

VOLUME XII ISBN No.: 978-93-94004-01-6 Physical Science

NALLAMUTHU GOUNDER MAHALINGAM COLLEGE

An Autonomous Institution, Affiliated to Bharathiar University, An ISO 9001:2015 Certified Institution,

Pollachi-642001

SUPPORTED BY

PROCEEDING

One day International Conference EMERGING TRENDS IN SCIENCE AND TECHNOLOGY (ETIST-2021)

27th October 2021

Jointly Organized by

Department of Biological Science, Physical Science and Computational Science

NALLAMUTHU GOUNDER MAHALINGAM COLLEGE

An Autonomous Institution, Affiliated to Bharathiar University

An ISO 9001:2015 Certified Institution, Pollachi-642001.

Proceeding of the

One day International Conference on

EMERGING TRENDS IN SCIENCE AND TECHNOLOGY (ETIST-2021)

27th October 2021

Jointly Organized by

Department of Biological Science, Physical Science and Computational Science

Copyright © 2021 by Nallamuthu Gounder Mahalingam College

All Rights Reserved

ISBN No: 978-93-94004-01-6

Nallamuthu Gounder Mahalingam College

An Autonomous Institution, Affiliated to Bharathiar University

An ISO 9001:2015 Certified Institution, 90 Palghat Road, Pollachi-642001.

www.ngmc.org

ABOUT THE INSTITUTION

A nations's growth is in proportion to education and intelligence spread among the masses. Having this idealistic vision, two great philanthropists late. S.P. Nallamuthu Gounder and Late. Arutchelver Padmabhushan Dr.N.Mahalingam formed an organization called Pollachi Kalvi Kazhagam, which started NGM College in 1957, to impart holistic education with an objective to cater to the higher educational needs of those who wish to aspire for excellence in knowledge and values. The College has achieved greater academic distinctions with the introduction of autonomous system from the academic year 1987-88. The college has been Re-Accredited by NAAC and it is ISO 9001 : 2015 Certified Institution. The total student strength is around 6000. Having celebrated its Diamond Jubilee in 2017, the college has blossomed into a premier Post-Graduate and Research Institution, offering 26 UG, 12 PG, 13 M.Phil and 10 Ph.D Programmes, apart from Diploma and Certificate Courses. The college has been ranked within Top 100 (72nd Rank) in India by NIRF 2021.

ABOUT CONFERENCE

The International conference on "Emerging Trends in Science and Technology (ETIST-2021)" is being jointly organized by Departments of Biological Science, Physical Science and Computational Science - Nallamuthu Gounder Mahalingam College, Pollachi along with ISTE, CSI, IETE, IEE & RIYASA LABS on 27th OCT 2021. The Conference will provide common platform for faculties, research scholars, industrialists to exchange and discus the innovative ideas and will promote to work in interdisciplinary mode.

EDITORIAL BOARD

Dr. V. Inthumathi

Associate Professor & Head, Dept. of Mathematics, NGM College

Dr. J. Jayasudha

Assistant Professor, Dept. of Mathematics, NGM College

Dr. R. Santhi

Assistant Professor, Dept. of Mathematics, NGM College

Dr. V. Chitra

Assistant Professor, Dept. of Mathematics, NGM College

Dr. S. Sivasankar

Assistant Professor, Dept. of Mathematics, NGM College

Dr. S. Kaleeswari

Assistant Professor, Dept. of Mathematics, NGM College

Dr. N.Selvanayaki

Assistant Professor, Dept. of Mathematics, NGM College

Dr. M. Maheswari

Assistant Professor, Dept. of Mathematics, NGM College

Mrs. A. Gnanasoundari

Assistant Professor, Dept. of Mathematics, NGM College

Dr. A.G. Kannan

Assistant Professor, Dept. of Physics, NGM College

S. No.	Article ID	Title of the Article	Page No.
1	P3049T	Fuzzy parameterized vague soft set theory and its applications - Yaya Li , Velusamy Inthumathi, Chang Wang	1-14
2	P3050T	Intuitionistic fuzzy soft commutative ideals of BCK-algebras - Nana Liu, Velusamy Inthumathi, Chang Wang	15-37
3	P3051T	Intuitionistic fuzzy soft positive implicative ideals of BCK-algebras - Nana Liu, Velusamy Inthumathi, Chang Wang	38-56
4	P3052T	Vague Soft Fundamental Groups - M. Pavithra, Saeid Jafari, V. Inthumathi	57-70
5	P3053T	Nano Generalized pre c-Homeomorphism in Nano Topologicalspaces - P.Padmavathi and R.Nithyakala	71-76
6	P3054D	Third order nonlinear difference equations with a superlinearneutral term - S.Kaleeswari, Ercan Tunc	77-88
7	P3055OR	Usance of Mx/G(a,b)/1 Queue Model for a Real Life Problem - B.Lavanya, R.Vennila, V.Chitra	89-99
8	P3056T	Solving Intuitinistic Fuzzy Multi-Criteria Decision Making forProblems a Centroid Based Approach - M. Suresh, K. Arun Prakash and R. Santhi	100-109
9	P3057T	Magnitude Based Ordering of Triangular Neutrosophic Numbers - K. Radhika, K. Arunprakash and R. Santhi	110-118
10	P3058D	Solution of Linear Fuzzy Volterra Integro- Differential Equationusing Generalized Differentiability	119-143
11	P3059D	- S. Indrakumar, K. Kanagarajan, R. Santhi An Analysis of Stability of an Impulsive delay differential system - S. Priyadharsini1 E. Kungumaraj and R. Santhi	144-149
12	P3060T	The Knight's Path Analysis to reach the Aimed Destination by using the Knight's Fuzzy Matrix - K. Sugapriya, B. Amudhambigai	150-155
13	P3061T	A new conception of continuous functions in binary topologicalspaces -P. Sathishmohan, K. Lavanya, V. Rajendran and M. Amsaveni	156-160
14	P3063T	The Study of Plithogenic Intuitnistic fuzzy sets and its applicationin Insurance Sector - S.P. Priyadharshini and F. Nirmala Irudayam	161-165
15	P3064T	Contra *αω continuous functions in topological spaces - K.Baby, M.Amsaveni, C.Varshana	166-175
16	P3065OR	Stability analysis of heterogeneous bulk service queueing model - R. Sree Parimala	176-182
17	P3067T	Generarlized pythagorean fuzzy closedsets - T.Rameshkumar, S. Maragathavalli and R. Santhi	183-188
18	P3068T	Generalized anti fuzzy implicative ideals of near-rings - M. Himaya Jaleela Begum, P. Ayesha Parveen and J.Jayasudha	189-193
19	P3069T	Horizontal trapezoidal intuitionistic fuzzy numbers in stressDetection of cylindrical shells - J.Akila Padmasree, R. Parvathi and R.Santhi	194-201
20	P3070MH	Role of mathematics in history with special reference to pallavaweights and measure -S. Kaleeswari and K. Mangayarkarasi	202-207
21	P3071G	Feature selection and classification from the graph using neuralnetwork based constructive learning approach -A. Sangeethadevi, A. Kalaivani and A. shanmugapriya	208-221
22	P3072T	Properties of fuzzy beta rarely continuous functions -M. Saraswathi, J.Jayasudha	222-224
23	P3073OR	Computational approach for transient behaviour of M/M(a,b)/1bulk service queueing system with starting failure	225-238
24	P3001T	-Shanthi, Muthu ganapathi Subramanian and Gopal sekar b- <i>Hβ</i> -open sets in HGTS -V. Chitra and R. Ramesh	239-245
25	P3034G	The geodetic number in comb product of graphs - V. Chitra and K. Kamesn - V. Chitra and K. Kamesn - Dr. S. Sivasankar, M. Gnanasekar	246-251

PROPERTIES OF FUZZY BETA RARELY CONTINUOUS FUNCTIONS

¹Dr.M.Saraswathi, ²Dr. J. Jayasudha

Abstract: In this paper we introduce the concepts of fuzzy rarely β -continuous functions, fuzzy rarely slightly β -continuous functions and fuzzy rarely weakly β -continuous functions. Some interesting properties are investigated besides giving some examples.

Key Words: Fuzzy rare set, fuzzy rarely β -continuous, fuzzy rarely slightly β -continuous, fuzzy rarely weakly β -continuous functions.

1.Introduction

The study of fuzzy sets was introduced by Zadeh [8] in 1965. The idea was welcomed because it addresses the uncertainity, something classical cantor set theory could not address. Fuzzy set theory provides a natural way to deal with inaccuracy and a strict mathematical frame work for the study of uncertain phenomena and concepts. The concept of fuzzy topological space was introduced by C.L.Chang [4] in 1968. Continuity is one of the most important and fundamental properties that have been widely used in Mathematical Analysis. Jafari [6] introduced the notion of rare continuity as a generalisation of weak continuity. The concept of β -open sets was introduced in [1] and studied also by Allam and El Hakeim [2]. In [3] this concept has been generalized to fuzzy setting.

The purpose of this paper is to introduce the concepts of fuzzy rarely β -continuous functions, fuzzy rarely slightly β -continuity and fuzzy rarely weakly β -continuity. Relationship between these continuous functions are investigated besides giving some examples.

2. Preliminaries

Definition 2.1. A fuzzy topology on a set X is a collection δ of fuzzy set in X satisfying

i) $0 \in \delta$ and $1 \in \delta$

ii) μ and ρ belong to δ then so does $\mu \bigcap \rho \in \delta$

iii) if $\mu_i \in \delta$ for each $i \in I$ then $\bigcup_{i \in I} \mu_i \in \delta$

 δ is a fuzzy topology on X and the pair (X, δ) is called a fuzzy topological space. Every member of δ is called fuzzy open set. A fuzzy set is closed if and only if its complement is fuzzy open.

Definition 2.2. Let λ be any set in fuzzy topological space (X, δ). We define the closure of λ and the interior of λ as,

cl $\lambda = \bigcap \{ \mu/\mu \ge \lambda, \mu \text{ is fuzzy closed} \}$ Int $\lambda = \bigcup \{ \sigma / \sigma \le \lambda, \sigma \text{ is fuzzy open} \}$

Definition 2.3. A fuzzy set λ in fuzzy topological space (X,δ) is said to be fuzzy β -open if $\lambda \leq cl$ (int $(cl(\lambda))$). The complement of a fuzzy β -open sets is said to be fuzzy β -closed.

The fuzzy β -closure and fuzzy β -interior are defined as follows.

 $\beta\text{-cl}(\lambda) = \bigcap \{\eta: \lambda \le \rho, \rho \text{ is } \beta\text{-closed} \}$ $\beta\text{-int}(\lambda) = \bigcup \{\eta: \lambda \ge \rho, \rho \text{ is } \beta\text{-open} \}$

Dr.M.Saraswathi, Assistant professor, Department of Mathematics, Kandaswami kandar's college, P.Velur, Tamilnadu. Email - <u>msmathsnkl@gmail.com</u>

Dr. J.Jayasudha, Assistant professor, Department of Mathematics, NGM College, Pollachi 642001. Email_ jsudhu@gmail.com

Definition 2.4. A fuzzy set in X is called fuzzy singleton if and only if it takes the value 0 for all $y \in X$ except one, say, $x \in X$. If its value at x is $\in (0 < \epsilon \le 1)$, We denote this fuzzy singleton by x_{ϵ} , where the point x is called its support.

Definition 2.5. A fuzzy set λ in a fuzzy topological space (X,δ) is said to be

- i) fuzzy β -open if $\lambda \leq cl$ (int (cl(λ)))
- ii) fuzzy pre-open if $\lambda \leq int (cl(\lambda))$
- iii) fuzzy semi-open if $\lambda \leq cl(int(\lambda))$
- iv) fuzzy regular open if $\lambda = int (cl(\lambda))$

3. Main results

Definition 3.1. A fuzzy set R is called **fuzzy rare set** if $int(R)=\varphi$

Definition 3.2. A fuzzy set R is called **fuzzy nowhere dense** set if $int(cl(R)) = \varphi$

Definition 3.3. Let (X,G) and (Y,H) be two fuzzy topological spaces. A function $f: (X,G) \rightarrow (Y,H)$ is called

- i) **fuzzy** β -continuous if for each fuzzy point $x \in X$ and each open set V containing f(x) there exists a β -open set U \in SPO(x) containing x such that $f(U) \leq V$.
- ii) **fuzzy slightly** β -continuous if for each point $x \in X$ and each clopen set V containing f(x) there exists a β -open set U of x containing x such that $f(U) \leq V$.
- iii) **fuzzy weakly** β -continuous if for each fuzzy point $x \in X$ and each open set V containing f(x) there exists $U \in SPO(x)$ containing x such that $f(U) \leq cl(V)$.

Definition 3.4. Let (X,G) and (Y,H) be two fuzzy topological spaces. A function f: $(X,G) \rightarrow (Y,H)$ is called

- i) **fuzzy rarely** β -continuous if for each fuzzy point $x \in X$ and each fuzzy open set V in (Y,H) containing f(x) there exists a fuzzy rare set W with $V \cap Int(cl(W)) = \varphi$ a fuzzy β -open set U in (X,T) such that $f(U) \leq V \cap W$.
- ii) **fuzzy rarely slightly** β **-continuous** if each fuzzy point $x \in X$ and each clopen set V containing f(x) there exists a fuzzy rare β -open set W with $V \cap cl(int(W)) = \varphi$ containing x such that $f(U) \leq V$.
- iii) **fuzzy rarely weakly** β -continuous if for each fuzzy point $x \in X$ and each open set V containing f(x) there exists a fuzzy rare set W with $V \cap cl(int(W)) = \varphi$ such that $f(U) \leq V$.

Example 3.1. Let X={a,b,c}. Define the fuzzy sets A,B and C as follows:

A={x,(
$$\frac{a}{1}, \frac{b}{0}, \frac{c}{0}$$
)}, B={x,($\frac{a}{0}, \frac{b}{1}, \frac{c}{0}$)} and C={x,($\frac{a}{0}, \frac{b}{0}, \frac{c}{1}$)}

Then T={ φ , I_x,A} and S={ φ , I_x,B} are fuzzy topologies on X.

Define f: $(X,T) \rightarrow (X,S)$ as a identity function. Then f is a rarely β -continuous function.

Proposition 3.1. Let (X,G) and (Y,H) be any two fuzzy topological spaces. For a function f: $(X,G) \rightarrow (Y,H)$ the following statements are equivalent:

- i) The function f is fuzzy rarely β -continuous at x_i in (X,G).
- ii) For each fuzzy point $x_i \in X$, f is fuzzy rarely slightly β -continuous.
- iii) For each open set V containing f(x) and for each fuzzy rare set W, f is fuzzy rarely weakly β continuous.

Proof: (i) \Rightarrow (ii) Let K be the fuzzy open set in (Y,H) containing $f(x_i) \in X \leq cl$ (int(K)), then there exists a fuzzy rare set L with $cl(Int(K)) \cup cl(R)=\varphi$ and a fuzzy β -clopen set U in (X,G) containing x_i such that $f(U) \leq cl(int(K)) \cup L$. We have $cl(f(U) \cap K)=cl(f(U))\cap cl(int(G))=\varphi$

(ii) \Rightarrow (iii) Let K be a fuzzy open set in (Y,H) containing $f(x_i)$. Then there exists a fuzzy β -open set L containing x_i such that $cl(f(K) \le int(K))$. We have let U be a fuzzy β -clopen set in (X,G) containing $f(x_i)$ and for each fuzzy rare set W such that $cl(K) \cap W = \varphi$. Then $cl(int(K) \cap W = \varphi$ and $f(U) \le K$ then f is weakly β -continuous.

(iii) \Rightarrow (i) Assume that K be a fuzzy open set in (Y,H) containing f(x_i). Then there exists a fuzzy rare set W with Int(K) \cap W= φ such that x_i \in cl(f⁻¹(int(K)) \cap W). Let V=cl(f⁻¹(int(K)) \cap W. Hence K is a fuzzy β -open set in (Y,H). Therefore f(K) \leq cl(int(cl(K))) \cap W. Hence we have cl(f(K) \cap W)= $\varphi \Rightarrow$ f(K) \leq V \cap W and f is fuzzy rarely β -continuous.

Proposition 3.2. Let (X,G) and (Y,H) be any two fuzzy topological spaces. Then the function $f:(X,G) \rightarrow (Y,H)$ is fuzzy rarely β -continuous if and only if $f^{-1}(K) \leq int_{\beta}(f^{-1}(K \cap L))$ where K is fuzzy open set and L is a fuzzy rare set.

Proof: Suppose that K be a fuzzy rarely β open set in (Y,H) containing $f(x_i)$. Then $K \cap int(cl(L)) = \varphi$ and V be a fuzzy β open set in (Y,H) containing x_i such that $f(V) \leq K \cap L$. Hence $x_i \in V \leq f^{-1}(K \cap L) \Rightarrow f^{-1}(K) \leq int_{\beta} f^{-1}(K \cap L)$.

Definition 3.5. Let (X,G) and (Y,H) be fuzzy topological spaces and f:X \rightarrow Y be a map. Then the map f is said to be **fuzzy strongly** β **-continuous** if for each fuzzy semi open set λ in Y, f⁻¹(λ) is fuzzy β -open set in X.

Example 3.2. Let X={a,b},Y={c,d}. Let μ and λ be fuzzy sets in X and Y defined by $\mu(a)=0.1, \mu(b)=0.2, \mu(c)=0.4$ and $\mu(d)=0.5$. Let $\delta_1=\{0, \mu, 1\}$ and $\delta_2=\{0, \lambda, 1\}$ be the fuzzy topologies on sets X and Y respectively. The map f:X \rightarrow Y defined as f(a_i)=b_i, i=1,2 is fuzzy strongly β -continuous.

Proposition 3.3. Let (X,G) and (Y,H) be fuzzy topological spaces and $f: X \to Y$ be a map. Then f is fuzzy strongly β^* -continuous iff for each fuzzy set λ in X, s(int(f(λ))) $\leq f(\beta$ -int(λ))

Proof: Let $f:(X,G) \to (Y,H)$ be a bijective map. Suppose f is fuzzy strongly β^* -continuous. If λ is a fuzzy set in X then $f(\lambda)$ is a fuzzy set in Y. Since f is fuzzy strongly β^* -continuous, we have $f^{-1}(s-cl(f(\lambda))) \leq \beta-cl(f^{-1}(f(\lambda)))$. Since f is bijective $\beta-cl(f^{-1}(f(\lambda))) = \beta-cl(\lambda)$. Since f is onto, we have $s-cl(f(\lambda)) \leq f(\beta-cl(\lambda))$.

Conversely, let μ be a fuzzy semi-open set in Y. Then s-cl(μ)= μ . Also f⁻¹(μ) is a fuzzy set in X. Further since f is one-one, α -cl(f⁻¹(μ)) \leq f⁻¹(μ). Thus f⁻¹(μ) is a fuzzy β -open set in X and the map is fuzzy strongly β^* -continuous.

References

- 1. Abd. El.Monseb, S.N.El-Deeb and R.A.Mahmould, β -open sets and β -continuous mapping. Bull.Fac.Sci.Assiut Univ.(1982).
- 2. A.A.Allam and Abd.El.Hakkim,On β-compact spaces, Bull.Calcutta Math. Soc.81(1989) 179-182.
- 3. G.Balasubramanian. On fuzzy β-compact spaces and fuzzy β-extremely disconnected spaces. Kybernetika 33(1997), 271-277.
- 4. C.L.Chang, Fuzzy topological spaces, J.Math.Anal.Appl.24(1968),182.190.
- 5. ErdalEkici, On the forms of continuity for fuzzy functions.
- 6. S. Jafari, Rarely α -continuity, Bulietin of the Malaysian mathematical science society, 2(28)2,(2005),157-161.

7. Levine.N.,Decomposition of continuity in topological spaces, Amer. Math.Monthly(60),(1961) 44-46. I.A.Zadeh, Fuzzy sets, Information and control, Vol.8, no.3,pp338-353.1965