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COMPUTATIONAL APPROACH FOR TRANSIENT 

BEHAVIOUR OF M/ M (a, b) /1 BULK SERVICE QUEUEING 

SYSTEM WITH STARTING FAILURE 
 

Shanthi1 – Muthu Ganapathi Subramanian2 – Gopal Sekar3 

©NGMC 2021 

ABSTRACT:  In this paper, the transient behaviour of single server bulk service queueing system with starting 

failure model has been considered. Arrival rate follows a Poisson process with parameter λ. Service will be given by 

batch and it follows an exponential distribution with parameter µ. Returning from failure state to service state 

follows an exponential distribution with parameter α. An infinitesimal generator matrix is formed for all transitions. 

Time dependent solutions and steady state solutions are acquired by using Eigen values and Eigen vectors. 

Numerical studies have been done for time dependent average number of customers in the queue, transient 

probabilities of server idle, busy and server is in failure for several values of t, λ, µ, α, a and b. 

 

KEYWORDS: Bulk Service, Infinitesimal Matrix, Eigen values, Eigen vectors, Starting Failure, Exponential of a 

Matrix. 

1.  INTRODUCTION 

The main objective of this research paper is to analyse the transient behaviour of bulk service queueing system by 

new computational approach. Queues with batch arrivals or batch services or both in batches are called bulk queues. 

The size of a batch may be fixed or a random variable. There are queueing situations in which arrival is single but 

service is in batch. Bulk service queues have potential applications in many areas e.g. In traffic signal systems, in 

computer networks where jobs are processed in batches, in restaurants, cinema halls, in transportation processes 

involving buses, airplanes, trains, ships, elevators, and so on.   

In the study of queueing systems, determination of transient solution is very much essential to analyze the behavior 

of the system. Transient analysis is very useful for all queueing models to obtain optimal solutions which pave way 

to control the system. Even in the case of a simple M/M/1 queue, analytical approach to obtain transient behaviour is 

very difficult. Neuts (1967) explained about general class of bulk queues with Poisson input [7]. Neuts (1981) 

discussed about Matrix Geometric Solutions in Stochastic Models [8].  
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Ammar, (2017) has studied transient solution of an M / M /1 vacation queue with a waiting server and impatient 

customers [1]. Krishna Kumar, Pavai Madheswari and Vijayakumar, (2002) have discussed feedback and starting 

failures in retrial queue [5]. Jinting Wang, Qing Zhao, (2007) have analysed retrial queue with general retrial times 

and starting failures [4]. Varalakshmi, Rajadurai, Saravanarajan and Chandrasekaran,( 2016) have studied two 

phases of service, immediate Bernoulli feedbacks, single vacation and starting failures in retrial queue with general 

distribution [10]. 

 

Madhu Jain and Seema Agarwal, (2010) have explained retrial queue with starting failures and optional service [6]. 

Arivudainambi and Gowsalya, (2017) have Analysed retrial queue with Bernoulli vacation, two types of service and 

starting failure [2]. Rama Devi, Aankammarao and chandan (2019) have discussed Two-Phase, N policy, Server 

Failure and Second Optional Batch Service with Customers impatient behaviour [9]. Jinting wang, Peng-Fengzhou 

(2010) have studied batch arrival retrial queue with starting failures, feedback and admission control [3].  

 

2. THE MATHEMATICAL MODEL AND ITS SOLUTIONS 

A new computational method is used to estimate the Transient behaviour of Single server Bulk service queueing 

system with starting failure. We assume that the failure occur when the server starts the service. The server goes to 

the state of failure. After repair the server goes to the service state and starts the service immediately. According to 

the general bulk service rule pioneered by Neuts (1967), the server begins service only when a minimum of ‘a’ 

customers in the waiting room and a maximum service capacity is ‘b’.  

 

The general considerations for Bulk Service with Starting Failure:   

 After completion of the service if the number of customers in the queue is less than ‘a’ then the server 

remains idle and start the service only if the batch size reaches ‘a’.  

 After completion of the service if the number of customers in the queue lies between ‘a’ and ‘b’ then all the 

customers in the queue will be taken for service and queue becomes empty. If the server starts service 

successfully then the customer gets service immediately and leaves the system. But the service not started 

successfully then the server goes to state of failure and after repair the server start the service for the batch 

of customers. 

 After completion of the service if there are more than ‘b’ customers are waiting in the queue then the first 

‘b’ customers are taken for service and the surviving customers will have to wait for service. If the server 

starts service successfully then the customer gets service immediately and leaves the system. But the 

service not started successfully then the server goes to state of failure and after repair the server start the 

service. 

3. DESCRIPTION OF RANDOM PROCESS  

Let N(t) be the random variable which represents the number of customers in the queue at time t and C(t) be the 

random variable which represents the server status at time t. The random process is described as  
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{ < N(t) ,C(t) > / {N(t) = 0,1,2,3,…,a-1 ; C(t) = 0} U { <  N(t) ,C(t) >N(t) = 0,1,2,3,… ; C(t) = 1} U { <  N(t) ,C(t) > 

N(t) = a,a+1,… ; C(t) = 2} 

 C (t) = 0 if the server is idle at time t   

 C (t) = 1 if the server is busy at time t 

C (t) = 2 if the server is in failure state at time t   

We define,  

0 ( )nP t : Probability that there are n customers in the queue when the server is idle at time t 

1( )nP t : Probability that there are n customers in the queue when the server is busy at time t 

2 ( )nP t : Probability that the server is in failure state when there are n customers in the queue at time t 

The Chapman-Kolmogorov equations are  

The server is idle 

'
00 00 1 01P (t) = -λP (t)+μ P (t)

                                                                                                                                
(1.1)   

'
n0 n0 n-10 n1P (t) = -λP (t)+λP (t)+μP (t)      for   n = 1,2,...,(a-1)

                                                                  
(1.2)               

The server is busy 

b b
'
01 01 k1 k2

k=a k=a

P (t) = -(λ+μ)P (t)+μ P (t) α P (t) 
                                                                                           

(1.3)   

'
n1 n1 n-11 n+b1 n+b2P (t) = -(λ+μ)P (t)+λP (t)+μP (t)+αP (t) for n = 1,2,3,...                                                   (1.4)   

The server is in failure 

'
a2 a2 a-10P (t) = -(α+λ)P (t)+λP (t)                                                                                                (1.5)   

'
n2 n2 n-12P (t) = -(α+λ)P (t)+λP (t)  f r n = a+1,a+o 2,...

                                                                                  
(1.6)   

The infinitesimal generator matrix Q for this model is given below 

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

.....

.....

.....

.....

. . . . . .....

. . . . . .....

A A A A A

A A A A A

A A A A A
Q

A A A A A

 
 
 
 

  
 
 
  
 

 

The matrices 
00, 01 10 11 20 02, , , , ,...A A A A A A  are described in the Infinitesimal generator matrix Q can be obtained from 

the following infinitesimal transition rates of process X as follows 
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(0, )( , )

( , ) ( , ) 0

( , ) ( 1, ) 0

( ) ( , ) ( , ) 1

( , ) ( 1, ) 1

( , ) ( , 1) 1

0

j l m

if l m i j for j

if l m i j for j

if l m i j for j
q

if l m i j for j

if l m i j for j

otherwise





 





  


  

   


  

   



 
( , )( , )

( , ) ( , ) 0and 1,2,..., 2

( , ) ( 1, ) 0and 1,2,..., 2

( ) ( , ) ( , ) 1and 1,2,..., 2

( , ) ( 1, ) 1and 1,2,..., 2

( , ) ( , 1) 1and 1,

i j l m

if l m i j for j i a

if l m i j for j i a

if l m i j for j i a
q

if l m i j for j i a

if l m i j for j i





 





    

    

     


    

    2,..., 2

0

a

otherwise







 



 

( , )( , )

( , ) ( , ) 0and 1

( , ) ( 1, 2) 0and 1

( ) ( , ) ( , ) 1and 1

( , ) ( 1, ) 1and 1

( , ) ( , 1) 1and 1

0

i j l m

if l m i j for j i a

if l m i j for j i a

if l m i j for j i a
q

if l m i j for j i a

if l m i j for j i a

otherwise





 





    


     

     


    

     



 

( , )( , )

( ) ( , ) ( , ) 1and

( , ) ( 1, ) 1and

( , ) (0,1) 1and

( ) ( , ) ( , ) 2and 

( , ) ( 1, ) 2and 

( , ) (0,1) 2and 

i j l m

if l m i j for j i atob

if l m i j for j i atob

if l m for j i atob

q if l m i j for j i atob

if l m i j for j i atob

if l m for j i a

 





 





    

   

  

     

   

  

0

tob

otherwise













 

( , )( , )

( ) ( , ) ( , ) 1and 1, 2,...

( , ) ( 1, ) 1and 1, 2,...

( , ) ( , ) 1and 1, 2,...

( ) ( , ) ( , ) 2and 1, 2,...

( , ) ( 1, ) 2and 

i j l m

if l m i j for j i b b

if l m i j for j i b b

if l m i b j for j i b b

q if l m i j for j i b b

if l m i j for j i b

 





 



      

     

     

       

    1, 2,...

( , ) ( , 1) 2and 1, 2,...

0

b

if l m i b j for j i b b

otherwise









  


      



 

Remaining all other entries are zero. 

Further, we can write the above equations (1.1), (1.2), (1.3), (1.4), (1.5) and (1.6) as  



COMPUTATIONAL APPROACH FOR TRANSIENT BEHAVIOUR OF M/ M (a, b) /1 BULK 

SERVICE QUEUEING SYSTEM WITH STARTING FAILURE 
____________________________________________________________________________________________ 

ETIST 2021     

229 

( ) ( )X t AX t  where
TA Q  

Where  T

00 01 10 10 a-10 a-11 a1 a2
[X(t)] =   P (t) P (t) P (t) P (t) , . . . , P (t) P (t) P (t) P (t) . . . .  

Solving the above set of equation we get, 

0X(t)=e XtA

 

When t = 0,  0
X = X(0) .1 0 0 . .

T


 

 

4. DESCRIPTION OF COMPUTATIONAL METHOD 

The following effective computational procedure is used to find the Time dependent probabilities of number of 

customers in the queue at time t. The time dependent probabilities vector is denoted by 

 00 01 10 11 10 11 1 2 11 12 1 2( ) ( ), ( ), ( ), ( ),..., ( ), ( ), ( ), ( ), ( ), ( ),..., ( ), ( )
T

a a a a a a M MX t P t P t P t P t P t P t P t P t P t P t P t P t     

Step 1: Assume that the matrix Q is finite that is the number of customers in the queue at time t is M (sufficiently 

large).so that the loss probability is small. The only choice available for studying M is through algorithmic methods 

because of the intrinsic nature of the system. While a number of approaches are available for determining the cut-off 

point, M, the one that seems to perform well is to increase M until the largest individual change in the elements of X 

(t) for successive values is less than ε a predetermined infinitesimal value. 

Step 2: Find the Eigen values and Eigen vectors of this finite order matrix A. 

Step3: Let 1 2 3 2( 1), , ,..., Md d d d   be 2(M+1) Eigen values and  1 2 2 12, , ,...,
M

c c c c
  be 2(M+1) Eigen 

vectors. 

Step 4: Represent this Eigen vectors as column vectors of a matrix  1 2 3 2( 1), , ,..., MC c c c c   

Step 5: Let  

1

2

3

2( 1)

0 0 . . 0

0 0 . . 0

0 0 . . 0

. . . . . .

. . . . . .

0 0 0 . . M

d

d

d
D

d 

 
 
 
 

  
 
 
 
 
   

Step 6: Find the Exponential of the matrix tA using D and C. 
1tA tDe Ce C  

Step 7: Extract the first column of this Exponential matrix tA and store in X (t). 

Step 8: This probability vector X (t) provides time dependent probabilities of number of customers in the queue at 

time t.  

5. SYSTEM PERFORMANCE MEASURES 



S. Shanthi, Dr. A. Muthu Ganapathi Subramanian, Dr. Gopal Sekar. 

 

230  ETIST 2021 

 The following system measures are used to bring out the Transient behaviour of bulk service queueing model with 

starting failure under study. Numerical study has been dealt in very large scale to study the following measures for 

several values of t, λ, μ, α, a and b. 

 

a. Probability that there are n customers in the queue when the server is idle at time t = 
0 ( )nP t  

b. Probability that there are n customers in the queue when the server is busy at time t = 
1( )nP t  

c. Probability that there are n customers in the queue when the server is in failure at time t = 
2 ( )nP t  

d. Probability that the server is idle at time t = 

1

idle 0

0

( ) ( )
a

n

n

P t P t




  

e. Probability that the server is busy at time t = busy 1

0

( ) ( )n

n

P t P t




  

f. Probability that the server is failure at time t = failure 2( ) ( )n

n a

P t P t




  

g. Average number of customers in the queue at time t = 

1

0 1 2

0 0

( ) ( ) ( ) ( )
a

q n n n

n n n a

L t nP t nP t nP t
  

  

      

6. NUMERICAL COMPUTATIONS  

 

The Time dependent System performance measures and Transient probabilities of this model have been done and 

expressed in the form of tables, which are shown below for several values of t, λ, μ, α, a and b.   

 

Table 1: Transient probability distribution of number of customers in the queue when the server is idle for various values of t, λ = 5, μ = 10, α = 

5, a = 3 and b = 5. 

t P00(t) P 10(t) P 20(t) 

0.3 0.2415 0.3430 0.2535 

0.6 0.1465 0.2308 0.2704 

0.9 0.1550 0.2160 0.2468 

1.2 0.1566 0.2191 0.2449 

1.5 0.1561 0.2193 0.2457 

1.8 0.1561 0.2191 0.2457 

2.1 0.1561 0.2191 0.2456 

2.4 0.1561 0.2191 0.2456 

2.7 0.1561 0.2191 0.2456 

3.0 0.1561 0.2191 0.2456 

 

 

Table 2: Transient probability distribution of number of customers in the queue when the server is idle for various values of t, λ = 5, μ = 10, α = 

5, a = 4 and b = 12. 
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t P00(t) P 10(t) P 20(t) P 30(t) 

0.4 0.1504 0.2781 0.2732 0.1811 

0.8 0.1138 0.1590 0.2006 0.2236 

1.2 0.1364 0.1754 0.1861 0.1953 

1.6 0.1341 0.1796 0.1935 0.1966 

2.0 0.1330 0.1778 0.1932 0.1982 

2.4 0.1333 0.1778 0.1927 0.1979 

2.8 0.1334 0.1779 0.1928 0.1978 

3.2 0.1333 0.1779 0.1928 0.1979 

3.6 0.1333 0.1779 0.1928 0.1978 

4.0 0.1333 0.1779 0.1928 0.1978 

 

Table 3: Transient probability distribution of number of customers in the queue when the server is idle for various values of t, λ = 7, μ = 10, α = 

5, a = 3 and b = 5. 

t P00(t) P 10(t) P 20(t) 

0.3 0.1532 0.2765 0.2780 

0.6 0.1182 0.1815 0.2249 

0.9 0.1214 0.1830 0.2151 

1.2 0.1208 0.1830 0.2157 

1.5 0.1209 0.1829 0.2156 

1.8 0.1209 0.1829 0.2156 

2.1 0.1209 0.1829 0.2156 

2.4 0.1209 0.1829 0.2156 

2.7 0.1209 0.1829 0.2156 

3.0 0.1209 0.1829 0.2156 

 

 

Table 4: Transient probability distribution of number of customers in the queue when the server is idle for various values of t, λ = 7, μ = 10, α = 

5, a = 4 and b = 12. 

t P00(t) P 10(t) P 20(t) P 30(t) 

0.3 0.1337 0.2631 0.2722 0.1896 

0.6 0.0908 0.1356 0.1807 0.2117 

0.9 0.1113 0.1509 0.1649 0.1766 

1.2 0.1100 0.1560 0.1736 0.1791 

1.5 0.1086 0.1541 0.1734 0.1812 

1.8 0.1088 0.1539 0.1727 0.1808 

2.1 0.1089 0.1541 0.1728 0.1807 

2.4 0.1089 0.1541 0.1729 0.1807 

2.7 0.1089 0.1540 0.1728 0.1807 

3.0 0.1089 0.1540 0.1728 0.1807 

 

Table 5: Transient probability distribution of number of customers in the queue when the server is busy for various values of t, λ = 5, μ = 10, α = 

5, a = 3 and b = 5. 
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t P 01(t) P 11(t) P 21(t) P 31(t) P 41(t) P 51(t) P 61(t) P 71(t) 

0.3 0.0284 0.0061 0.0012 0.0002 0.0000 0.0000 0.0000 0.0000 

0.6 0.0731 0.0249 0.0080 0.0024 0.0007 0.0002 0.0000 0.0000 

0.9 0.0795 0.0315 0.0125 0.0049 0.0018 0.0007 0.0002 0.0001 

1.2 0.0781 0.0317 0.0133 0.0057 0.0025 0.0011 0.0004 0.0002 

1.5 0.0780 0.0315 0.0133 0.0058 0.0026 0.0012 0.0005 0.0002 

1.8 0.0780 0.0315 0.0132 0.0058 0.0026 0.0012 0.0006 0.0003 

2.1 0.0780 0.0315 0.0132 0.0058 0.0026 0.0012 0.0006 0.0003 

2.4 0.0780 0.0315 0.0132 0.0058 0.0026 0.0012 0.0006 0.0003 

2.7 0.0780 0.0315 0.0132 0.0058 0.0026 0.0012 0.0006 0.0003 

3.0 0.0780 0.0315 0.0132 0.0058 0.0026 0.0012 0.0006 0.0003 

 

Table 6: Transient probability distribution of number of customers in the queue when the server is busy for various values of t, λ = 5, μ = 10, α = 

5, a = 4 and b = 12. 

t P 01(t) P 11(t) P 21(t) P 31(t) P 41(t) P 51(t) P 61(t) P 71(t) 

0.4 0.0211 0.0046 0.0009 0.0002 0.0000 0.0000 0.0000 0.0000 

0.8 0.0663 0.0204 0.0061 0.0018 0.0005 0.0001 0.0000 0.0000 

1.2 0.0692 0.0233 0.0078 0.0026 0.0008 0.0003 0.0001 0.0000 

1.6 0.0663 0.0222 0.0075 0.0025 0.0008 0.0003 0.0001 0.0000 

2.0 0.0666 0.0222 0.0074 0.0025 0.0008 0.0003 0.0001 0.0000 

2.4 0.0667 0.0223 0.0075 0.0025 0.0008 0.0003 0.0001 0.0000 

2.8 0.0667 0.0223 0.0075 0.0025 0.0008 0.0003 0.0001 0.0000 

3.2 0.0667 0.0223 0.0075 0.0025 0.0008 0.0003 0.0001 0.0000 

3.6 0.0667 0.0223 0.0075 0.0025 0.0008 0.0003 0.0001 0.0000 

4.0 0.0667 0.0223 0.0075 0.0025 0.0008 0.0003 0.0001 0.0000 

 

 

Table 7: Transient probability distribution of number of customers in the queue when the server is busy for various values of t, λ = 7, μ = 10, α = 

5, a = 3 and b = 5. 

t P 01(t) P 11(t) P 21(t) P 31(t) P 41(t) P 51(t) P 61(t) P 71(t) 

0.3 0.0485 0.0149 0.0041 0.0010 0.0002 0.0000 0.0000 0.0000 

0.6 0.0858 0.0410 0.0187 0.0080 0.0032 0.0012 0.0004 0.0001 

0.9 0.0847 0.0436 0.0228 0.0119 0.0061 0.0030 0.0014 0.0007 

1.2 0.0846 0.0434 0.0229 0.0123 0.0067 0.0037 0.0020 0.0011 

1.5 0.0846 0.0434 0.0229 0.0123 0.0068 0.0038 0.0021 0.0012 

1.8 0.0846 0.0434 0.0229 0.0123 0.0068 0.0038 0.0021 0.0012 

2.1 0.0846 0.0434 0.0229 0.0123 0.0068 0.0038 0.0021 0.0012 

2.4 0.0846 0.0434 0.0229 0.0123 0.0068 0.0038 0.0021 0.0012 

2.7 0.0846 0.0434 0.0229 0.0123 0.0068 0.0038 0.0021 0.0012 

3.0 0.0846 0.0434 0.0229 0.0123 0.0068 0.0038 0.0021 0.0012 

 

Table 8: Transient probability distribution of number of customers in the queue when the server is busy for various values of t, λ = 7, μ = 10, α = 

5, a = 4 and b = 12. 
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t P 01(t) P 11(t) P 21(t) P 31(t) P 41(t) P 51(t) P 61(t) P 71(t) 

0.3 0.0218 0.0054 0.0012 0.0003 0.0001 0.0000 0.0000 0.0000 

0.6 0.0737 0.0273 0.0097 0.0033 0.0011 0.0003 0.0001 0.0000 

0.9 0.0796 0.0330 0.0135 0.0055 0.0022 0.0008 0.0003 0.0001 

1.2 0.0760 0.0317 0.0132 0.0055 0.0023 0.0010 0.0004 0.0002 

1.5 0.0760 0.0315 0.0131 0.0055 0.0023 0.0010 0.0004 0.0002 

1.8 0.0762 0.0316 0.0132 0.0055 0.0023 0.0010 0.0004 0.0002 

2.1 0.0762 0.0316 0.0132 0.0055 0.0023 0.0010 0.0004 0.0002 

2.4 0.0762 0.0316 0.0132 0.0055 0.0023 0.0010 0.0004 0.0002 

2.7 0.0762 0.0316 0.0132 0.0055 0.0023 0.0010 0.0004 0.0002 

3.0 0.0762 0.0316 0.0132 0.0055 0.0023 0.0010 0.0004 0.0002 

 

Table 9: Transient probability distribution of number of customers in the queue when the server is failure for various values of t, λ = 5, μ = 10, α 

= 5, a = 3 and b = 5. 

t P 32(t) P 42(t) P 52(t) P 62(t) P 72(t) P 82(t) P 92(t) 

0.3 0.0901 0.0270 0.0070 0.0016 0.0003 0.0001 0.0000 

0.6 0.1358 0.0636 0.0273 0.0107 0.0038 0.0012 0.0004 

0.9 0.1261 0.0644 0.0324 0.0157 0.0072 0.0032 0.0013 

1.2 0.1226 0.0617 0.0312 0.0157 0.0079 0.0039 0.0019 

1.5 0.1228 0.0614 0.0307 0.0154 0.0077 0.0039 0.0019 

1.8 0.1228 0.0614 0.0307 0.0154 0.0077 0.0038 0.0019 

2.1 0.1228 0.0614 0.0307 0.0154 0.0077 0.0038 0.0019 

2.4 0.1228 0.0614 0.0307 0.0154 0.0077 0.0038 0.0019 

2.7 0.1228 0.0614 0.0307 0.0154 0.0077 0.0038 0.0019 

3.0 0.1228 0.0614 0.0307 0.0154 0.0077 0.0038 0.0019 

 

 

Table 10: Transient probability distribution of number of customers in the queue when the server is failure for various values of t, λ = 5, μ = 10, α 

= 5, a = 4 and b = 12. 

t P 42(t) P 52(t) P 62(t) P 72(t) P 82(t) P 92(t) P 102(t) 

0.4 0.0635 0.0197 0.0054 0.0013 0.0003 0.0001 0.0000 

0.8 0.1129 0.0541 0.0243 0.0102 0.0040 0.0014 0.0005 

1.2 0.0998 0.0514 0.0263 0.0133 0.0065 0.0031 0.0014 

1.6 0.0979 0.0489 0.0246 0.0124 0.0063 0.0032 0.0016 

2.0 0.0990 0.0494 0.0247 0.0123 0.0061 0.0031 0.0015 

2.4 0.0990 0.0495 0.0248 0.0124 0.0062 0.0031 0.0015 

2.8 0.0989 0.0495 0.0247 0.0124 0.0062 0.0031 0.0015 

3.2 0.0989 0.0495 0.0247 0.0124 0.0062 0.0031 0.0015 

3.6 0.0989 0.0495 0.0247 0.0124 0.0062 0.0031 0.0015 

4.0 0.0989 0.0495 0.0247 0.0124 0.0062 0.0031 0.0015 

 

Table 11: Transient probability distribution of number of customers in the queue when the server is failure for various values of t, λ = 7, μ = 10, α 

= 5, a = 3 and b = 5. 
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t P 32(t) P 42(t) P 52(t) P 62(t) P 72(t) P82(t) P 92(t) 

0.3 0.1369 0.0573 0.0206 0.0064 0.0018 0.0004 0.0001 

0.6 0.1386 0.0836 0.0478 0.0254 0.0124 0.0056 0.0023 

0.9 0.1260 0.0746 0.0445 0.0266 0.0156 0.0089 0.0049 

1.2 0.1258 0.0734 0.0429 0.0252 0.0148 0.0088 0.0052 

1.5 0.1258 0.0734 0.0428 0.0250 0.0146 0.0085 0.0050 

1.8 0.1258 0.0734 0.0428 0.0250 0.0146 0.0085 0.0050 

2.1 0.1258 0.0734 0.0428 0.0250 0.0146 0.0085 0.0050 

2.4 0.1258 0.0734 0.0428 0.0250 0.0146 0.0085 0.0050 

2.7 0.1258 0.0734 0.0428 0.0250 0.0146 0.0085 0.0050 

3.0 0.1258 0.0734 0.0428 0.0250 0.0146 0.0085 0.0050 

 

Table 12: Transient probability distribution of number of customers in the queue when the server is failure for various values of t, λ = 7, μ = 10, α 

= 5, a = 4 and b = 12. 

t P 42(t) P 52(t) P 62(t) P 72(t) P 82(t) P 92(t) P 102(t) 

0.3 0.0757 0.0262 0.0079 0.0021 0.0005 0.0001 0.0000 

0.6 0.1272 0.0714 0.0370 0.0176 0.0077 0.0031 0.0011 

0.9 0.1065 0.0649 0.0393 0.0232 0.0132 0.0071 0.0036 

1.2 0.1038 0.0605 0.0356 0.0212 0.0127 0.0075 0.0044 

1.5 0.1056 0.0614 0.0357 0.0208 0.0121 0.0071 0.0042 

1.8 0.1055 0.0616 0.0359 0.0209 0.0122 0.0071 0.0041 

2.1 0.1054 0.0615 0.0359 0.0209 0.0122 0.0071 0.0042 

2.4 0.1054 0.0615 0.0359 0.0209 0.0122 0.0071 0.0042 

2.7 0.1054 0.0615 0.0359 0.0209 0.0122 0.0071 0.0042 

3.0 0.1054 0.0615 0.0359 0.0209 0.0122 0.0071 0.0042 

 

 

Table 13: System performance measures for various values of t, λ = 5, μ = 10, α = 5, a = 3 and b = 5. 

t Pidle(t)  Pbusy(t)  Pfailure(t)  Lq(t) 

0.3 0.8380 0.0360 0.1260 1.2844 

0.6 0.6477 0.1093 0.2430 1.7275 

0.9 0.6177 0.1313 0.2510 1.7808 

1.2 0.6207 0.1330 0.2463 1.7879 

1.5 0.6210 0.1333 0.2457 1.7915 

1.8 0.6208 0.1335 0.2457 1.7924 

2.1 0.6208 0.1335 0.2456 1.7925 

2.4 0.6208 0.1335 0.2456 1.7925 

2.7 0.6208 0.1335 0.2456 1.7925 

3.0 0.6208 0.1335 0.2456 1.7925 

 

Table 14: System performance measures for various values of t, λ = 5, μ = 10, α = 5, a = 4 and b = 12. 
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t Pidle(t)  Pbusy(t)  Pfailure(t)  Lq(t) 

0.4 0.8828 0.0268 0.0904 1.7726 

0.8 0.6971 0.0952 0.2077 2.2636 

1.2 0.6931 0.1041 0.2028 2.1979 

1.6 0.7038 0.0998 0.1964 2.1902 

2.0 0.7022 0.1000 0.1978 2.1976 

2.4 0.7018 0.1003 0.1980 2.1972 

2.8 0.7020 0.1002 0.1978 2.1968 

3.2 0.7020 0.1002 0.1978 2.1969 

3.6 0.7019 0.1002 0.1979 2.1969 

4.0 0.7020 0.1002 0.1978 2.1969 

 

Table 15: System performance measures for various values of t, λ = 7, μ = 10, α = 5, a = 3 and b = 5. 

t Pidle(t)  Pbusy(t)  Pfailure(t)  Lq(t) 

0.3 0.7076 0.0689 0.2235 1.6580 

0.6 0.5246 0.1585 0.3169 2.0632 

0.9 0.5194 0.1747 0.3058 2.1288 

1.2 0.5195 0.1778 0.3027 2.1463 

1.5 0.5194 0.1786 0.3021 2.1500 

1.8 0.5194 0.1787 0.3019 2.1507 

2.1 0.5194 0.1788 0.3019 2.1509 

2.4 0.5194 0.1788 0.3018 2.1509 

2.7 0.5194 0.1788 0.3018 2.1509 

3.0 0.5194 0.1788 0.3018 2.1509 

 

Table 16: System performance measures for various values of t, λ = 7, μ = 10, α = 5, a = 4 and b = 12. 

t Pidle(t)  Pbusy(t)  Pfailure(t)  Lq(t) 

0.3 0.8587 0.0287 0.1126 1.8868 

0.6 0.6189 0.1154 0.2657 2.5134 

0.9 0.6037 0.1351 0.2611 2.4954 

1.2 0.6186 0.1303 0.2511 2.4907 

1.5 0.6173 0.1300 0.2527 2.5009 

1.8 0.6162 0.1306 0.2532 2.5020 

2.1 0.6164 0.1306 0.2530 2.5016 

2.4 0.6165 0.1305 0.2530 2.5017 

2.7 0.6165 0.1305 0.2530 2.5017 

3.0 0.6165 0.1305 0.2530 2.5017 
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7. RESULTS & DISCUSSION 

Table 1 to Table 4 show Transient probabilities of number of customers in the queue when the server is idle for 

several values of t, λ, μ, α, a and b. 

 We infer the following 

 As the value of t increases the Transient Probabilities 0 0( )n nP t P  

Table 5 to Table 8 show Transient probabilities of number of customers in the queue when the server is busy for 

several values of t, λ, μ, α, a and b. 

 We infer the following 

 As the value of t increases the Transient Probabilities 1 1( )n nP t P  

 The sequence  1( ) 0 as n  for all values of tnP t    

Table 9 to Table 12 show Transient probabilities of number of customers in the queue when the server is failure for 

several values of t, λ, μ, α, a and b. 

 We infer the following 

 As the value of t increases the Transient Probabilities 2 2( )n nP t P  

 The sequence  2( ) 0 as n  for all values of tnP t    

Table 13 to Table 16 show Time dependent System performance measures for several values of t, λ, μ, α, a and b. 

We infer the following 

 As the value of t increases and for several values of t, λ, μ, α, a and b, 

idle idle busy busy failure failure q q( ) , ( ) , ( ) , and ( )P t P P t P P t P L t L     

 If α tends to ∞ this model coincides with bulk service queueing system. 

8. CONCLUSION 

A new computational approach was used to evaluate the Transient behaviour of Bulk service queueing system with 

starting failure model using infinite generator matrix and Eigen vectors and Eigen values. Numerical studies have 

been analysed in elaborate manner. In this model we have provided transient probability distribution of number of 

customers in the queue at time t and also time dependent system measures.  
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