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GENERARLIZED PYTHAGOREAN FUZZY CLOSED SETS

T. Ramesh kumar1, S. Maragathavalli2,R. Santhi3

Abstract: In this paper, we introduce the concept of Generalized Pythagorean Fuzzy Closed Sets in Pythagorean fuzzy

topological spaces and some of their properties investigated. Also we introduced the operations Generalized Pythagorean

Fuzzy interior,Generalized Pythagorean Fuzzy closure on Pythagorean fuzzy topological spaces.

Keywords : Generalized Pythagorean closed sets, Generalized Pythagorean open sets, Generalized Pythagorean Fuzzy

Closure, Generalized Pythagorean Fuzzy Interior. 2010 Subject classification: 54A05, 54A10

1 Introduction

In 1965, fuzzy set theory first introdced by Zadeh. Fzzy set theory was characterized by a membership
function which assigns to each target a membership value ranging between 0 and 1. In 1968, the concept
of fuzzy topological space was introduced by Chang. Also generalized some basic notions of topology such
as open set, closed set, continuity andcompactness to fuzzy topological spaces. Atanassov introduced the
concept of intuitionistic fuzzy sets. An introduction to intuitionistic fuzzy topological spaces was given by
Coker in 1997. Yager proposed another class of non-standard fuzzy sets, called Pythagorean fuzzy sets.
The concept and notions of Pythagorean fuzzy topological spaces was introduced by Murat Olgun, Mehmet
Unver and Seyhmus Yardimici. In 2020, Naeem et. al. studied Pythagorean m-polar fuzzy topology with
TOPSIS approach in exploring most effectual method fr curring from COVID-19. Taha Yasin Ozturk
and Adem Yolcu introduced some operations sucha as Pythagorean fuzzy interior, closure boundary on
Pythagorean fuzzy topological spaces. Also Pythagorean fuzzy open(closed) functions and Pythagorean
fuzzy homeomorphism are introdced and their basic properties are investigated in 2020.

1Department of Mathematics, Nehru Arts and Science College, Coimbatore,Tamilnadu, E-mail:
rameshmath610@gmail.com

2Department of Mathematics, Govt. Arts College, Udumalpet, Tamilnadu.
E-mail : smvalli@rediffmail.com

3Department of Mathematics, Nallamuthu Gounder Mahalingam College, Pollachi, Tamilnadu.
E-mail: santhir2004@yahoo.co.in
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2 Preliminaries

Definition 2.1. Let X be the non empty universe of discourse. A fuzzy set A in X, A = {(x, µA(x)) : x ∈ X}
where µA : X → [0, 1] is the membership function of the fuzzy set A; µA(x) ∈ [0, 1] is the membership of
x ∈ X in A

Definition 2.2. Let X be the non empty universe of discourse. An Intuitionistic fuzzy set(IFS) A in X
is given by A={x, µA(x), νA(x) : x ∈ X} where the functions µA(x) ∈ [0, 1] and νA(x) ∈ [0, 1] denote the
degree of membership and degree of non membership of each element x ∈ X to the set A, respectively, and
0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈ X. The degree of indeterminacy IA = 1− (µA(x) + νA(x)) for each
x ∈ X.

Definition 2.3. Let (X,T ) be an intuitionistic fuzzy topological space. An intuitionistic fuzzy set A in
(X,T ) is said to be generalized intuitionistic fuzzy closed (in shortly GIF -closed) if IFcl(A) ⊆ G whenever
A ⊆ G and G is intuitionistic fuzzy open. The complement of a GIF-closed set is GIF-open.

Definition 2.4. Let X be the non empty universe of discourse. A Pythagorean Fuzzy Set(PFS) P in X is
given by P={⟨x, µP (x), νP (x)⟩ : x ∈ X} where the functions µP (x) ∈ [0, 1] and νP (x) ∈ [0, 1] denote the
degree of membership and degree of non membership of each element x ∈ X to the set P, respectively, and
0 ≤ µ2

P (x)+ ν2
P (x) ≤ 1 for each x ∈ X. The degree of indeterminacy IP =

√
1− (µ2

P (x) + ν2
P (x)) for each

x ∈ X.

Definition 2.5. Let P1 = {⟨x, µP1(x), νP1(x)⟩ : x ∈ X}} and P2 = {⟨x, µP2(x), νP2(x)⟩ : x ∈ X}} be two
pythagorean fuzzy sets over X. Then,

1. the pythagorean fuzzy complement of P1 is defined by

P1
c = {⟨x, νP1(x), µP1(x)⟩ : x ∈ X}}

2. the pythagorean fuzzy intersection of P1 and P2 is defined by

P1 ∩ P2 = {⟨x,min{µP1(x), µP2(x)},max{νP1(x), νP2(x)}⟨x ∈ X}},

3. the pythagorean fuzzy union of P1 and P2 is defined by

P1 ∪ P2 = {⟨x,max{µP1(x), µP2(x)},min{νP1(x), νP2(x)}⟩ : x ∈ X},

4. we say P1 is a pythagorean fuzzy subset of P2 and we write P1 ⊆ P2 if µP1(x) ≤ µP2(x) and νP1(x) ≥
νP2(x) for each x ∈ X,

5. 0X = {⟨x, 0, 1⟩}, x ∈ X} and 1X = {⟨x, 1, 0⟩ : x ∈ X}.
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Definition 2.6. Let (X, τ)P be an Pythagorean Fuzzy topological space and P={⟨x, µP (x), νP (x)⟩ : x ∈ X}
be a Pythagorean fuzzy set over X. Then the Pythagorean fuzzy interior, Pythagorean fuzzy closure and
Pythagorean fuzzy boundary of P are defined by;
a. int(P ) =

∪
{G : G is a PFOS in X and G ⊆ P}

b.cl(P ) =
∩
{K : K is a PFCS in X and P ⊆ K}

c. Fr(P ) = cl(P ) ∩ cl(P c)

Remark 2.7. It is clear that,
a. int(P ) is the biggest Pythagorean fuzzy open set contained in P,
b. cl(P ) is the smallest Pythagorean fuzzy closed set containing P.

Remark 2.8. From the definition Pythagorean fuzzy union and intersection, it is obvious that pythagorean
fuzzy interor, closure and boundary is a pythagorean fuzzy set.

3 Generalized Pythagorean fuzzy closed sets

Definition 3.1. Let (X, τ) be an intuitionistic fuzzy topological space. An intuitionistic fuzzy set A in
(X, τ) is said to be generalized intuitionistic fuzzy closed (GIFC) if IFcl(A) ⊆ G whenever A ⊆ G and G
is IFO

The complement of GIFC set is GIFO set.

Definition 3.2. Let (X, τ)P be an Pythagorean Fuzzy topological space. An Pythagorean Fuzzy set A
in (X, τ)P is said to be generalized Pythagorean fuzzy closed (shortly GPFC) if PFcl(A) ⊆ P whenever
A ⊆ P and P is PFO.

The complement of GPFC is GPFO

Definition 3.3. Let (X, τ)P be a Pythagorean Fuzzy topological space. Let A be a PFS in X. Then
Generalized Pythagorean fuzzy closure and Generalized Pythagorean Fuzzy interior of A are defined by
(1) GPFcl(A) =

∩
{G : G is GPF closed set in X and A ⊆ G}

(2) GPFint(A) =
∪
{G : G is GPF open set in X and A ⊇ G}

Proposition 3.4. Let (X, τ)P be a Pythagorean Fuzzy topological space. Let A and B be any two
Pythagorean fuzzy sets in (X, τ)P . Then the Generalized Pythagorean Fuzzy closure operator satisfy the
following properties.

1. A ⊆ GPFcl(A)

2. GPFcl(GPFcl(A)) = GPFcl(A)

3. A ⊆ B ⇒ GPFcl(A) ⊆ GPFcl(B)

4. GPFcl(A ∪B) = GPFcl(A) ∪GPFcl(B)

5. GPFcl(1X) = 1X ; GPFcl(0X) = 0X .

Proof. (i), (ii), (iii) and (v) can be esily obtained by the definition of the GPFclosure.
(iv) From GPFcl(A) ⊆ GPFcl(A ∪ B). We obtain GPFcl(A) ∪ GPFcl(B) ⊆ GPFcl(A ∪ B). On the
other hand, from the facts A ⊆ GPFcl(A) and B ⊆ GPFcl(B) =⇒ A ∪ B ⊆ GPFcl(A) ∪ GPFcl(B)
and GPFcl(A) ∪GPFcl(B) ∈ GPFCS. We have GPFcl(A ∪B) ⊆ GPFcl(A) ∪GPFcl(B).
Thus, proof of the axioms (iv) is obtained from these two inequalities.
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Proposition 3.5. Let (X, τ)P be a Pythagorean Fuzzy topological space. Let A and B be any two
Pythagorean fuzzy sets in (X, τ)P . Then the Generalized Pythagorean Fuzzy interior operator satisfy the
following properties.

1. GPFint(A) ⊆ A

2. GPFint(GPFint(A)) = GPFint(A)

3. A ⊆ B ⇒ GPFint(A) ⊆ GPFint(B)

4. GPFint(A ∩B) = GPFint(A) ∩GPFint(B)

5. GPFint(1X) = 1X ; GPFint(0X)) = 0X

Proof. (i), (ii), (iii) and (v) can be easily obtained from the definiton of the Generalized Pythagorean
Fuzzy interior .
(iv) From GPFint(A ∩B) ⊆ GPFint(A) and GPFint(A ∩B) ⊆ GPFint(B).

We obtainGPFint(A∩B) ⊆ GPFint(A)∩GPFint(B).On the other hand, from the factsGPFint(A) ⊆
A and GPFint(B) ⊆ B =⇒ GPFint(A) ∩ GPFint(B) ⊆ A ∩ B and GPFint(A) ∩ GPFint(B) ∈ τP .
We have GPFint(A) ∩ GPFint(B) ⊆ GPFint(A ∩ B). Thus, proof of the axioms (iv) is obtained from
these two inequalities.

Proposition 3.6. Let (X, τ)P be a Pythagorean Fuzzy topological space. Let A and B be any two
Pythagorean fuzzy sets in (X, τ)P . Then the following properties hold.

1. 1−GPFcl(A) = GPFint(1− A)

2. 1−GPFint(A) = GPFcl(1− A)

Proposition 3.7. If A and B are GPF-closed sets, then A ∪B is a GPF-closed set.

Remark 3.8. The intersection of two GPF-closed sets need not be GPF-closed set.

Proposition 3.9. Let (X, τ)P be a Pythagorean Fuzzy topological space. If B is GPF-closed and B ⊆ A ⊆
PFcl(B) then A is GPF-closed.

Proposition 3.10. In an Pythagorean fuzzy topological space (X, τ)P , τP = TP (The family of all Pythagorean
fuzzy closed Sets) iff every Pythagorean fuzzy closed set of (X, τ)P is a GPF closed set.

Proof. Suppose that evey Pythagorean fuzzy set A of (X, τ)P is GPF closed. Let A ∈ τP . Since A ⊆ A
and A is GPF-closed, PFcl(A) ⊆ A. But A ⊆ PFcl(A). Hence, PFcl(A) = A. Thus, A ∈ τP . Therefore,
τP ⊆ TP . If B ∈ T , then 1X −B ∈ τP ⊆ TP and hence B ∈ τP .
That is TP ⊆ τP . Therefore τP = TP

Conversely, Suppose that A be a Pythagorean Fuzzy set in (X, τ)P . Let B be a Pythagorean fuzzy open
set in (X, τ)P such that A ⊆ B. By hypohtesis, B is Pythagorean fuzzy closed set. By the definition of
Pythagorean fuzzy closure PFcl(A) ⊆ B). Therefore A is GPF-closed.

Proposition 3.11. If GPFint(A) ⊆ B ⊆ A and if A is GPF-open then B is also GPF-open.
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Proposition 3.12. Let (X, τ)P be a Pythagorean fuzzy topological space. A Pythagorean fuzzy set A is
GPF-open iff B ⊆ GPFint(A), whenever B is Pythagorean fuzzy closed and B ⊆ A.

Proof. Let A be a GPF-open set and B be a Pythagorean fuzzy closed set, such that B ⊆ A. Now,
B ⊆ A =⇒ 1X − A ⊆ 1X − B and 1X − A is a GPF-closed set =⇒ PFcl(1X − A) ⊆ 1X − B.
That is, B = 1X − (1X − B) ⊆ 1X − PFcl(1X − A). But 1X − PFcl(1X − A) = PFint(A). Thus,
B ⊆ PFint(A). Conversely, suppose that A be a Pythagorean fuzzy set, such that B ⊆ PFint(A)
whenever B is Pythagorean fuzzy closed and B ⊆ A. Let 1X − A ⊆ B whenever B is Pythagorean fuzzy-
open. Now, 1X − A ⊆ B =⇒ 1X − B ⊆ A. Hence by assumption, 1X − B ⊆ PFint(A). That is,
1X − PFint(A) ⊆ B. But 1X − PFint(A) = PFcl(1X −A). Hence, PFcl(1X −A) ⊂ B. That is, 1X −A
is GPF-closed. Therefore, A is GPF-open.
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