆0) = ∑|ℓ𝔧|

∞

𝑗=1

exp[−ℎ𝜆0
𝑡𝑗] + 𝑏𝜏 𝑒−𝜆0𝜏 < 1                                                                                                                                                       (12) 

Thus, the solution u of Equation (1–3) fulfills 

lim
𝑡→∞

{𝑢(𝑡)exp [−ℎ𝜆0
𝑡]} =

𝐿(𝜆0, 𝜙)

1 + 𝛽(𝜆0)
(13) 

Where 

𝐿(𝜆0; 𝜙) = 𝜙(0) + 𝑒−𝜆0𝜏 ∫ 𝑏
0

−𝜏

(𝑠)𝜙(𝑠) exp[−ℎ𝜆0
𝑠] 𝑑𝑠                                                                                                                                    (14) 

And 𝛽(𝜆0) = 𝐵 𝜏 𝑒−𝜆0𝜏 (15) 

Note: It is guaranteed by the property (12) that 0 < 1 + 𝛽(𝜆0) < 2. 

Proof. By Equation (12), we have |𝛽(𝜆0)| ≤ 𝜇(𝜆0) < 1. Thus, this yields that 0 < 1 < 𝛽(𝜆0) < 2. 

 Assume that u a solution of Equations (1–3). Identify the function v using Equation (6). Afterwards, u will be the solution of 

Equations (1–3), and v the solution of the integral Equation (10) yielding the initial condition of Equation (8). Therefore, by Equation 

(14), using Equation (10), we obtain 

𝑣(𝑡) = 𝐿(𝜆0; 𝜙) + ∑ ℓ𝔧

𝑛(𝑡)

𝑗=1

exp[−ℎ𝜆0
𝑡𝑗] − 𝑒−𝜆0𝜏 ∫ 𝑏

𝑡

𝑡−𝜏

(𝑠)𝑣(𝑠)𝑑𝑠.                                                                                                                       (16) 

Now, for 𝑡 ≥ −𝜏 we construct 

𝑤(𝑡) = 𝑣(𝑡) −
𝐿(𝜆0; 𝜙)

1 + 𝛽(𝜆0)
 

Hence, from the Equation (16), it is reduced to the equation as below: 

𝑤(𝑡) = ∑ ℓ𝔧

𝑛(𝑡)

𝑗=1

exp[−ℎ𝜆0
𝑡𝑗] − 𝑒−𝜆0𝜏 ∫ 𝔟

𝑡

𝑡−𝜏

(𝑠)𝑧(𝑠)𝑑𝑠, 𝑓𝑜𝑟𝑡 ≥ 0.                                                                                                                  (17) 

Moreover, Equation (8) is defined as for t ∈ [−τ, 0] 

𝑤(𝑡) = 𝜙(𝑡) exp[−ℎ𝜆0
𝑡] −

𝐿(𝜆0;𝜙)

1+𝛽(𝜆0)
(18) 

Using y and z, we should prove the equality (13), that is, 
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lim
𝑡→∞

𝑤(𝑡) = 0                                                                                                                                                                                                                 (19) 

Put    𝑊(𝜆0; 𝜙) = max {1, max
𝑡∈[−𝜏,0]

|𝜙(𝑡)exp [−ℎ𝜆0
𝑡] ∫ −

𝐿(𝜆0;𝜙)

1+𝛽(𝜆0)

𝑡
|} 

Thus, by Equation (18) we obtain 

|𝑤(𝑡)| ≤ 𝑊(𝜆0; 𝜙)𝑓𝑜𝑟 − 𝜏 ≤ 𝑡 ≤ 0     (20) 

Now, the following inequality will be proved 

|𝑧(𝑡)| ≤ 𝑊(𝜆0: 𝜙)𝑓𝑜𝑟𝑡 ≥ −𝜏 (21) 

the contrary, assume that a point is found where 𝑡̃>0 such that |𝑧(𝑡̃)| > 𝑊(𝜆0; 𝜙). Let 

𝑡∗ = 𝑖𝑛𝑓{𝑡̃: |𝑧(𝑡̃)| > 𝑊(𝜆0; 𝜙)}. 

According to the continuity from right, either|𝑧(𝑡∗)| = 𝑊(𝜆0; 𝜙)without impulsive point at𝑡∗ , or |𝑤(𝑡∗)| ≥ 𝑊(𝜆0; 𝜙)with a jump at 

𝑡∗. In both cases, by the right continuity, we obtain |𝑤(𝑡)| ≤ 𝑊(𝜆0; 𝜙)𝑓𝑜𝑟 − 𝜏 ≤ 𝑡 < 𝑡∗,where |𝑤(𝑡∗)| = 𝑤(𝜆0; 𝜙)  provided that 

this satisfies at a non-impulsive point. Therefore, considering Equation (12), by the integral representation of w(t), which all solutions 

to Equation (17), we obtain 

|𝑤(𝑡∗)| = | ∑ ℓ𝔧

𝑛(𝑡∗)

𝑗=1

𝑒𝑥𝑝[−ℎ𝜆0
𝑡𝑗] − 𝑒−𝜆0𝜏 ∫ 𝑏̅

𝑡∗

𝑡∗−𝜏

(𝑠)𝑤(𝑠)𝑑𝑠| 

≤ ∑ |ℓ𝑗|

𝑛(𝑡∗)

𝑗=1

exp[−ℎ𝜆0
𝑡𝑗] + ∑ 𝑒−𝜆0𝜏 ∫ |𝑏̅(𝑠)|

𝑡∗

𝑡∗−𝜏𝑖∈𝐼

|𝑤(𝑠)|𝑑𝑠 

≤ { ∑ |ℓ𝑗|

𝑛(𝑡∗)

𝑗=1

exp[−ℎ𝜆0
𝑡𝑗] + ∑ 𝑒−𝜆0𝜏

𝑖∈𝛪

∫ |𝑏̅̅̅̅ (𝑠)|𝑑𝑠
𝑡∗

𝑡∗−𝜏

} 𝑊(𝜆0; 𝜙) 

≤ 𝜇(𝜆0)𝑊(𝜆0; 𝜙) < 𝑊(𝜆 0 ; 𝜙) 

which contradicts with the definition of 𝑡∗ because we showed |𝑤(𝑡∗)| < 𝑊(𝜆0; 𝜙), and we suppose |𝑤(𝑡∗)| = 𝑊(𝜆0; 𝜙) where 𝑡∗ is 

continuous, or |𝑤(𝑡∗) ≥ 𝑊(𝜆0; 𝜙)| where 𝑡∗ is discontinuous. Hence, the inequality (21) holds. 

Next, by Equation (21), considering Equation (17) we obtain for t ≥ 0, 

|𝑤(𝑡)| = |∑ ℓ𝔧

𝑛(𝑡)

𝑗=1

𝑒𝑥𝑝[−ℎ𝜆0
𝑡𝑗] − 𝑒−𝜆0𝜏𝔦 ∫ 𝑏̅(𝑠)𝑤(𝑠)𝑑𝑠

𝑡

𝑡−𝜏

| 

≤ ∑|ℓ𝑗|

𝑛(𝑡)

𝑗=1

exp[−ℎ𝜆0
𝑡𝑗] + 𝑒−𝜆0𝜏𝑖 ∫ |𝑏̅̅̅̅ (𝑠)||𝑤(𝑠)|𝑑𝑠

𝑡

𝑡−𝜏

 

 

≤ {∑|ℓ𝔧|

𝑛(𝑡)

𝑗=1

𝑒𝑥𝑝[−ℎ𝜆0
𝑡𝑗] + 𝑒−𝜆0𝜏|𝐵1|𝜏 } 𝑊(𝜆0; 𝜙) 

≤ 𝜇(𝜆0)𝑊(𝜆0; 𝜙), 

In other words,we have 

|𝑤(𝑡)| ≤ 𝜇(𝜆0)𝑊(𝜆0; 𝜙)𝑓𝑜𝑟𝑡 ≥ 0.                                                                                                                                                                        (22) 

By Equations (12), (21) and (22), using an easy induction, from Equation (17) it can be proved that 

|𝑤(𝑡)| ≤ [𝜇(𝜆0)]𝑛𝑊(𝜆0; 𝜙)𝑓𝑜𝑟𝑡 ≥ 𝑛𝜏 − 𝜏(𝑛 = 0,1, … )(23) 

Due to (12) , we obtain lim
𝑛→∞

[𝜇(𝜆0)]𝑛 = 0. Thus, from Equation (23) we obtain 
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lim
𝑡→∞

𝑤(𝑡) = lim
𝑡→∞

{𝑢(𝑡)𝑒𝑥𝑝[−ℎ𝜆0
𝑡] −

𝐿(𝜆0; 𝜙)

1 + 𝛽(𝜆0)
} = 0 

that is, Equation (13) satisfies. Theorem 1 has been already proven. 

Corollary 2. Assume that 

𝑎(𝑡) + ∑ 𝑏𝔦

𝔦∈Ι

(𝑡) = 0 𝑓𝑜𝑟𝑡 ∈ [0, ∞)(24) 

And |𝐵1|𝜏 + ∑ |ℓ𝔧|
∞
𝑗=1 < 1                                                                                                                                                                                       (25) 

Thus, the solution u of Equations(1–3) satisfies for any 𝜙 ∈ ([−𝜏, 0], ℝ), 

lim
𝑡→∞

𝑢(𝑡) =
𝜙(0) + ∫ 𝑏̅̅̅̅ (𝑠)𝜙(𝑠)𝑑𝑠

0

−𝜏

1 + 𝐵1𝜏
 

Note: It is guaranteed by Equation (25) that 2 > 1 + 𝐵1𝜏 > 0. 

 

3. MAIN RESULT - STABILITY CRITERION 

Theorem 2. Assume that Theorem 1 is satisfied and Let 𝜆0 be a real root of Equation (4) satisfying Equation (5) and set   𝑅(𝜆0; 𝜙) =

𝑚𝑎𝑥 {1, max
−𝜏≤𝑡≤0

|𝜙(𝑡)| , max
−𝜏≤𝑡≤0

[𝑒−𝜆0𝑡|𝜙(𝑡)|]}. 

Thus the solution u of the system Equations (1) and (3) satisfies 

|𝑢(𝑡)| ≤ 𝑁(𝜆0)𝑅(𝜆0; 𝜙)𝑒𝜆0𝑡𝑓𝑜𝑟𝑡 ≥ 0,  

If 𝑁(𝜆0) = 𝜇(𝜆0) + (1 + 𝜇(𝜆0)) (
1+|𝑏 |𝜏 𝑒−𝜆0𝜏

1+𝑏 𝜏 𝑒−𝜆0𝜏 ) 

Moreover, the trivial solution: 

(i) asymptotically stable if 𝜆0 < 0, 

(ii) stable if 𝜆0 = 0 or, equivalently, providing that the conditions (43) are met, and 

(iii) unstable if 𝜆0 > 0. 

Proof. 

 Suppose that x is the solution of Equations (1–3) and v, w are defined as above, that is, for t ≥ −τ 

𝑣(𝑡) = 𝑢(𝑡)𝑒𝑥𝑝[−ℎ𝜆0
𝑡]𝑎𝑛𝑑𝑤(𝑡) = 𝑦(𝑡) −

𝐿(𝜆0; 𝜙)

1 + 𝛽(𝜆0)
, 

where 𝐿(𝜆0; 𝜙) is defined as in Equation(14). Therefore, we specify 𝑊(𝜆0; 𝜙) as in the proof of Theorem 1,that is, 

𝑊(𝜆0; 𝜙) = 𝑚𝑎𝑥 {1, max
𝑡∈[−𝜏,0]

|𝜙(𝑡)exp [−ℎ𝜆0
𝑡 −

𝐿(𝜆0; 𝜙)

1 + 𝛽(𝜆0)
|} 

Hence, as in Theorem 1, it can be also proved that w satisfies inequality. Thus, for t ≥ 0 we get 

|𝑣(𝑡)| ≤ 𝜇(𝜆0)𝑊(𝜆0; 𝜙) +
|𝐿(𝜆0; 𝜙)|

1 + 𝛽(𝜆0)
.                                                                                                                                                                    (26) 

we obtain 

|𝐿(𝜆0; 𝜙)| ≤ |𝜙(𝑡)| + 𝑒−𝜆0𝜏 ∫ |𝑏̅(𝑠)||𝜙(𝑠)|
0

−𝜏

|𝑒𝑥𝑝[−ℎ𝜆0
𝑠] −

𝐿(𝜆0; 𝜙)

1 + 𝛽(𝜆0)
| 𝑑𝑠 

≤ (1 + 𝑒−𝜆0𝜏 ∫ |𝑏̅(𝑠)|
0

−𝜏

𝑑𝑠) 𝑅(𝜆0; 𝜙) 

                  = (1 + |𝐵|𝜏 𝑒−𝜆0𝜏 ) 𝑅(𝜆0; 𝜙) 

                  = 𝑘(𝜆0)𝑅(𝜆0; 𝜙) 
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Furthermore, using the definition of 𝑊(𝜆0; 𝜙) we have; 

𝑊(𝜆0; 𝜙) ≤ 𝑚𝑎𝑥 {1, 𝑅(𝜆0, 𝜙) +
|𝐿(𝜆0; 𝜙)|

1 + 𝛽(𝜆0)
} = 𝑅(𝜆0; 𝜙) +

|𝐿(𝜆0; 𝜙)|

1 + 𝛽(𝜆0)
 

≤ 𝑅(𝜆0; 𝜙) +
𝑘(𝜆0)𝑅(𝜆0; 𝜙)

1 + 𝛽(𝜆0)
= (1 +

𝐾(𝜆0)

1 + 𝛽(𝜆0)
) 𝑅(𝜆0; 𝜙). 

we reach for t ≥ 0 

|𝑣(𝑡)| ≤ 𝜇(𝜆0) (1 +
𝑘(𝜆0)

1 + 𝛽(𝜆0)
) 𝑅(𝜆0; 𝜙) +

𝑘(𝜆0)𝑅(𝜆0; 𝜙)

1 + 𝛽(𝜆0)
 

= {𝜇(𝜆0) (1 +
𝑘(𝜆0)

1 + 𝛽(𝜆0)
) +

𝑘(𝜆0)

1 + 𝛽(𝜆0)
} 𝑅(𝜆0; 𝜙) 

= 𝑁(𝜆0)𝑅(𝜆0; 𝜙). 

Last of all, using the definition of v, we get 

|𝑢(𝑡)| ≤ 𝑁(𝜆0)𝑅(𝜆0; 𝜙)𝑒𝑥𝑝[ℎ𝜆0
𝑡], 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ≥ 0. 

Therefore, the first part of this theorem has been proven. Now, we can start to establish a proof for the second part (stability criterion). 

Firstly, set 

𝑝(𝜆0) = {𝑒𝑥𝑝[ℎ𝜆0
𝑡]}

𝑡≥0

𝑠𝑢𝑝
 

Obviously 𝑝(𝜆0) is a real constant such that 𝑝(𝜆0) ≥ 1. Furthermore, we set 𝑝(𝜆0) = 𝑝(𝜆0)𝑁(𝜆0). Since 𝑁(𝜆0) > 1, we also obtain 

𝑃(𝜆0) > 1. Let 𝜙 be any arbitrary function in 𝐶([−𝜏, 0], 𝑅) and x be the solution of Equations (1-3). Thus,  

|𝑢(𝑡)| ≤ 𝑝(𝜆0)𝑅(𝜆0; 𝜙)𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ≥ 0  

When ‖𝜙‖ = max
−𝜏≤𝑡≤0

|𝜙(𝑡)| ≤ 𝑅(𝜆0; 𝜙)𝑎𝑛𝑑𝑝(𝜆0) > 1, 𝑖𝑡𝑔𝑖𝑣𝑒𝑠𝑡ℎ𝑎𝑡 

|𝑥(𝑡)| ≤ 𝑃(𝜆0)𝑅(𝜆0; 𝜙)𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ≥ −𝜏. 

For any 𝜖 > 0, choosing 𝛿 =
𝜖

𝑃(𝜆0)
 with 𝑅(𝜆0: 𝜙) < 𝛿,we get that ‖𝜙‖ < 𝛿. Hence, 

|𝑢(𝑡)| ≤ 𝑃(𝜆0)𝑅(𝜆0; 𝜙) < 𝑃(𝜆0)𝛿 = 𝜖 

As a result, we obtain the stability of the trivial solution of Equations (1) and (2). In particular, let us consider the case that 𝜆0 = 0 and 

ℎ𝜆0
= 0 on the interval [−τ, ∞) as mentioned previously.  

Next, thus, the trivial solution of Equations (1) and (2) is stable. Moreover, since lim
𝑡→∞

𝑢(𝑡) = 0, it is   guaranteed by the inequality that 

the trivial solution of Equations (1–2) is asymptotically stable. 

Finally, we will prove that the trivial solution of Equations (1) and (2) is unstable. On the contrary, assume that it is stable. Hence, we 

can choose δ > 0 such that for each 𝜙 ∈ 𝐶([−𝜏, 0], ℝ) with 

|𝑢(𝑡)| < 1 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ≥ −𝜏                                                                                                                                                                                          (27) 

Define 

𝜙0(𝑡) = 𝑒𝑥𝑝[ℎ𝜆0
𝑡]𝑓𝑜𝑟𝑡 ∈ [−𝜏, 0]. 

We see𝜙0 ∈ 𝐶([−𝜏, 0], ℝ) and 𝜙0 ≠ 0.From Equation (14),we have 

𝐿(𝜆0; 𝜙0) = 𝜙0(0) + 𝑒−𝜆0𝜏 ∫ 𝑏𝑖̅

0

−𝜏

(𝑠)𝜙0(𝑠)𝑒𝑥𝑝[−ℎ𝜆0
𝑠]𝑑𝑠 

                   = 1 + 𝑒−𝜆0𝜏 ∫ 𝑏̅̅̅̅
0

−𝜏

(𝑠)𝑑𝑠 = 1 + 𝐵1𝜏 𝑒−𝜆0𝜏 (28) 

                   = 1 + 𝛽(𝜆0) > 0. 

Now, we take a number 𝛿0 > 0 with 0 < 𝛿0 < 𝛿and we define 
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𝜙 =
𝛿0

‖𝜙0‖
𝜙0. 

Clearly, 𝜙 ∈ 𝐶([−𝜏, 0], ℝ) and ‖𝜙‖ = 𝛿0 < 𝛿. Therefore, the solution x of Equations (1–3) fulfills (34), that is, u is always bounded 

on [−τ, ∞). Thus, we may obtain 

lim
𝑡→∞

{𝑢(𝑡)𝑒𝑥𝑝[−ℎ𝜆0
𝑡]} = 0 

Furthermore, since the operator 𝐿(𝜆0: . )is linear and we obtain 

lim
𝑡→∞

{𝑢(𝑡)𝑒𝑥𝑝[−ℎ𝜆0
𝑡]} =

𝐿(𝜆0; 𝜙)

1 + 𝛽(𝜆0)
=

(
𝛿0

‖𝜙0‖
) 𝐿(𝜆0; 𝜙)

1 + 𝛽(𝜆0)
=

𝛿0

‖𝜙0‖
> 0 

We consequently reached a contradiction here that the trivial solution of Equations (1) and (2) is unstable. 

 

4. CONCLUSION 

In this work, asymptotic criterion is established for a impulsive delay differential system with constant co-efficient. The stability of 

the trivial solution is ascertained by converting the constructed equation into integral equations. These results were obtained using a 

suitable real root for the characteristic equation. Namely that, characteristic equation and real root plays an important role in 

establishing the results of the article.  
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