

VOLUME XII ISBN No.: 978-93-94004-01-6 Physical Science

NALLAMUTHU GOUNDER MAHALINGAM COLLEGE

An Autonomous Institution, Affiliated to Bharathiar University, An ISO 9001:2015 Certified Institution,

Pollachi-642001

SUPPORTED BY

PROCEEDING

One day International Conference EMERGING TRENDS IN SCIENCE AND TECHNOLOGY (ETIST-2021)

27th October 2021

Jointly Organized by

Department of Biological Science, Physical Science and Computational Science

NALLAMUTHU GOUNDER MAHALINGAM COLLEGE

An Autonomous Institution, Affiliated to Bharathiar University

An ISO 9001:2015 Certified Institution, Pollachi-642001.

Proceeding of the

One day International Conference on

EMERGING TRENDS IN SCIENCE AND TECHNOLOGY (ETIST-2021)

27th October 2021

Jointly Organized by

Department of Biological Science, Physical Science and Computational Science

Copyright © 2021 by Nallamuthu Gounder Mahalingam College

All Rights Reserved

ISBN No: 978-93-94004-01-6

Nallamuthu Gounder Mahalingam College

An Autonomous Institution, Affiliated to Bharathiar University

An ISO 9001:2015 Certified Institution, 90 Palghat Road, Pollachi-642001.

www.ngmc.org

ABOUT THE INSTITUTION

A nations's growth is in proportion to education and intelligence spread among the masses. Having this idealistic vision, two great philanthropists late. S.P. Nallamuthu Gounder and Late. Arutchelver Padmabhushan Dr.N.Mahalingam formed an organization called Pollachi Kalvi Kazhagam, which started NGM College in 1957, to impart holistic education with an objective to cater to the higher educational needs of those who wish to aspire for excellence in knowledge and values. The College has achieved greater academic distinctions with the introduction of autonomous system from the academic year 1987-88. The college has been Re-Accredited by NAAC and it is ISO 9001 : 2015 Certified Institution. The total student strength is around 6000. Having celebrated its Diamond Jubilee in 2017, the college has blossomed into a premier Post-Graduate and Research Institution, offering 26 UG, 12 PG, 13 M.Phil and 10 Ph.D Programmes, apart from Diploma and Certificate Courses. The college has been ranked within Top 100 (72nd Rank) in India by NIRF 2021.

ABOUT CONFERENCE

The International conference on "Emerging Trends in Science and Technology (ETIST-2021)" is being jointly organized by Departments of Biological Science, Physical Science and Computational Science - Nallamuthu Gounder Mahalingam College, Pollachi along with ISTE, CSI, IETE, IEE & RIYASA LABS on 27th OCT 2021. The Conference will provide common platform for faculties, research scholars, industrialists to exchange and discus the innovative ideas and will promote to work in interdisciplinary mode.

EDITORIAL BOARD

Dr. V. Inthumathi

Associate Professor & Head, Dept. of Mathematics, NGM College

Dr. J. Jayasudha

Assistant Professor, Dept. of Mathematics, NGM College

Dr. R. Santhi

Assistant Professor, Dept. of Mathematics, NGM College

Dr. V. Chitra

Assistant Professor, Dept. of Mathematics, NGM College

Dr. S. Sivasankar

Assistant Professor, Dept. of Mathematics, NGM College

Dr. S. Kaleeswari

Assistant Professor, Dept. of Mathematics, NGM College

Dr. N.Selvanayaki

Assistant Professor, Dept. of Mathematics, NGM College

Dr. M. Maheswari

Assistant Professor, Dept. of Mathematics, NGM College

Mrs. A. Gnanasoundari

Assistant Professor, Dept. of Mathematics, NGM College

Dr. A.G. Kannan

Assistant Professor, Dept. of Physics, NGM College

S. No.	Article ID	Title of the Article	Page No.
1	P3049T	Fuzzy parameterized vague soft set theory and its applications - Yaya Li , Velusamy Inthumathi, Chang Wang	1-14
2	P3050T	Intuitionistic fuzzy soft commutative ideals of BCK-algebras - Nana Liu, Velusamy Inthumathi, Chang Wang	15-37
3	P3051T	Intuitionistic fuzzy soft positive implicative ideals of BCK-algebras - Nana Liu, Velusamy Inthumathi, Chang Wang	38-56
4	P3052T	Vague Soft Fundamental Groups - M. Pavithra, Saeid Jafari, V. Inthumathi	57-70
5	P3053T	Nano Generalized pre c-Homeomorphism in Nano Topologicalspaces - P.Padmavathi and R.Nithyakala	71-76
6	P3054D	Third order nonlinear difference equations with a superlinearneutral term - S.Kaleeswari, Ercan Tunc	77-88
7	P3055OR	Usance of Mx/G(a,b)/1 Queue Model for a Real Life Problem - B.Lavanya, R.Vennila, V.Chitra	89-99
8	P3056T	Solving Intuitinistic Fuzzy Multi-Criteria Decision Making forProblems a Centroid Based Approach - M. Suresh, K. Arun Prakash and R. Santhi	100-109
9	P3057T	Magnitude Based Ordering of Triangular Neutrosophic Numbers - K. Radhika, K. Arunprakash and R. Santhi	110-118
10	P3058D	Solution of Linear Fuzzy Volterra Integro- Differential Equationusing Generalized Differentiability	119-143
11	P3059D	- S. Indrakumar, K. Kanagarajan, R. Santhi An Analysis of Stability of an Impulsive delay differential system - S. Priyadharsini1 E. Kungumaraj and R. Santhi	144-149
12	P3060T	The Knight's Path Analysis to reach the Aimed Destination by using the Knight's Fuzzy Matrix - K. Sugapriya, B. Amudhambigai	150-155
13	P3061T	A new conception of continuous functions in binary topologicalspaces -P. Sathishmohan, K. Lavanya, V. Rajendran and M. Amsaveni	156-160
14	P3063T	The Study of Plithogenic Intuitnistic fuzzy sets and its applicationin Insurance Sector - S.P. Priyadharshini and F. Nirmala Irudayam	161-165
15	P3064T	Contra *αω continuous functions in topological spaces - K.Baby, M.Amsaveni, C.Varshana	166-175
16	P3065OR	Stability analysis of heterogeneous bulk service queueing model - R. Sree Parimala	176-182
17	P3067T	Generarlized pythagorean fuzzy closedsets - T.Rameshkumar, S. Maragathavalli and R. Santhi	183-188
18	P3068T	Generalized anti fuzzy implicative ideals of near-rings - M. Himaya Jaleela Begum, P. Ayesha Parveen and J.Jayasudha	189-193
19	P3069T	Horizontal trapezoidal intuitionistic fuzzy numbers in stressDetection of cylindrical shells - J.Akila Padmasree, R. Parvathi and R.Santhi	194-201
20	P3070MH	Role of mathematics in history with special reference to pallavaweights and measure -S. Kaleeswari and K. Mangayarkarasi	202-207
21	P3071G	Feature selection and classification from the graph using neuralnetwork based constructive learning approach -A. Sangeethadevi, A. Kalaivani and A. shanmugapriya	208-221
22	P3072T	Properties of fuzzy beta rarely continuous functions -M. Saraswathi, J.Jayasudha	222-224
23	P3073OR	Computational approach for transient behaviour of M/M(a,b)/1bulk service queueing system with starting failure	225-238
24	P3001T	-Shanthi, Muthu ganapathi Subramanian and Gopal sekar b- <i>Hβ</i> -open sets in HGTS -V. Chitra and R. Ramesh	239-245
25	P3034G	The geodetic number in comb product of graphs - V. Chitra and K. Kamesn - V. Chitra and K. Kamesn - Dr. S. Sivasankar, M. Gnanasekar	246-251

Generalized Anti Fuzzy Implicative Ideals of Near-Rings

M. Himaya Jaleela Begum¹, P. Ayesha Parveen², J. Jayasudha ³

Abstract: In this paper, we introduced the concept of $(\Gamma_{\psi}, \Gamma_{\psi} \vee \Upsilon_{\phi})$ -fuzzy implicative ideals of a near-ring and we discussed about its equivalent conditions. Some new characterizations are also given. In particular, We defined the level sets for ξ_p^{ψ} , ξ_p^{ϕ} and $[\xi]_p^{\phi}$

Keywords : Generalized Pythagorean closed sets, Generalized Pythagorean open sets, Generalized Pythagorean Fuzzy Closure, Generalized Pythagorean Fuzzy Interior. **2010 Subject classification:** 54A05, 54A10

1 INTRODUCTION

Fuzzy concept was first introduced by Zadeh 8. A new type of fuzzy subgroup, that is, the $(\in, \in \lor q)$ fuzzy sub group, was introduced by Bhakat and Das 1 using the combined notions of belongingness and quasicoincidence of fuzzy points and fuzzy sets. The idea of beside to and non quasi-coincident relation was given by Saeid and Jun 5. Kim 3 studied the notion of anti fuzzy ideals in near rings. Shabir and Rehman 6 introduced the concept of anti fuzzy left (right, lateral) ideals, anti fuzzy quasi ideals, bi ideals, anti fuzzy generalized bi-ideals in ternary semigroups. Tariq Anwar, Mammuhad Naeem, Saleem Abdullah 7 introduced generalized anti fuzzy ideals in near rings. In this paper, the concept of $(\Gamma_{\psi}, \Gamma_{\psi} \lor \Upsilon_{\phi})$ -fuzzy implicative ideals of a near-ring is given with its equivalent conditions. We give the relationship between $(\Gamma_{\psi}, \Gamma_{\psi} \lor \Upsilon_{\phi})$ -fuzzy implicative ideals and $(\Gamma_{\psi}, \Gamma_{\psi})$ fuzzy implicative ideals of near rings. We bring the definition for three level sets $\xi_p^{\psi}, \xi_p^{\phi}$ and $[\xi]_p^{\phi}$.

¹Department of Mathematics, Sadakathullah Appa College, Tirunelveli-627011. E-mail: himaya2013@gmail.com ²Department of Mathematics, Sadakathullah Appa College, Tirunelveli-627011.

E-mail: aabidaaasima@gmail.com

³Department of Mathematics, Nallamuthu Gounder Mahalingam College, Pollachi, Tamilnadu. E-mail: jsudhu@gmail.com

2 PRELIMINARIES

Throughout this paper, \Re denotes Near ring.

Definition 2.1. A fuzzy set ξ in \Re of the form

$$\xi(j) = \begin{cases} \upsilon \in [0,1) \text{ if } j = i \\ 1 & \text{ if } j \neq i, \end{cases}$$

is called an anti-fuzzy point with 'i' as support and v as value and is denoted by i_v . A fuzzy set ξ in \Re is said to be non unit if there exists $i \in \Re$ such that $\xi(i) < 1$.

Definition 2.2. An anti fuzzy point i_v is said to beside to(correspondingly be non-quasi coincident with) a fuzzy set ξ , written as $i_v \Gamma \xi$ (corresponding $i_v \Upsilon \xi$) if $i_v \Gamma \xi$ (correspondingly $\xi(i) + v < 1$). We say that Γ (correspondingly Υ) is a beside to (correspondingly non-quasi coincident with) relation between anti fuzzy points and fuzzy sets. If $i_v \Gamma \xi$ or $i_v \Upsilon \xi$, we say that $i_v \Gamma \vee \Upsilon \xi$ and $i_v \overline{\Gamma} \xi$ (correspondingly $i_v \overline{\Upsilon} \xi, i_v \overline{\Gamma \vee \Upsilon} \xi$) means that $i_v \Gamma \xi$ (correspondingly $i_v \Upsilon \xi, i_v \Gamma \vee \Upsilon \xi$) does not hold.

Result 2.3. Let $\phi, \psi \in [0,1]$ be such that $\phi < \psi$. For a fuzzy point i_p and a fuzzy set ξ of \Re , we say that (1) $i_p \Gamma_{\psi} \xi$ if $\xi(i) \le p < \psi$ (2) $i_p \Upsilon_{\psi} \xi$ if $\xi(i) + p < 2\phi$ (3) $i_p \Gamma_{\psi} \lor \Upsilon_{\phi} \xi$ if $i_p \Gamma_{\psi} \xi$ (or) $i_p \Upsilon_{\phi} \xi$

Definition 2.4. A non empty subset I of a near-ring \Re is called an implicative ideals if it satisfies 1. (I, +) is a normal subgroup of $(\Re, +)$,

2.
$$\Re I \subseteq I$$
,

3. $(i+k)j - ij \in I$ for any $k \in I$ and $i, j, K \in \Re$,

4. $((i(ji))k) \in I$ whenever $i \in I$ and $k \in I$ for all $i, j, k \in \Re$

3 $(\Gamma_{\psi}, \Gamma_{\psi} \lor \Upsilon_{\phi})$ FUZZY IMPLICATIVE IDEALS OF NEAR RINGS

Definition 3.1. A fuzzy set ξ of \Re is called a $(\Gamma_{\psi}, \Gamma_{\psi} \vee \Upsilon_{\phi})$ fuzzy implicative ideals of \Re if for all $i, j, k \in \Re$ and $p, n \in [0, \psi)$.

(I1a) $i_p \Gamma_{\psi} \xi$ and $j_n \Gamma_{\psi} \xi \Rightarrow (i+j)_{p \lor n} \Gamma_{\psi} \lor \Upsilon_{\phi} \xi$. (I1a^{*}) $i_p \Gamma_{\psi} \xi \Rightarrow (-i)_p \Gamma_{\psi} \vee \Upsilon_{\phi} \xi.$ (I1b) $i_p \Gamma_{\psi} \xi$ and $j_n \Gamma_{\psi} \xi \Rightarrow (ij)_{p \lor n} \Gamma_{\psi} \lor \Upsilon_{\phi} \xi$. (I1c) $i_p \Gamma_{\psi} \xi \Rightarrow (j+i-j)_p \Gamma_{\psi} \lor \Upsilon_{\phi} \xi.$ (I1d) $j_p \Gamma_{\psi} \xi$ and $i \in \Re \Rightarrow (ij)_p \Gamma_{\psi} \lor \Upsilon_{\phi} \xi$. (I1e) $k_p \Gamma_{\psi} \xi \Rightarrow ((i+k)j - ij)_p \Gamma_{\psi} \lor \Upsilon_{\phi} \xi.$ (I1f) $i_p \Gamma_{\psi} \xi$ and $k_n \Gamma_{\psi} \xi \Rightarrow ((i(ji))k)_{p \lor n} \Gamma_{\psi} \lor \Upsilon_{\phi} \xi$. +0 \mathbf{a} b \mathbf{c} 0 \mathbf{a} b \mathbf{c} . 0 b 0 0 0 0 0 0 a \mathbf{c} Example 3.2. 0 b Define the fuzzy set ξ of \Re as $\xi(0) = \xi(b) =$ a а \mathbf{c} а \mathbf{a} \mathbf{a} \mathbf{a} а b b 0 b 0 b с a a с b 0 0 b C \mathbf{c} a \mathbf{c} \mathbf{a} \mathbf{c} $0.4,\xi(a) = 0.3,\xi(c) = 0.5$ for $\phi = 0.1, \overline{\psi} = 0.8, p = 0.5, n = 0.7$.

Theorem 3.3. For a fuzzy set ξ in \Re , the following conditions are equivalent. a) $i_p \Gamma_{\psi} \xi$ and $k_n \Gamma_{\psi} \xi \Rightarrow ((i(ji))k)_{p \lor n} \Gamma_{\psi} \lor \Upsilon_{\phi} \xi$. b) $\xi((i(ji))k) \land \psi \le \xi(i) \lor \xi(k) \lor \phi$.

 $\begin{array}{l} Proof. \ (a) \Rightarrow (b). \ \text{Suppose there exists } i, j, k \in \Re \ \text{and } p \in [0, \psi) \ \text{such that } \xi((i(ji))k) \wedge \psi \leq \xi(i) \vee \xi(k) \vee \phi. \\ \Rightarrow \xi(i) \leq p < \psi, \ \xi(k) \leq n < \psi \ \text{but } \xi((i(ji))k) > p \\ \text{and } \xi((i(ji))k) + p > 2p \geq 2\phi \ (i.e) \ i_p \ \Gamma_{\psi} \ \xi, \ k_n \ \Gamma_{\psi} \ \xi \ \text{but } ((i(ji))k)_p \ \overline{\Gamma_{\psi} \ \vee \ \Upsilon_{\phi}} \ \xi, \\ \text{which is a contradiction. Therefore, } \xi((i(ji))k) \wedge \psi \leq \xi(i) \vee \xi(k) \vee \phi. \\ (b) \Rightarrow (a) \ \text{Conversely, Suppose there exists } i, j, k \in \Re \ \text{and } p, n \in [0, \psi) \ \text{such that } i_p \ \Gamma_{\psi} \ \xi, \ k_n \ \Gamma_{\psi} \ \xi \ \text{but } ((i(ji))k)_{p \vee n} \ \overline{\Gamma_{\psi} \ \vee \ \Upsilon_{\phi}} \ \xi. \ \text{Then } \xi(i) \leq p, \xi(k) \leq n \ \text{but } \xi((i(ji))k) > p \vee n \ \text{and } \xi((i(ji))k) + p \vee n \geq 2\phi \ \text{It follows that } \xi((i(ji))k) > \phi \\ \text{So,given, } \xi((i(ji))k) \wedge \psi > p \vee n \lor \phi \geq \xi(i) \lor \xi(k) \lor \phi \\ (i.e)\xi((i(ji))k) \wedge \psi > \xi(i) \lor \xi(k) \lor \phi, \ \text{which is a contradiction to our assumption.} \\ \end{array}$

Theorem 3.4. For a fuzzy set ξ in \Re , the following conditions are equivalent. a) $i_p \Gamma_{\psi} \xi$ and $j_n \Gamma_{\psi} \xi \Rightarrow (i+j)_{p \lor n} \Gamma_{\psi} \lor \Upsilon_{\phi} \xi$. b) $\xi(i+j) \land \psi \leq \xi(i) \lor \xi(j) \lor \phi$ for all $i, j \in \Re$ and $p, n \in [0, \psi)$.

Theorem 3.5. For a fuzzy set ξ in \Re , the following conditions are equivalent. a) $i_p \Gamma_{\psi} \xi \Rightarrow (-i)_p \Gamma_{\psi} \lor \Upsilon_{\phi} \xi$. b) $\xi(-i) \land \psi \leq \xi(i) \lor \phi$ for all $i, j \in \Re$ and $p, n \in [0, \psi)$.

Theorem 3.6. For a fuzzy set ξ in \Re , the following conditions are equivalent. a) $i_p \Gamma_{\psi} \xi$ and $j_n \Gamma_{\psi} \xi \Rightarrow (ij)_{p \lor n} \Gamma_{\psi} \lor \Upsilon_{\phi} \xi$. b) $\xi(ij) \land \psi \leq \xi(i) \lor \xi(j) \lor \phi$ for all $i, j \in \Re$ and $p, n \in [0, \psi)$.

Theorem 3.7. For a fuzzy set ξ in \Re , the following conditions are equivalent. a) $i_p \Gamma_{\psi} \xi \Rightarrow (j+i-j)_p \Gamma_{\psi} \lor \Upsilon_{\phi} \xi$. b) $\xi(j+i-j) \land \psi \leq \xi(i) \lor \phi$.

Theorem 3.8. For a fuzzy set ξ in \Re , the following conditions are equivalent. a) $k_p \Gamma_{\psi} \xi \Rightarrow ((i+k)j - ij)_p \Gamma_{\psi} \lor \Upsilon_{\phi} \xi$. b) $\xi((i+k)j - ij) \land \psi \leq \xi(k) \lor \phi$ for all $i, j \in \Re$ and $p, n \in [0, \psi)$.

Theorem 3.9. Any $(\Gamma_{\psi}, \Gamma_{\psi} \lor \Upsilon_{\phi})$ fuzzy implicative ideal of \Re such that $p, n \in [\phi, \psi)$ for all $i, j, k \in \Re$ is a $(\Gamma_{\psi}, \Gamma_{\psi})$ fuzzy implicative ideal of \Re .

Proof. Given, ξ be a $(\Gamma_{\psi}, \Gamma_{\psi} \vee \Upsilon_{\phi})$ fuzzy implicative ideal of \Re with $p \in [\phi, \psi)$ for all $i, j, k \in \Re$. Let $i_p \Gamma_{\psi} \xi, k_n \Gamma_{\psi}$. We have, $\xi((i(ji))k) \wedge \psi \leq \xi(i) \vee \xi(k) \vee \phi = p \vee n \vee \phi$ $\xi((i(ji))k) \leq p \vee n < \psi = p \vee n$ since $p, n \in [\phi, \psi)$ Therefore, $((i(ji))k)_{p \vee n} \Gamma_{\psi} \xi$. Hence, ξ is an $(\Gamma_{\psi}, \Gamma_{\psi})$ fuzzy implicative ideal of \Re . Conversely, Let $\xi(i) = p, \xi(k) = n$ where $p, n \in [\phi, \psi)$ then $\xi(i) \leq p < \psi, \xi(k) \leq n < \psi \Rightarrow i_p \Gamma_{\psi} \xi, k_n \Gamma_{\psi} \xi$. Since ξ is an $(\Gamma_{\psi}, \Gamma_{\psi})$ fuzzy implicative ideal of \Re , $((i(ji))k)_{p \vee n} \Gamma_{\psi} \xi$. Now, $\xi((i(ji))k) \wedge \psi \leq p \vee n \wedge \psi = p \vee n = p \vee n \vee \phi = \xi(i) \vee \xi(k) \vee \phi$ Therefore, $\xi((i(ji))k) \leq \xi(i) \vee \xi(k) \vee \phi$. Hence, ξ is an $(\Gamma_{\psi}, \Gamma_{\psi} \vee \Upsilon_{\phi})$ fuzzy implicative ideal of \Re . **Theorem 3.10.** The union of any family of $(\Gamma_{\psi}, \Gamma_{\psi} \vee \Upsilon_{\phi})$ fuzzy implicative ideal of \Re is a $(\Gamma_{\psi}, \Gamma_{\psi})$ fuzzy implicative ideal of \Re .

Proof. Let $\{\xi_f\}_{f\in F}$ be any family of $(\Gamma_{\psi}, \Gamma_{\psi} \vee \Upsilon_{\phi})$ fuzzy implicative ideal of \Re and $\xi = \bigcup_{f\in F}$. Let $i, j, k \in \Re$. Now, $\xi((i(ji))k) \wedge \psi = (\bigcup_{f\in F}((i(ji))k) \wedge \psi = \bigcup_{f\in F}(\xi_f((i(ji))k) \wedge \psi) \leq \bigcup_{f\in F}(\xi_f(i) \vee \xi_f(k) \vee \phi) = (\bigcup_{f\in F}\xi_f)(i) \vee (\bigcup_{f\in F}\xi_f)(k) \vee \phi) = \xi(i) \vee \xi(k) \vee \phi$ Therefore, $\xi((i(ji))k) \wedge \psi \leq \xi(i) \vee \xi(k) \vee \phi$

Definition 3.11. For any fuzzy set ξ in \Re and $p \in [0, 1)$ we define $\xi_p^{\psi} = \{i \in \Re/i_p \ \Gamma_{\psi} \ \xi\}, \xi_p^{\phi} = \{i \in \Re/i_p \ \Upsilon_{\phi} \ \xi\}$ and $[\xi]_p^{\phi} = \{i \in \Re/i_p \ \Gamma_{\psi} \lor \Upsilon_{\phi} \ \xi\}$ It is clear that $[\xi]_p^{\phi} = \xi_p^{\psi} \cup \xi_p^{\phi}$ where $\xi_p^{\psi}, \xi_p^{\phi}$ and $[\xi]_p^{\phi}$ are called Γ_{ψ} -level set, Υ_{ϕ} -level set and $\Gamma_{\psi} \lor \Upsilon_{\phi}$ -level set of ξ respectively.

Theorem 3.12. Let ξ be a fuzzy set in \Re . Then ξ is a $(\Gamma_{\psi}, \Gamma_{\psi} \vee \Upsilon_{\phi})$ fuzzy implicative ideals of \Re iff $[\xi]_p^{\phi} \neq \phi$ is an implicative ideals of \Re for all $p \in [0, \psi)$

Proof. Given, ξ is a $(\Gamma_{\psi}, \Gamma_{\psi} \vee \Upsilon_{\phi})$ fuzzy implicative ideals of \Re . Let $p \in [0, \psi)$ be such that $[\xi]_p^{\phi} \neq \phi$. Let $i, k \in [\xi]_p^{\phi}$ then $i_p \Gamma_{\psi} \vee \Upsilon_{\phi} \xi, k_p \Gamma_{\psi} \vee \Upsilon_{\phi} \xi$. We can consider four cases. (i) $\xi(i) \le p$ and $\xi(k) \le p$ (ii) $\xi(i) \le p$ and $\xi(k) + p < 2\phi$ (*iii*) $\xi(i) + p < 2\phi$ and $\xi(k) \le p$ (*iv*) $\xi(i) + p < 2\phi$ and $\xi(k) + p < 2\phi$ Case (i): $\xi(i) \leq p$ and $\xi(k) \leq p$. For $p \in [0, \phi)$ then $2\phi - p > \phi > p$ Now, $\xi((i(ji))k) \land \psi \leq \xi(i) \lor \xi(k) \lor \phi = p \lor p\phi = \phi < 2\phi - p$ (or) $\xi((i(ji))k) \le p \lor (2\phi - p) \lor \phi = 2\phi - p$ (or) $\xi((i(ji))k) \le (2\phi - p) \lor (2\phi - p) \lor \phi = 2\phi - p$ Therefore, $\xi((i(ji))k) < 2\phi - p$ (i.e) $\xi(i(ji))k + p < 2\phi$ Hence, $((i(ji))k)_p \Upsilon_{\phi} \xi$. Therefore, $((i(ji))k)_p \Gamma_{\psi} \vee \Upsilon_{\phi} \xi$ For $p \in [\phi, \psi)$ then $2\phi - p < \phi \le p$ Now, $\xi((i(ji))k) \le \xi(i) \lor \xi(k) \lor \phi = p \lor p\phi = p \text{ (or) } \xi((i(ji))k) \le p \lor (2\phi - p) \lor \phi = p$ (or) $\xi((i(ji))k) \leq (2\phi - p) \lor (2\phi - p) \lor \phi = \phi \leq p$. Therefore, $\xi((i(ji))k) \leq \phi$ Hence, $((i(ji))k)_p \Gamma_{\psi} \xi$. Therefore, $((i(ji))k)_p \Gamma_{\psi} \vee \Upsilon_{\phi} \xi$ simiarly, we can prove the other cases. We can easily prove the converse. Therefore, ξ is an $(\Gamma_{\psi}, \Gamma_{\psi} \vee \Upsilon_{\phi})$ fuzzy implicative ideals of \Re

4 CONCLUSION

In this research article, We talked about certain characterizations of $(\Gamma_{\psi}, \Gamma_{\psi} \vee \Upsilon_{\phi})$ fuzzy implicative ideals of near-rings and also we discussed about its level sets.

5 ACKNOWLEDGEMENTS

Our special thanks to referees for their critical referring of the manuscript and valuable suggestions. The author desires to convey their profound thanks to Tamil Nadu Government for its financial assistance.

References

- [1] Bhakat SK, Das P, $(\in, \in \lor q)$ fuzzy subgroups, Fuzzy Sets Syst 80:(1996) 359-368
- [2] Jun Y B, Khan A, Generalized anti fuzzy bi ideals in ordered semigroups, Lobachevskii Journal of Mathematics, (2010) Vol 31, No. 1,65-76
- [3] Kim K H, Jun B, On anti fuzzy ideals in near rings, Iranian Journal of Fuzzy Systems, (2005), Vol 2, No.2, 71-80
- [4] Pilz G: Near-rings, 2nd edn, North-Holland Mathematics Studies, Vol 23. North-Holland, Amsterdam, 1983
- [5] Saeid A B and Jun Y B, Redefined fuzzy subalgebras of BCK/BCI-algebras, Iranian Journal of Fuzzy Systems, Vol 5(2), 63-70 (2008)
- Shabir M, and Rehman N, Characterizations of ternary semigroups by their anti fuzzy ideals, Annals of Fuzzy Mathematics and Informatics, (2011), Vol 2, No.2,227-238
- [7] Tariq Anwar, Mammuhad Naeem and Saleem Abdullah, Generalized Anti fuzzy ideals in Near rings, Indian Journal of Science and Technology, (2013), Vol 6(8)5143-5154
- [8] Zadeh L.A, *Fuzzy sets*, Information and control, 8(1965), 338-353
