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Intuitionistic fuzzy soft commutative ideals of BCK-algebras

Nana Liu1, Chang Wang 2. V. Inthumathi3.

Abstract - In this paper, we introduce the concept of intuitionistic fuzzy soft commutative ideal in BCK-algebra and discuss their
important properties. In particular, the relations between intuitionistic fuzzy soft commutative ideal and intuitionistic fuzzy soft ideal
are discussed. The “extended intersection”, “restricted intersection”, “union” and “AND” operations of intuitionistic fuzzy soft com-
mutative ideal, and homomorphism of intuitionistic fuzzy soft commutative ideal are established. Besides, we will also discuss some
further results of intuitionistic fuzzy soft ideal of BCK/BCI-algebras.

Keywords vague set; BCK-algebra; commutative ideal; intuitionistic fuzzy soft ideal; intuitionistic fuzzy soft commutative ideal.
2010 Subject classification: 06F35; 03G25

1 Introduction
In 1966, Imai and Iséki [1, 2] introduced a new concept called a BCK/BCI-algebra, and since then many

researchers have investigated various properties of this algebra. For the properties of BCK-algebras, we refer the
reader to Iséki and Tanaka [3].

The fuzzy sets proposed by Zadeh [4] deal with problem by determining the degree to which an object belongs
to a set. After the introduction of fuzzy sets by Zadeh, there have been a number of generalizations of this
basic concept. Xi [5] applied the concept of fuzzy sets to BCK-algebras and gave some properties of it, and
Molodtsov [6] introduced the concept of soft sets as a new mathematical tool for dealing with uncertainties that
without the difficulties that plague the usual theoretical approach. Molodtsov pointed out several directions for the
applications of soft sets. At present, works on the soft set theory are progressing rapidly, such as soft groups [7],
soft semirings [8] and soft d-algebras [9]. The notion of intuitionistic fuzzy sets introduced by Atanassov [10] is
one among them, while fuzzy sets give the degree of membership of an element in a given set, intuitionistic fuzzy
sets give both a degree of membership and a degree of non-membership. For more details about intuitionistic
fuzzy sets, we refer the reader to [11].

For the general development of BCK-algebras, the ideal theory and its intuitionistic fuzzification play an
important role. The notion of commutative ideal in BCK-algebras was first introduced by Meng [12] in 1991, and
the intuitionistic fuzzification of commutative ideal in BCK-algebras was discussed by Jun et al. [13] in 2008,
then Muhiuddin et al. [14] apply the fuzzy soft set theory to commutative ideal of BCK-algebras in 2021.

1 Institute for Advanced Studies in History of Science, Northwest University ,Xi’an, Shaanxi 710127, China and
School of Mathematics, Northwest University ,Xi’an, Shaanxi 710127, China

2 Institute for Advanced Studies in History of Science, Northwest University ,Xi’an, Shaanxi 710127, China
School of Mathematics, Northwest University ,Xi’an, Shaanxi 710127, China

3 Associate Professor, Department of Mathematics,Nallamuthu Gounder Mahalingam College,Pollachi-642001,
Coimbatore, Tamilnadu, India.
E.mail: inthumathi65@gmail.com
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In this paper, we first investigate further properties of intuitionistic fuzzy soft ideal in BCK/BCI-algebras that
were not studied in [15], then we introduce the notion of intuitionistic fuzzy soft commutative ideal in BCK-
algebras, and investigate related properties. We provide relations between intuitionistic fuzzy soft commutative
ideal and intuitionistic fuzzy soft ideal. The condition for intuitionistic fuzzy soft ideal to become intuitionistic
fuzzy soft commutative ideal are discussed. In addition, we consider the “extended intersection”, “restricted
intersection”, “union” and “AND” operations of intuitionistic fuzzy soft commutative ideal, and homomorphism
of intuitionistic fuzzy soft commutative ideal.

We first review the definitions of the algebras we have studied, the basic definitions of intuitionistic fuzzy soft
sets and some related operations in BCK-algebras.

2 Preliminaries

2.1 Basic results on BCK/BCI-algebras
In this section, we will recall some basic notions in BCK/BCI-algebra.

Definition 2.1. [2] An algebra (X; ∗, 0) of type (2, 0) is called a BCI-algebra if it satisfies the following conditions:
(1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(2) (x ∗ (x ∗ y)) ∗ y = 0,
(3) x ∗ x = 0,
(4) x ∗ y = 0, y ∗ x = 0⇒ x = y, for all x, y, z ∈ X.
If a BCI-algebra X satisfies the following identity:
(5) 0 ∗ x = 0, for all x ∈ X, then X is called a BCK-algebra.

In any BCK/BCI-algebra X one can define a partial order “ ≤ ” by putting x ≤ y if and only if x ∗ y = 0.
In any BCK-algebra X the following holds:
(1) x ∗ 0 = x;
(2) x ∗ y ≤ x;
(3) (x ∗ y) ∗ z = (x ∗ z) ∗ y;
(4) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y;
(5) x ∗ (x ∗ (x ∗ y)) = x ∗ y;
(6) x ≤ y⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x.
A BCK-algebras X is said to be commutative if x ∗ (x ∗ y) = y ∗ (y ∗ x) for all x, y, z ∈ X.
A nonempty subset A of a BCK/BCI-algebra X is called a BCK/BCI-subalgebra of X if x ∗ y ∈ A for all

x, y ∈ A.
A nonempty subset A of a BCK/BCI-algebra X is called an ideal of X if it satisfies the following axioms:
(1) 0 ∈ A;
(2) x ∗ y ∈ A, y ∈ A⇒ x ∈ A, for all x ∈ X.
A nonempty subset A of a BCK-algebra X is called a commutative ideal of X if it satisfies the following

axioms:
(1) 0 ∈ A;
(2) (x ∗ y) ∗ z ∈ A, z ∈ A⇒ x ∗ (y ∗ (y ∗ x)) ∈ A, for all x, y, z ∈ X.
Note that, in BCK-algebras, every commutative ideal is an ideal, but not the converse.

Definition 2.2. [5] A fuzzy set µ in BCK/BCI-algebras X is called a fuzzy ideal of X if it satisfies the following
conditions:
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(1) µ(0) ≥ µ(x);
(2) µ(x) ≥ min{µ(x ∗ y), µ(y)};

for all x, y ∈ X.

Definition 2.3. [16] A fuzzy set µ in BCK-algebras X is called a fuzzy commutative ideal of X if it satisfies the
following conditions:

(1) µ(0) ≥ µ(x);
(2) µ(x ∗ (y ∗ (y ∗ x))) ≥ min{µ((x ∗ y) ∗ z), µ(z)};

for all x, y, z ∈ X.

Definition 2.4. [17] A mapping f : X → Y of BCK/BCI-algebras is called a homomorphism if f (x ∗ y) =

f (x) ∗ f (y) for all x, y, z ∈ X. Note that if f : X → Y is a homomorphism of BCK/BCI-algebras, then f (0) = 0.
Let f : X → Y is a homomorphism of BCK/BCI-algebras, for any intuitionistic fuzzy set (F̃, A) in Y , defined

a new intuitionistic fuzzy set preimage (F̃, A) f in X by µF̃
f (x) = µF̃( f (x)), γF̃

f (x) = γF̃( f (x)) for all x ∈ X.

2.2 Basic results on intuitionistic fuzzy soft sets

Molodtsov [6] defined the soft set in the following way: Let U be an initial universe set and E be a set of
parameters. Let P(U) denotes the power set of U and A ⊂ E.

Definition 2.5. [6] A pair (F, A) is called a soft set over U, where F is a mapping given by F : A→ P(U).
In other words, a soft set over U is a parametrized family of subsets of the universe U. For α ∈ A, F(α) may

be considered as the set of α -approximate elements of the soft set (F, A).

Definition 2.6. [10] Let U be an initial universe set and E be a set of parameters. Let F(U) denote the set of all
intuitionistic fuzzy sets in U. Then (F̃, A) is called an intuitionistic fuzzy soft set over U where A ⊆ E and F̃ is a
mapping given by F̃ : A→ F(U).

In general, for every α ∈ A, F̃[α] is an intuitionistic fuzzy set in U and it is called an intuitionistic fuzzy value
set of parameter α.Clearly, F̃[α] can be written as an intuitionistic fuzzy set such that F̃[α] =

{
< x, µF̃[α](x), γF̃[α](x) >| x ∈ U, α ∈ A

}
,

where µF̃[α](x) and γF̃[α](x) denotes the degree of membership and non-membership functions respectively. If for
every α ∈ A, µF̃[α](x) = 1 − γF̃[α](x) then F̃[α] will be generated to be a standard fuzzy set and then (F̃, A) will be
generated to be a traditional fuzzy soft set.

Definition 2.7. [18] Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft sets over a common universe U, we say
that (F̃, A) is an intuitionistic fuzzy soft subset of (G̃, B), denoted by (F̃, A)⊆̃(G̃, B), if it satisfies:

(1) A ⊆ B;
(2) F̃[e] and G̃[e] are identical approximations, for all e ∈ A.

Definition 2.8. [18] Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft sets over a common universe U, then
“extended intersection” of (F̃, A) and (G̃, B) is defined to be the intuitionistic fuzzy soft set (H̃,C) satisfying the
following conditions:

H̃[e] =


F̃[e], if e ∈ A\B,
G̃[e], if e ∈ B\A,
F̃[e] ∩ G̃[e], if e ∈ A ∩ B.

where C = A ∪ B and for all e ∈ C. In this case, we write (F̃, A)∩̃e(G̃, B) = (H̃,C).
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Definition 2.9. [18] Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft sets over a common universe U such
that A ∩ B , ∅, then “restricted intersection” of (F̃, A) and (G̃, B) is defined to be the intuitionistic fuzzy soft set
(H̃,C) satisfying the condition: H̃[e] = F̃[e] ∩ G̃[e].
where C = A ∩ B and for all e ∈ C. In this case, we write (F̃, A)∩̃r(G̃, B) = (H̃,C).

Definition 2.10. [18] Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft sets over a common universe U,
then “union” of (F̃, A) and (G̃, B) is defined to be the intuitionistic fuzzy soft set (H̃,C) satisfying the following
conditions:

H̃[e] =


F̃[e], if e ∈ A\B,
G̃[e], if e ∈ B\A,
F̃[e] ∪ G̃[e], if e ∈ A ∩ B.

where C = A ∪ B and for all e ∈ C. In this case, we write (F̃, A)∪̃(G̃, B) = (H̃,C).

Definition 2.11. [18] Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft sets over a common universe U, then
(F̃, A)AND(G̃, B) denoted by (F̃, A)∧̃(G̃, B) is defined by (F̃, A)∧̃(G̃, B) = (H̃, A×B), where H̃[α, β] = F̃[α]∩G̃[β]
for all (α, β) ∈ A × B.

Definition 2.12. [18] Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft sets over a common universe U, then
(F̃, A)OR(G̃, B) denoted by (F̃, A)∨̃(G̃, B) is defined by (F̃, A)∨̃(G̃, B) = (H̃, A× B), where H̃[α, β] = F̃[α]∪ G̃[β]
for all (α, β) ∈ A × B.

Definition 2.13. [18] Let (F̃, A) is an intuitionistic fuzzy soft set over a common universe U, we say that the
complement of (F̃, A) is denoted by (F̃, A)c and is defined as µF̃[α](x) = 1− µF̃[α](x) and γF̃[α](x) = 1− γF̃[α](x) for
all x ∈ X, α ∈ A.

Definition 2.14. [18] Let (F̃, A) is an intuitionistic fuzzy soft set over a common universe U, then ¬(F̃, A) ={
µF̃[α](x), µF̃[α](x)

}
and ◦(F̃, A) =

{
γF̃[α](x), γF̃[α](x)

}
for all x ∈ X, α ∈ A.

3 Further properties of intuitionistic fuzzy soft ideals
In this section, X denotes BCK/BCI-algebras, we will give some properties of intuitionistic fuzzy soft ideals

in BCK/BCI-algebras that were not studied in [15].

Definition 3.1. [17] An intuitionistic fuzzy set in BCK/BCI-algebra X is said an intuitionistic fuzzy BCK/BCI-
subalgebra of X if satisfies:

(1) µ(x ∗ y) ≥ min{µ(x), µ(y)};
(2) γ(x ∗ y) ≤ max{γ(x), γ(y)};

for all x, y ∈ X.

Definition 3.2. [15] Let (F̃, A) be an intuitionistic fuzzy soft set over a BCK/BCI-algebra X where A is the subset
of E. We say that (F̃, A) is an intuitionistic fuzzy soft BCK/BCI-algebra over a BCK/BCI-algebra X if F̃[α] is
an intuitionistic fuzzy BCK/BCI-subalgebra in a BCK/BCI-algebra X for all α ∈ A.

Definition 3.3. [15] Let (F̃, A) be an intuitionistic fuzzy soft set, then (F̃, A) is an intuitionistic fuzzy soft ideal
over a BCK/BCI-algebra X if F̃[α] =

{
< x, µF̃[α](x), γF̃[α](x) >| x ∈ X, α ∈ A

}
is an intuitionistic fuzzy ideal of X

satisfies the following assertions:
(1) µF̃[α](0) ≥ µF̃[α](x);
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(2) γF̃[α](0) ≤ γF̃[α](x);
(3) µF̃[α](x) ≥ min

{
µF̃[α](x ∗ y), µF̃[α](y)

}
;

(4) γF̃[α](x) ≤ max
{
γF̃[α](x ∗ y), γF̃[α](y)

}
;

for all x, y, z ∈ X and α ∈ A.

Based on the above definitions, we give the following theorems:

Theorem 3.1. Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft BCK/BCI-algebras over a BCK/BCI-algebra
X, then the “AND” (F̃, A)∧̃(G̃, B) is an intuitionistic fuzzy soft BCK/BCI-algebra over X.

Proof. By means of Definition 2.11. we know that
(F̃, A)∧̃(G̃, B) = (H̃, A × B), where H̃[α, β] = F̃[α] ∩ G̃[β] for all (α, β) ∈ A × B.

For any x, y ∈ X, we have
µH̃[α,β](x ∗ y) = µ(F̃[α]∩G̃[β])(x ∗ y)
= min

{
µF̃[α](x ∗ y), µG̃[β](x ∗ y)

}
≥ min

{
min

{
µF̃[α](x), µF̃[α](y)

}
,min

{
µG̃[β](x), µG̃[β](y)

}}
= min

{
min

{
µF̃[α](x), µG̃[β](x)

}
,min

{
µF̃[α](y), µG̃[β](y)

}}
= min

{
µ(F̃[α]∩G̃[β])(x), µ(F̃[α]∩G̃[β])(y)

}
= min

{
µH̃[α,β](x), µH̃[α,β](y)

}
and

γH̃[α,β](x ∗ y) = γ(F̃[α]∩G̃[β])(x ∗ y)
= max

{
γF̃[α](x ∗ y), γG̃[β](x ∗ y)

}
≤ max

{
max

{
γF̃[α](x), γF̃[α](y)

}
,max

{
γG̃[β](x), γG̃[β](y)

}}
= max

{
max

{
γF̃[α](x), γG̃[β](x)

}
,max

{
γF̃[α](y), γG̃[β](y)

}}
= max

{
γ(F̃[α]∩G̃[β])(x), γ(F̃[α]∩G̃[β])(y)

}
= max

{
γH̃[α,β](x), γH̃[α,β](y)

}
.

Thus, H̃[α, β] = F̃[α] ∩ G̃[β] is an intuitionistic fuzzy BCK/BCI-algebra of X for any (α, β) ∈ A × B.
Hence, (H̃, A × B) = (F̃, A)∧̃(G̃, B) is an intuitionistic fuzzy soft BCK/BCI-algebra of X for any (α, β) ∈

A × B. �

Lemma 3.1. [15] Let (F̃, A) be an intuitionistic fuzzy soft BCK/BCI-algebra over a BCK/BCI-algebra X, then
(F̃, A) is an intuitionistic fuzzy soft ideal of X if and only if it satisfies x ∗ y ≤ z, then

(1) µF̃[α](x) ≥ min
{
µF̃[α](y), µF̃[α](z)

}
;

(2) γF̃[α](x) ≤ max
{
γF̃[α](y), γF̃[α](z)

}
;

for all x, y, z ∈ X and α ∈ A.

Theorem 3.2. Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft ideals over a BCK/BCI-algebra X, then the
“AND” (F̃, A)∧̃(G̃, B) is an intuitionistic fuzzy soft ideal over X.

Proof. According to Theorem 3.1, let (F̃, A)∧̃(G̃, B) = (H̃, A×B) is an intuitionistic fuzzy soft BCK/BCI-algebra
over X, where H̃[α, β](x) = F̃[α](x) ∩ G̃[β](x) for all (α, β) ∈ A × B, x ∈ X. For any x ∈ X, we have

µH̃[α,β](0) = µ(F̃[α]∩G̃[β])(0)
= min

{
µF̃[α](0), µG̃[β](0)

}

ETIST 2021 19



Nana Liu,Chang Wang, V. Inthumathi

≥ min
{
µF̃[α](x), µG̃[β](x)

}
= µ(F̃[α]∩G̃[β])(x)
= µH̃[α,β](x)

and
γH̃[α,β](0) = γ(F̃[α]∩G̃[β])(0)

= max
{
γF̃[α](0), γG̃[β](0)

}
≤ max

{
γF̃[α](x), γG̃[β](x)

}
= γ(F̃[α]∩G̃[β])(x)
= γH̃[α,β](x).

For any x, y, z ∈ X be such that x ∗ y ≤ z, (α, β) ∈ A × B, we have
µH̃[α,β](x) = µ(F̃[α]∩G̃[β])(x)

= min
{
µF̃[α](x), µG̃[β](x)

}
≥ min

{
min

{
µF̃[α](y), µF̃[α](z)

}
,min

{
µG̃[β](y), µG̃[β](z)

}}
= min

{
min

{
µF̃[α](y), µG̃[β](y)

}
,min

{
µF̃[α](z), µG̃[β](z)

}}
= min

{
µ(F̃[α]∩G̃[β])(y), µ(F̃[α]∩G̃[β])(z)

}
= min

{
µH̃[α,β](y), µH̃[α,β](z)

}
and

γH̃[α,β](x) = γ(F̃[α]∩G̃[β])(x)

= max
{
γF̃[α](x), γG̃[β](x)

}
≤ max

{
max

{
γF̃[α](y), γF̃[α](z)

}
,max

{
γG̃[β](y), γG̃[β](z)

}}
= max

{
max

{
γF̃[α](y), γG̃[β](y)

}
,max

{
γF̃[α](z), γG̃[β](z)

}}
= max

{
γ(F̃[α]∩G̃[β])(y), γ(F̃[α]∩G̃[β])(z)

}
= max

{
γH̃[α,β](y), γH̃[α,β](z)

}
.

It follows Lemma 3.1, that (H̃, A × B) = (F̃, A)∧̃(G̃, B) is an intuitionistic fuzzy soft ideal over X, for any
(α, β) ∈ A × B. �

Theorem 3.3. Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft sets over a BCK/BCI-algebra X such that
(F̃, A)⊆̃(G̃, B). If (G̃, B) is an intuitionistic fuzzy soft ideal over X, then

(1) µG̃[α](0) ≥ µF̃[α](x);
(2) γG̃[α](0) ≤ γF̃[α](x);
(3) µG̃[α](x) ≥ min

{
µF̃[α](x ∗ y), µF̃[α](y)

}
;

(4) γG̃[α](x) ≤ max
{
γF̃[α](x ∗ y), γF̃[α](y)

}
;

for all x, y ∈ X and α ∈ A.

Proof. Assume that (G̃, B) is an intuitionistic fuzzy soft ideal over X, for any x ∈ X and α ∈ A, we have
µG̃[α](0) ≥ µG̃[α](x) ≥ µF̃[α](x)

and
γG̃[α](0) ≤ γG̃[α](x) ≤ γF̃[α](x).

which prove (1) and (2). Also for any x, y ∈ X and α ∈ A, we have
µG̃[α](x) ≥ min

{
µG̃[α](x ∗ y), µG̃[α](y)

}
≥ min

{
µF̃[α](x ∗ y), µF̃[α](y)

}
and
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γG̃[α](x) ≤ max
{
γG̃[α](x ∗ y), γG̃[α](y)

}
≤ max

{
γF̃[α](x ∗ y), γF̃[α](y)

}
.

which prove (3) and (4), and the proof is complete. �

Remark 3.1. For two intuitionistic fuzzy soft sets (F̃, A) and (G̃, B) over a BCK/BCI-algebra X, where (F̃, A)⊆̃(G̃, B),
if (G̃, B) is an intuitionistic fuzzy soft ideal over X, then (F̃, A) maybe not an intuitionistic fuzzy soft ideal over X.
The following example will illustrate this viewpoint.

Example 3.1. Let U = {0, a, b, c, d} with Cayley table given by:

∗ 0 a b c d
0 0 0 b c d
a a 0 b c d
b b b 0 d c
c c c d 0 b
d d d c b 0

Then (U; ∗, 0) is a BCI-algebra.
Consider a set of parameters A = {beautiful}, B = {fine, beautiful}, respectively.
Let {F̃, A} and {G̃, B} be two intuitionistic fuzzy soft sets over U which are defined by:

F̃ 0 a b c d
beautiful (0.5,0.4) (0.5,0.4) (0.4,0.6) (0.4,0.6) (0.2,0.7)

and

G̃ 0 a b c d
fine (0.8,0.2) (0.8,0.2) (0.6,0.4) (0.7,0.3) (0.6,0.4)

beautiful (0.9,0) (0.9,0) (0.7,0.2) (0.7,0.2) (0.8,0.1)

respectively, and (F̃, A)⊆̃(G̃, B). Then {G̃, B} is an intuitionistic fuzzy soft ideal over U, but {F̃, A} is not an
intuitionistic fuzzy soft ideal over U. Since

µF̃[beautiful](d) = 0.2
< min

{
µF̃[beautiful](d ∗ b), µF̃[beautiful](b)

}
= min

{
µF̃[beautiful](c), µF̃[beautiful](b)

}
= min{0.4, 0.4} = 0.4

and
γF̃[beautiful](d) = 0.7
> max

{
γF̃[beautiful](d ∗ b), γF̃[becutiful](b)

}
= max

{
γF̃[beautiful](c), γF̃[beautiful](b)

}
= max{0.6, 0.6} = 0.6.

Theorem 3.4. Let (F̃, A) be an intuitionistic fuzzy soft ideal over a BCK/BCI-algebra X. If I is a subset of A,
then

(
F̃
∣∣∣
I
, A

)
is an intuitionistic fuzzy soft ideal over a BCK/BCI-algebra X.
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Proof. Straightforward. �

The following example shows that there exists an intuitionistic fuzzy soft set (F̃, A) over a BCK/BCI-algebra
X such that

(1) (F̃, A) is not an intuitionistic fuzzy soft ideal over X;
(2) there exists a subset I of A such that

(
F̃
∣∣∣
I
, A

)
is an intuitionistic fuzzy soft ideal over X.

Example 3.2. Let U = {0, a, b, c} with Cayley table given by:

∗ 0 a b c
0 0 0 0 0
a a 0 a 0
b b b 0 0
c c b a 0

Then (U; ∗, 0) is a BCK-algebra.
Consider a set of parameters A = {amazing, smart, lovely}.
Let {F̃, A} be an intuitionistic fuzzy soft sets over U, then F̃[amazing], F̃[smart] and F̃[lovely] are intuition-

istic fuzzy sets. We define them as follows:

F̃ 0 a b c
amazing (0.8,0.1) (0.5,0.3) (0.5,0.3) (0.5,0.3)

smart (0.7,0.2) (0.4,0.4) (0.6,0.3) (0.4,0.4)
lovely (0.3,0.7) (0.3,0.5) (0.5,0.3) (0.6,0.2)

Then (F̃, A) is not an intuitionistic fuzzy soft ideal over U, since F̃ [lovely] are not intuitionistic fuzzy ideal in
U,

µF̃[lovely](0) = 0.3 < µF̃[lovely](b) = 0.5
and

γF̃[lovely](0) = 0.7 > γF̃[lovely](c) = 0.2.
But if we take I = {amazing, smart}, then

(
F̃
∣∣∣
I
, A

)
is an intuitionistic fuzzy soft ideal over U.

Next, we consider other results that intuitionistic fuzzy soft ideal in BCK/BCI-algebra X.

Theorem 3.5. Let (F̃, A) be an intuitionistic fuzzy soft ideal over a BCK/BCI-algebra X, then ¬(F̃, A) =
{
µF̃[α](x), µF̃[α](x)

}
is also an intuitionistic fuzzy soft ideal of X, for all x ∈ X, α ∈ A.

Proof. Let (F̃, A) be an intuitionistic fuzzy soft ideal over a BCK/BCI-algebra X, we have
µF̃[α](0) ≥ µF̃[α](x)
⇒ 1 − µF̃[α](0) ≤ 1 − µF̃[α](x)
⇒ µF̃[α](0) ≤ µF̃[α](x),

for all x ∈ X, α ∈ A.
Consider for any x, y ∈ X, α ∈ A,
µF̃[α](x) ≥ min

{
µF̃[α](x ∗ y), µF̃[α](y)

}
⇒ 1 − µF̃[α](x) ≥ min

{
1 − µF̃[α](x ∗ y), 1 − µF̃[α](y)

}
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⇒ µF̃[α](x) ≤ 1 −min
{
1 − µF̃[α](x ∗ y), 1 − µF̃[α](y)

}
⇒ µF̃[α](x) ≤ max

{
µF̃[α](x ∗ y), µF̃[α](y)

}
.

Hence, ¬(F̃, A) =
{
µF̃[α](x), µF̃[α](x)

}
is an intuitionistic fuzzy soft ideal of X, for all x ∈ X, α ∈ A. �

Theorem 3.6. Let (F̃, A) be an intuitionistic fuzzy soft ideal over a BCK/BCI-algebra X, then ◦(F̃, A) =
{
γF̃[α](x), γF̃[α](x)

}
is also an intuitionistic fuzzy soft ideal of X, for all x ∈ X, α ∈ A.

Proof. Let (F̃, A) be an intuitionistic fuzzy soft ideal over a BCK/BCI-algebra X, we have
γF̃[α](0) ≤ γF̃[α](x)
⇒ 1 − γF̃[α](0) ≥ 1 − γF̃[α](x)
⇒ γF̃[α](0) ≥ γF̃[α](x)

for all x ∈ X, α ∈ A.
Consider for any x, y ∈ X, α ∈ A,
γF̃[α](x) ≤ max

{
γF̃[α](x ∗ y), γF̃[α](y)

}
⇒ 1 − γF̃[α](x) ≤ max

{
1 − γF̃[α](x ∗ y), 1 − γF̃[α](y)

}
⇒ γF̃[α](x) ≥ 1 −max

{
1 − γF̃[α](x ∗ y), 1 − γF̃[α](y)

}
⇒ γF̃[α](x) ≥ min

{
γF̃[α](x ∗ y), γF̃[α](y)

}
.

Hence, ◦(F̃, A) =
{
γF̃[α](x), γF̃[α](x)

}
is an intuitionistic fuzzy soft ideal of X, for all x ∈ X, α ∈ A. �

Theorem 3.7. Let (F̃, A) be an intuitionistic fuzzy soft ideal over a BCK/BCI-algebra X if and only if µF̃[α](x)
and γF̃[α](x) are fuzzy soft ideals of X for all x ∈ X, α ∈ A.

Proof. Let (F̃, A) be an intuitionistic fuzzy soft ideal over a BCK/BCI-algebra X, clearly µF̃[α](x) is a fuzzy soft
ideal of X.

Let x, y ∈ X, α ∈ A, then
γF̃[α](0) = 1 − γF̃[α](0) ≥ 1 − γF̃[α](x) = γF̃[α](x)

and
γF̃[α](x) = 1 − γF̃[α](x)
≥ 1 −max

{
γF̃[α](x ∗ y), γF̃[α](y)

}
= min

{
1 − γF̃[α](x ∗ y), 1 − γF̃[α](y)

}
= min

{
γF̃[α](x ∗ y), γF̃[α](y)

}
.

Hence, γF̃[α](x) is a fuzzy soft ideal of X.
Conversely, assume that µF̃[α](x) and γF̃[α](x) are fuzzy soft ideals of X for all x ∈ X, α ∈ A. For all x ∈ X, we

have
µF̃[α](0) ≥ µF̃[α](x)

and
1 − γF̃[α](0) = γF̃[α](0) ≥ γF̃[α](x) = 1 − γF̃[α](x).

Which show that γF̃[α](0) ≤ γF̃[α](x).
Now let x, y ∈ X, α ∈ A, then
µF̃[α](x) ≥ min

{
µF̃[α](x ∗ y), µF̃[α](y)

}
and

1 − γF̃[α](x) = γF̃[α](x)
≥ min

{
γF̃[α](x ∗ y), γF̃[α](y)

}
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= min
{
1 − γF̃[α](x ∗ y), 1 − γF̃[α](y)

}
= 1 −max

{
γF̃[α](x ∗ y), γF̃[α](y)

}
and so

γF̃[α](x) ≤ max
{
γF̃[α](x ∗ y), γF̃[α](y)

}
.

Hence, (F̃, A) is an intuitionistic fuzzy soft ideal of X. �

Theorem 3.8. Let (F̃, A) be an intuitionistic fuzzy soft ideal over a BCK/BCI-algebra X if and only if ¬(F̃, A) ={
µF̃[α](x), µF̃[α](x)

}
and ◦(F̃, A) =

{
γF̃[α](x), γF̃[α](x)

}
are intuitionistic fuzzy soft ideals of X, for all x ∈ X, α ∈ A.

Proof. It is straightforward by Theorem 3.7. �

At the end of this section, we discuss the homomorphism between intuitionistic fuzzy soft ideals in BCK/BCI-
algebra.

Theorem 3.9. Let f : X → Y is an onto homomorphism of BCK/BCI-algebras. If an intuitionistic fuzzy soft set
(F̃, A) of Y is an intuitionistic fuzzy soft ideal, then preimage (F̃, A) f is also an intuitionistic fuzzy soft ideal of X.

Proof. Since (F̃, A) is an intuitionistic fuzzy soft ideal of Y , and (F̃, A) f is the preimage of (F̃, A) under f of X,
then µF̃[α]( f (x)) = µF̃[α]

f (x), γF̃[α]( f (x)) = γF̃[α]
f (x) for all x ∈ X, α ∈ A.

Since (F̃, A) is an intuitionistic fuzzy soft ideal of Y , then for any x ∈ X, α ∈ A, we have
µF̃α]

f (x) = µF̃[α]( f (x)) ≤ µF̃[α](0) = µF̃[α]( f (0)) = µF̃[α]
f (0)

and
γF̃[α]

f (x) = γF̃[α]( f (x)) ≥ γF̃[α](0) = γF̃[α]( f (0)) = γF̃[α]
f (0).

Moreover,
min

{
µF̃[α]

f (x ∗ y), µF̃[α]
f (y)

}
= min

{
µF̃[α]( f (x ∗ y)), µF̃[α]( f (y))

}
= min

{
µF̃[α]( f (x) ∗ f (y)), µF̃[α]( f (y))

}
≤ µF̃[α]( f (x))
= µF̃[α]

f (x)
and

max
{
γF̃[α]

f (x ∗ y), γF̃[α]
f (y)

}
= max

{
γF̃[α]( f (x ∗ y)), γF̃[α]( f (y))

}
= max

{
γF̃[α]( f (x) ∗ f (y)), γF̃[α]( f (y))

}
≥ γF̃[α]( f (x))
= γF̃[α]

f (x).
Hence, (F̃, A) f is also an intuitionistic fuzzy soft ideal of X, for any x, y ∈ X, α ∈ A. �

If we strengthen the condition of f , then we can construct the converse of the above theorem as follows.

Theorem 3.10. Let f : X → Y is an epimorphism of BCK/BCI-algebras. If an intuitionistic fuzzy soft set (F̃, A) f

is an intuitionistic fuzzy soft ideal of X, then (F̃, A) is also an intuitionistic fuzzy soft ideal of Y.

Proof. Since (F̃, A) f is an intuitionistic fuzzy soft ideal of X, and (F̃, A) f is the preimage of (F̃, A) under f of X,
then µ f

F̃[α]
(x) = µF̃[α]( f (x)), γF̃[α]

f (x) = γF̃[α]( f (x)) for all x ∈ X, α ∈ A.
Let x, y ∈ Y, α ∈ A, there exist a, b ∈ X such that f (a) = x and f (b) = y. Now
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µF̃[α](x) = µF̃[α]( f (a)) = µF̃[α]
f (a) ≤ µF̃[α]

f (0) = µF̃[α]( f (0)) = µF̃[α](0)
and

γF̃α](x) = γF̃[α]( f (a)) = γF̃[α]
f (a) ≥ γF̃[α]

f (0) = γF̃[α]( f (0)) = γF̃[α](0).
Moreover,

µF̃[α](x)
= µF̃[α]( f (a))
= µF̃[α]

f (a)
≥ min

{
µF̃[α]

f (a ∗ b), µF̃[α]
f (b)

}
= min

{
µF̃[α]( f (a ∗ b)), µF̃[α]( f (b))

}
= min

{
µF̃[α]( f (a) ∗ f (b)), µF̃[α]( f (b))

}
= min

{
µF̃[α](x ∗ y), µF̃[α](y)

}
and

γF̃[α](x)
= γF̃[α]( f (a))
= γF̃[α]

f (a)
≤ max

{
γF̃[α]

f (a ∗ b), γF̃[α]
f (b)

}
= max

{
γF̃[α]( f (a ∗ b)), γF̃[α]( f (b))

}
= max

{
γF̃[α]( f (a) ∗ f (b)), γF̃[α]( f (b))

}
= max

{
γF̃[α](x ∗ y), γF̃[α](y)

}
.

Hence, (F̃, A) is an intuitionistic fuzzy soft ideal of Y . �

4 Intuitionistic fuzzy soft commutative ideals
In this section, X denotes a BCK-algebra unless otherwise is specified.

Definition 4.1. Let (F̃, A) be an intuitionistic fuzzy soft set. Then (F̃, A) is an intuitionistic fuzzy soft com-
mutative ideal over a BCK-algebra X if F̃[α] =

{
< x, µF̃[α](x), γF̃[α](x) >| x ∈ X, α ∈ A

}
is an intuitionistic fuzzy

commutative ideal of X satisfies the following assertions:
(1) µF̃[α](0) ≥ µF̃[α](x);
(2) γF̃[α](0) ≤ γF̃[α](x);
(3) µF̃[α](x ∗ (y ∗ (y ∗ x))) ≥ min

{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](z)

}
;

(4) γF̃[α](x ∗ (y ∗ (y ∗ x))) ≤ max
{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](z)

}
;

for all x, y, z ∈ X and α ∈ A.

Let us illustrate this definition using the following example.

Example 4.1. Let U = {0, a, b, c} with Cayley table given by:
Then (U; ∗, 0) is a BCK-algebra.
Consider a set of parameters A = {content, sad, clam}.
Let {F̃, A} is an intuitionistic fuzzy soft sets over U, then F̃[content], F̃[sad] and F̃[clam] are intuitionistic

fuzzy sets. We define them as follows:
Then {F̃, A} is an intuitionistic fuzzy soft commutative ideal over U based on parameter “content”, “sad” and

“clam”.
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∗ 0 a b c
0 0 0 0 0
a a 0 0 a
b b a 0 b
c c c c 0

F̃ 0 a b c
content (0.8,0.1) (0.6,0.3) (0.6,0.3) (0.7,0.2)

sad (0.7,0.2) (0.4,0.3) (0.4,0.3) (0.3,0.5)
clam (0.8,0.2) (0.5,0.4) (0.5,0.4) (0.5,0.4)

Theorem 4.1. For any BCK-algebra X, every intuitionistic fuzzy soft commutative ideal is order preserving.

Proof. Assume that (F̃, A) is an intuitionistic fuzzy soft commutative ideal over X based on the parameter α ∈ A,
Let x, y ∈ X be such that x ≤ y, then for all z ∈ X, putting y = 0 and z = y in

µF̃[α](x ∗ (y ∗ (y ∗ x))) ≥ min
{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](z)

}
and

γF̃[α](x ∗ (y ∗ (y ∗ x))) ≤ max
{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](z)

}
.

Then we have
µF̃[α](x ∗ (0 ∗ (0 ∗ x))) ≥ min

{
µF̃[α]((x ∗ 0) ∗ y), µF̃[α](y)

}
⇒ µF̃[α](x ∗ 0) ≥ min

{
µF̃[α](x ∗ y), µF̃[α](y)

}
⇒ µF̃[α](x) ≥ min

{
µF̃[α](0), µF̃[α](y)

}
⇒ µF̃[α](x) ≥ µF̃[α](y)

and
γF̃[α](x ∗ (0 ∗ (0 ∗ x))) ≤ max

{
γF̃[α]((x ∗ 0) ∗ y), γF̃[α](y)

}
⇒ γF̃[α](x ∗ 0) ≤ max

{
γF̃[α](x ∗ y), γF̃[α](y)

}
⇒ γF̃[α](x) ≤ max

{
γF̃[α](0), γF̃[α](y)

}
⇒ γF̃[α](x) ≤ γF̃[α](y),

for all x, y, z ∈ X, α ∈ A.
Hence, intuitionistic fuzzy soft commutative ideal (F̃, A) is order preserving. �

Theorem 4.2. For any BCK-algebra X, every intuitionistic fuzzy soft commutative ideal is an intuitionistic fuzzy
soft ideal.

Proof. Assume that (F̃, A) is an intuitionistic fuzzy soft commutative ideal over X based on the parameter α ∈ A,
then

µF̃[α](x) = µF̃[α](x ∗ (0 ∗ (0 ∗ x)))
≥ min

{
µF̃[α]((x ∗ 0) ∗ z), µF̃[α](z)

}
= min

{
µF̃[α](x ∗ z), µF̃[α](z)

}
and

γF̃[α](x) = γF̃[α](x ∗ (0 ∗ (0 ∗ x)))
≤ max

{
γF̃[α]((x ∗ 0) ∗ z), γF̃[α](z)

}
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= max
{
γF̃[α](x ∗ z), γF̃[α](z)

}
,

for all x, z ∈ X.
Hence, (F̃, A) is an intuitionistic fuzzy soft ideal over X based on the parameter α ∈ A. �

The converse of Theorem 4.2 is not true in general as shown in the example given next.

Example 4.2. Let U = {0, a, b, c, d} with Cayley table given by:

∗ 0 a b c d
0 0 0 0 0 0
a a 0 a 0 0
b b b 0 0 0
c c c c 0 0
d d d d c 0

Then (U; ∗, 0) is a BCK-algebra.
Consider a set of parameters A = {eye, hair, ear}.
Let {F̃, A} be an intuitionistic fuzzy soft set over U. Then F̃[eye], F̃[hair] and F̃[ear] are intuitionistic fuzzy

sets. We define them as follows:

F̃ 0 a b c d
eye (0.9,0.1) (0.2,0.7) (0.5,0.4) (0.2,0.7) (0.2,0.7)
hair (0.8,0.2) (0.7,0.3) (0.7,0.3) (0.3,0.5) (0.3,0.5)
ear (0.7,0.3) (0.6,0.4) (0.2,0.6) (0.2,0.6) (0.2,0.6)

Then {F̃, A} is an intuitionistic fuzzy soft ideal over U based on the parameter “eye”, “hair” and “ear”, but
{F̃, A} is not an intuitionistic fuzzy soft commutative ideal over U based on the parameter “eye”. Since

µF̃[eye](a ∗ (c ∗ (c ∗ a))) = µF̃[eye](a ∗ (c ∗ c))
= µF̃[eye](a ∗ 0) = µF̃[eye](a) = 0.2
< min

{
µF̃[eye]((a ∗ c) ∗ b), µF̃[eye](b)

}
= min

{
µF̃[eye](0 ∗ b), µF̃[eye](b)

}
= min

{
µF̃[eye](0), µF̃[eye](b)

}
= min{0.9, 0.5} = 0.5

and
γF̃[eye](a ∗ (c ∗ (c ∗ a))) = γF̃[eye](a ∗ (c ∗ c))
= γF̃[eye](a ∗ 0) = γF̃[eye](a) = 0.7
> max

{
γF̃[eye]((a ∗ c) ∗ b), γF̃[eye](b)

}
= max

{
γF̃[eye](0 ∗ b), γF̃[eye](b)

}
= max

{
γF̃[eye](0), γF̃[eye](b)

}
= max{0.1, 0.4} = 0.4.

In the following theorem, we can see that the converse of Theorem 4.2 holds in a commutative BCK-algebra.
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Theorem 4.3. In a commutative BCK-algebra X, every intuitionistic fuzzy soft ideal is an intuitionistic fuzzy soft
commutative ideal.

Proof. Let (F̃, A) be an intuitionistic fuzzy soft ideal over a commutative BCK-algebra X.
Let x, y, z ∈ X, then

((x ∗ (y ∗ (y ∗ x))) ∗ ((x ∗ y) ∗ z)) ∗ z
= ((x ∗ (y ∗ (y ∗ x))) ∗ z) ∗ ((x ∗ y) ∗ z)
≤ (x ∗ (y ∗ (y ∗ x))) ∗ (x ∗ y)
= (x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ x)) = 0.

That is, (x ∗ (y ∗ (y ∗ x))) ∗ ((x ∗ y) ∗ z) ≤ z. Let α ∈ A be a parameter and x, y, z ∈ X, it follows from Lemma 3.1
that

µF̃[α](x ∗ (y ∗ (y ∗ x))) ≥ min
{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](z)

}
and

γF̃[α](x ∗ (y ∗ (y ∗ x))) ≤ max
{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](z)

}
.

Hence, (F̃, A) is an intuitionistic fuzzy soft commutative ideal of X. �

Next, we provide a condition for an intuitionistic fuzzy soft ideal to be an intuitionistic fuzzy soft commutative
ideal in BCK-algebra X.

Theorem 4.4. Every intuitionistic fuzzy soft commutative ideal {F̃, A} over a BCK-algebra X satisfies the follow-
ing assertion:

(1) µF̃[α](x ∗ (y ∗ (y ∗ x))) ≥ µF̃[α](x ∗ y);
(2) γF̃[α](x ∗ (y ∗ (y ∗ x))) ≤ γF̃[α](x ∗ y).

Proof. Let if we take z = 0 in
µF̃[α](x ∗ (y ∗ (y ∗ x))) ≥ min

{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](z)

}
and

γF̃[α](x ∗ (y ∗ (y ∗ x))) ≤ max
{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](z)

}
.

Then
µF̃[α](x ∗ (y ∗ (y ∗ x)))
≥ min

{
µF̃[α]((x ∗ y) ∗ 0), µF̃[α](0)

}
= min

{
µF̃[α](x ∗ y), µF̃[α](0)

}
= µF̃[α](x ∗ y)

and
γF̃[α](x ∗ (y ∗ (y ∗ x)))
≤ max

{
γF̃[α]((x ∗ y) ∗ 0), γF̃[α](0)

}
= max

{
γF̃[α](x ∗ y), γF̃[α](0)

}
= γF̃[α](x ∗ y).

for all x, y ∈ X, α ∈ A, and the proof is complete. �

Theorem 4.5. If an intuitionistic fuzzy soft ideal {F̃, A} over a BCK-algebra X satisfies the Theorem 4.4 condi-
tions, then {F̃, A} is an intuitionistic fuzzy soft commutative ideal over X.

Proof. Assume that (F̃, A) is an intuitionistic fuzzy soft ideal over X based on the parameter α ∈ A, then
µF̃[α](x ∗ (y ∗ (y ∗ x)))
≥ µF̃[α](x ∗ y)
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≥ min
{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](z)

}
and

γF̃[α](x ∗ (y ∗ (y ∗ x)))
≤ γF̃[α](x ∗ y)
≤ max

{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](z)

}
.

Hence, (F̃, A) is an intuitionistic fuzzy soft commutative ideal over X. �

Theorem 4.6. Suppose that (F̃, A) is an intuitionistic fuzzy soft ideal over a BCK-algebra X, then the following
are equivalent:

(1) (F̃, A) is an intuitionistic fuzzy soft commutative ideal;
(2) µF̃[α](x ∗ (y ∗ (y ∗ x))) ≥ µF̃[α](x ∗ y) and γF̃[α](x ∗ (y ∗ (y ∗ x))) ≤ γF̃[α](x ∗ y) for all x, y ∈ X, α ∈ A;
(3) µF̃[α](x ∗ (y ∗ (y ∗ x))) = µF̃[α](x ∗ y) and γF̃[α](x ∗ (y ∗ (y ∗ x))) = γF̃[α](x ∗ y) for all x, y ∈ X, α ∈ A.

Proof. To prove (1) ⇒ (2), assume that (F̃, A) is an intuitionistic fuzzy soft commutative ideal of X, from
Theorem 4.4, we know that the condition (2) is holds.

To prove (2) ⇒ (3), from the property of BCK-algebras x ∗ y ≤ x, we can observe that y ∗ (y ∗ x) ≤ y, then
x ∗ y ≤ x ∗ (y ∗ (y ∗ x)), for all x, y ∈ X, applying Theorem 4.1, then we have

µF̃[α](x ∗ (y ∗ (y ∗ x))) ≤ µF̃[α](x ∗ y)
and

γF̃[α](x ∗ (y ∗ (y ∗ x))) ≥ γF̃[α](x ∗ y),
for all α ∈ A. It follows from condition (2) that

µF̃[α](x ∗ (y ∗ (y ∗ x))) = µF̃[α](x ∗ y)
and

γF̃[α](x ∗ (y ∗ (y ∗ x))) = γF̃[α](x ∗ y),
for all x, y ∈ X, α ∈ A. Hence the condition (3) is holds.

To prove (3)⇒ (1), Since (F̃, A) is an intuitionistic fuzzy soft ideal over a BCK-algebra X, then
µF̃[α](x ∗ y) ≥ min

{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](z)

}
and

γF̃[α](x ∗ y) ≤ max
{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](z)

}
,

for all x, y, z ∈ X, α ∈ A. Combining (3), we have
µF̃[α](x ∗ (y ∗ (y ∗ x))) ≥ min

{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](z)

}
and

γF̃[α](x ∗ (y ∗ (y ∗ x))) ≤ max
{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](z)

}
,

for all x, y, z ∈ X, α ∈ A.
Obviously, (F̃, A) is also satisfies µF̃[α](0) ≥ µF̃[α](x) and γF̃[α](0) ≤ γF̃[α](x) for all x ∈ X, α ∈ A.
Hence, (F̃, A) is an intuitionistic fuzzy soft commutative ideal over X. Hence, the condition (1) is holds. The

proof is complete. �

Next, we discuss other properties of intuitionistic fuzzy soft commutative ideal in BCK-algebra X.

Theorem 4.7. Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft sets over a BCK-algebra X such that (F̃, A)⊆̃(G̃, B).
If (G̃, B) is an intuitionistic fuzzy soft commutative ideal over X, then

(1) µG̃[α](0) ≥ µF̃[α](x);
(2) γG̃[α](0) ≤ γF̃[α](x);
(3) µG̃[α](x ∗ (y ∗ (y ∗ x))) ≥ min

{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](z)

}
;

ETIST 2021 29



Nana Liu,Chang Wang, V. Inthumathi

(4) γG̃[α](x ∗ (y ∗ (y ∗ x))) ≤ max
{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](z)

}
;

for all x, y, z ∈ X and α ∈ A.

Proof. Assume that (G̃, B) is an intuitionistic fuzzy soft commutative ideal over X.
For any x ∈ X and α ∈ A, we have:

µG̃[α](0) ≥ µG̃[α](x) ≥ µF̃[α](x)
and

γG̃[α](0) ≤ γG̃[α](x) ≤ γF̃[α](x),
which prove (1) and (2). Also for any x, y ∈ X and α ∈ A, we have:

µG̃[α](x ∗ (y ∗ (y ∗ x)))
≥ min

{
µG̃[α]((x ∗ y) ∗ z), µG̃[α](z)

}
≥ min

{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](z)

}
and

γG̃[α](x ∗ (y ∗ (y ∗ x)))
≤ max

{
γG̃[α]((x ∗ y) ∗ z), γG̃[α](z)

}
≤ max

{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](z)

}
.

which prove (3) and (4), and the proof is complete. �

Remark 4.1. For two intuitionistic fuzzy soft sets (F̃, A) and (G̃, B) over a BCK-algebra X, where (F̃, A)⊆̃(G̃, B),
if (G̃, B) is an intuitionistic fuzzy soft commutative ideal over X, then (F̃, A) maybe not an intuitionistic fuzzy soft
commutative ideal over X. The following example will illustrate this viewpoint.

Example 4.3. Let U be a BCK-algebra which is given in Example 4.1.
Consider sets of parameters A = {pen}, B = {pen, eraser}, respectively. Let (F̃, A) and (G̃, B) be two intuition-

istic fuzzy soft sets over U which are defined by:

F̃ 0 a b c
pen (0.6,0.4) (0.2,0.7) (0.3,0.6) (0.1,0.9)

and

G̃ 0 a b c
pen (0.7,0.2) (0.4,0.5) (0.4,0.5) (0.5,0.3)

eraser (0.8,0.2) (0.6,0.3) (0.6,0.3) (0.6,0.3)

respectively, and (F̃, A)⊆̃(G̃, B). Then (G̃, B) is an intuitionistic fuzzy soft commutative ideal over U, but (F̃, A)
is not an intuitionistic fuzzy soft commutative ideal over U, Since

µF̃[pen](a ∗ (c ∗ (c ∗ a)))
= µF̃[pen](a ∗ (c ∗ c))
= µF̃[pen](a ∗ 0)
= µF̃[pen](a) = 0.2
< min

{
µF̃[pen]((a ∗ c) ∗ b), µF̃[pen](b)

}
= min

{
µF̃[pen](a ∗ b), µF̃[pen](b)

}
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= min
{
µF̃[pen](0), µF̃[pen](b)

}
= min{0.6, 0.3} = 0.3

and
γF̃[pen](a ∗ (c ∗ (c ∗ a)))
= γF̃[pen](a ∗ (c ∗ c))
= γF̃[pen](a ∗ 0)
= γF̃[pen](a) = 0.7
> max

{
γF̃[pen]((a ∗ c) ∗ b), γF̃[pen](b)

}
= max

{
γF̃[pen](a ∗ b), γF̃[pen](b)

}
= max

{
γF̃[pen](0), γF̃[pen](b)

}
= max{0.4, 0.6} = 0.6.

Theorem 4.8. Let (F̃, A) be an intuitionistic fuzzy soft commutative ideal over a BCK-algebra X, If I is a subset
of A, then

(
F̃
∣∣∣
I
, A

)
is an intuitionistic fuzzy soft commutative ideal over X.

Proof. Straightforward. �

The following example shows that there exists an intuitionistic fuzzy soft set (F̃, A) over a BCK-algebra X
such that

(1) (F̃, A) is not an intuitionistic fuzzy soft commutative ideal over X.
(2) there exists a subset I of A such that

(
F̃
∣∣∣
I
, A

)
is an intuitionistic fuzzy soft commutative ideal over X.

Example 4.4. Let U be a BCK-algebra which is given in Example 4.1.
Consider a set of parameters A = {red, green, yellow}. Then F̃[red], F̃[green] and F̃[yellow] are intuitionistic

fuzzy sets over U. We define them as follows:

F̃ 0 a b c
red (0.8,0.1) (0.7,0.3) (0.5,0.4) (0.5,0.4)

green (0.7,0.2) (0.4,0.5) (0.4,0.5) (0.4,0.5)
yellow (0.9,0.1) (0.6,0.3) (0.6,0.3) (0.4,0.5)

Then (F̃, A) is not an intuitionistic fuzzy soft commutative ideal over U, since F̃[red] is not intuitionistic fuzzy
commutative ideal in U,

µF̃[red](b ∗ (c ∗ (c ∗ b)))
= µF̃[red](b) = 0.5
< min

{
µF̃[red]((b ∗ c) ∗ a), µF̃[red](a)

}
= min

{
µF̃[red](a), µF̃[red](a)

}
= min{0.7, 0.7} = 0.7

and
γF̃[red](b ∗ (c ∗ (c ∗ b)))
= γF̃[red](b) = 0.4
> max

{
γF̃[red]((b ∗ c) ∗ a), γF̃[red](a)

}
= max

{
γF̃[red](a), γF̃[red](a)

}
= max{0.3, 0.3} = 0.3.

But if we take I = {green, yellow}, then
(
F̃
∣∣∣
I
, A

)
is an intuitionistic fuzzy soft commutative ideal over U.
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Next, we consider other results of intuitionistic fuzzy soft commutative ideal in BCK-algebra X.

Theorem 4.9. Let (F̃, A) be an intuitionistic fuzzy soft commutative ideal over a BCK-algebra X, then ¬(F̃, A) ={
µF̃[α](x), µF̃[α](x)

}
is also an intuitionistic fuzzy soft commutative ideal of X, for all x ∈ X, α ∈ A.

Proof. Let (F̃, A) be an intuitionistic fuzzy soft commutative ideal over a BCK-algebra X, we have
µF̃[α](0) ≥ µF̃[α](x)
⇒ 1 − µF̃[α](0) ≤ 1 − µF̃[α](x)
⇒ µF̃[α](0) ≤ µF̃[α](x),

for all x ∈ X, α ∈ A.
Consider for any x, y, z ∈ X, α ∈ A,
µF̃[α](x ∗ (y ∗ (y ∗ x))) ≥ min

{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](z)

}
⇒ 1 − µF̃[α](x ∗ (y ∗ (y ∗ x))) ≥ min

{
1 − µF̃[α]((x ∗ y) ∗ z), 1 − µF̃[α](z)

}
⇒ µF̃[α](x ∗ (y ∗ (y ∗ x))) ≤ 1 −min

{
1 − µF̃[α]((x ∗ y) ∗ z), 1 − µF̃[α](z)

}
⇒ µF̃[α](x ∗ (y ∗ (y ∗ x))) ≤ max

{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](z)

}
.

Hence, ¬(F̃, A) =
{
µF̃[α](x), µF̃[α](x)

}
is an intuitionistic fuzzy soft commutative ideal of X, for all x ∈ X, α ∈ A. �

Theorem 4.10. Let (F̃, A) be an intuitionistic fuzzy soft commutative ideal over a BCK-algebra X, then ◦(F̃, A) ={
γF̃[α](x), γF̃[α](x)

}
is also an intuitionistic fuzzy soft commutative ideal of X, for all x ∈ X, α ∈ A.

Proof. Let (F̃, A) be an intuitionistic fuzzy soft commutative ideal over a BCK-algebra X, we have
γF̃[α](0) ≤ γF̃[α](x)
⇒ 1 − γF̃[α](0) ≥ 1 − γF̃[α](x)
⇒ γF̃[α](0) ≥ γF̃[α](x)

for all x ∈ X, α ∈ A.
Consider for any x, y, z ∈ X, α ∈ A,
γF̃[α](x ∗ (y ∗ (y ∗ x))) ≤ max

{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](z)

}
⇒ 1 − γF̃[α](x ∗ (y ∗ (y ∗ x))) ≤ max

{
1 − γF̃[α]((x ∗ y) ∗ z), 1 − γF̃[α](z)

}
⇒ γF̃[α](x ∗ (y ∗ (y ∗ x))) ≥ 1 −max

{
1 − γF̃[α]((x ∗ y) ∗ z), 1 − γF̃[α](z)

}
⇒ γF̃[α](x ∗ (y ∗ (y ∗ x))) ≥ min

{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](z)

}
Hence, ◦(F̃, A) =

{
γF̃[α](x), γF̃[α](x)

}
is an intuitionistic fuzzy soft commutative ideal of X, for all x ∈ X, α ∈ A. �

Theorem 4.11. Let (F̃, A) be an intuitionistic fuzzy soft commutative ideal over a BCK-algebra X if and only if
µF̃[α](x) and γF̃[α](x) are fuzzy soft commutative ideals of X for all x ∈ X, α ∈ A.

Proof. Let (F̃, A) be an intuitionistic fuzzy soft commutative ideal over a BCK-algebra X, clearly µF̃[α](x) is a
fuzzy soft commutative ideal of X.

Let x, y, z ∈ X, α ∈ A, then
γF̃[α](0) = 1 − γF̃[α](0) ≥ 1 − γF̃[α](x) = γF̃[α](x)

and
γF̃[α](x ∗ (y ∗ (y ∗ x))) = 1 − γF̃[α](x ∗ (y ∗ (y ∗ x)))
≥ 1 −max

{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](z)

}
= min

{
1 − γF̃[α]((x ∗ y) ∗ z), 1 − γF̃[α](z)

}
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= min
{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](z)

}
.

Hence, γF̃[α](x) is a fuzzy soft commutative ideal of X.
Conversely, assume that µF̃[α](x) and γF̃[α](x) are fuzzy soft commutative ideals of X for all x ∈ X, α ∈ A. For

all x ∈ X, we have
µF̃[α](0) ≥ µF̃[α](x)

and
1 − γF̃[α](0) = γF̃[α](0) ≥ γF̃[α](x) = 1 − γF̃[α](x).

Which show that γF̃[α](0) ≤ γF̃[α](x).
Now let x, y, z ∈ X, α ∈ A, then
µF̃[α](x ∗ (y ∗ (y ∗ x))) ≥ min

{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](z)

}
and

1 − γF̃[α](x ∗ (y ∗ (y ∗ x))) = γF̃[α](x ∗ (y ∗ (y ∗ x)))
≥ min

{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](z)

}
= min

{
1 − γF̃[α]((x ∗ y) ∗ z), 1 − γF̃[α](z)

}
= 1 −max

{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](z)

}
and so

γF̃[α](x ∗ (y ∗ (y ∗ x))) ≤ max
{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](z)

}
.

Hence, (F̃, A) is an intuitionistic fuzzy soft commutative ideal of X. �

Theorem 4.12. Let (F̃, A) be an intuitionistic fuzzy soft commutative ideal over a BCK-algebra X if and only if
¬(F̃, A) =

{
µF̃[α](x), µF̃[α](x)

}
and ◦(F̃, A) =

{
γF̃[α](x), γF̃[α](x)

}
are intuitionistic fuzzy soft commutative ideals of

X, for all x ∈ X, α ∈ A.

Proof. It is straightforward by Theorem 4.11. �

Theorem 4.13. Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft commutative ideals over a BCK-algebra X,
then the “extended intersection” (F̃, A)∩̃e(G̃, B) is an intuitionistic fuzzy soft commutative ideal over X.

Proof. Let (F̃, A)∩̃e(G̃, B) = (H̃,C) be the “extended intersection” of intuitionistic fuzzy soft commutative ideal
(F̃, A) and (G̃, B) over X, where C = A ∪ B. For any e ∈ C,

if e ∈ A\B, then H̃[e] = F̃[e] is an intuitionistic fuzzy commutative ideal in X because (F̃, A) is an intuitionistic
fuzzy soft commutative ideal over a BCK-algebra X;

if e ∈ B\A, then H̃[e] = G̃[e] is an intuitionistic fuzzy commutative ideal in X because (G̃, B) is an intuitionistic
fuzzy soft commutative ideal over a BCK-algebra X;

if A ∩ B , ∅, then H̃[e] = F̃[e] ∩ G̃[e] is an intuitionistic fuzzy commutative ideal for all e ∈ A ∩ B, since the
intersection of two intuitionistic fuzzy commutative ideals is an intuitionistic fuzzy commutative ideal.

Therefore (H̃,C) = (F̃, A)∩̃e(G̃, B) is an intuitionistic fuzzy soft commutative ideal over a BCK-algebra X. �

The following two corollaries are straightforward results of Theorem 4.13.

Corollary 4.1. Let (F̃, A) and (G̃, A) be two intuitionistic fuzzy soft commutative ideals over a BCK-algebra X,
then the “extended intersection” (F̃, A)∩̃e(G̃, A) is an intuitionistic fuzzy soft commutative ideal over X.

Corollary 4.2. Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft commutative ideals over a BCK-algebra X,
then the “restricted intersection” (F̃, A)∩̃r(G̃, B) is an intuitionistic fuzzy soft commutative ideal over X.

Theorem 4.14. Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft commutative ideals over a BCK-algebra X,
if A and B are disjoint, then the “union” (F̃, A)∪̃(G̃, B) is an intuitionistic fuzzy soft commutative ideal over X.
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Proof. Let (F̃, A)∪̃(G̃, B) = (H̃,C) be the “union” of intuitionistic fuzzy soft commutative ideal (F̃, A) and (G̃, B)
over X. Since A and B are disjoint, then for all e ∈ C, either e ∈ A\B or e ∈ B\A, by means of Definition 2.10,

if e ∈ A\B, then H̃[e] = F̃[e] is an intuitionistic fuzzy commutative ideal in X because (F̃, A) is an intuitionistic
fuzzy soft commutative ideal over a BCK-algebra X;

if e ∈ B\A, then H̃[e] = G̃[e] is an intuitionistic fuzzy commutative ideal in X because (G̃, B) is an intuitionistic
fuzzy soft commutative ideal over a BCK-algebra X.

Hence (H̃,C) = (F̃, A)∪̃(G̃, B) is an intuitionistic fuzzy soft commutative ideal over a BCK-algebra X. �

Theorem 4.15. Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft commutative ideals over a BCK-algebra X,
then the “AND ” (F̃, A)∧̃(G̃, B) is an intuitionistic fuzzy soft commutative ideal over X.

Proof. Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft commutative ideals over a BCK-algebra X based on
parameter α ∈ A and β ∈ B, respectively, then (F̃, A) and (G̃, B) are two intuitionistic fuzzy soft ideals over X
based on the parameter α ∈ A and β ∈ B, respectively.

By Theorem 3.2, we know that (F̃, A)∧̃(G̃, B) = (H̃, A × B) is an intuitionistic fuzzy soft ideal over X based
on the parameter (α, β) ∈ A × B.
For any x, y ∈ X, we have

µH̃[α,β](x ∗ (y ∗ (y ∗ x)))
= µ(F̃[α]∩G̃[β])(x ∗ (y ∗ (y ∗ x)))
= min

{
µF̃[α](x ∗ (y ∗ (y ∗ x))), µG̃[β](x ∗ (y ∗ (y ∗ x)))

}
≥ min

{
µF̃[α](x ∗ y), µG̃[β](x ∗ y)

}
= µ(F̃[α]∩G̃[β])(x ∗ y)
= µH̃[α,β](x ∗ y)

and
γH̃[α,β](x ∗ (y ∗ (y ∗ x)))
= γ(F̃[α]∩G̃[β])(x ∗ (y ∗ (y ∗ x)))
= max

{
γF̃[α](x ∗ (y ∗ (y ∗ x))), γG̃[β](x ∗ (y ∗ (y ∗ x)))

}
≤ max

{
γF̃[α](x ∗ y), γG̃[β](x ∗ y)

}
= γ(F̃[α]∩G̃[β])(x ∗ y)
= γH̃[α,β](x ∗ y).

It follows from Theorem 4.5 that (F̃, A)∧̃(G̃, B) = (H̃, A×B) is an intuitionistic fuzzy soft commutative ideal over
X based on the parameter (α, β). �

At the end of the paper, we discuss the homomorphism between intuitionistic fuzzy soft commutative ideals.

Theorem 4.16. Let f : X → Y is an onto homomorphism of BCK-algebras. If an intuitionistic fuzzy soft set
(F̃, A) of Y is an intuitionistic fuzzy soft commutative ideal, then preimage (F̃, A) f is also an intuitionistic fuzzy
soft commutative ideal of X.

Proof. Since (F̃, A) is an intuitionistic fuzzy soft commutative ideal of Y , and (F̃, A) f is the preimage of (F̃, A)
under f of X, then µF̃[α]( f (x)) = µF̃[α]

f (x), γF̃[α]( f (x)) = γF̃[α]
f (x) for all x ∈ X, α ∈ A.

Since (F̃, A) is an intuitionistic fuzzy soft commutative ideal of Y , then for any x ∈ X, α ∈ A, we have
µF̃α]

f (x) = µF̃[α]( f (x)) ≤ µF̃[α](0) = µF̃[α]( f (0)) = µF̃[α]
f (0)

and
γF̃[α]

f (x) = γF̃[α]( f (x)) ≥ γF̃[α](0) = γF̃[α]( f (0)) = γF̃[α]
f (0).

Moreover,
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min
{
µF̃[α]

f ((x ∗ y) ∗ z), µF̃[α]
f (z)

}
= min

{
µF̃[α]( f ((x ∗ y) ∗ z)), µF̃[α]( f (z))

}
= min

{
µF̃[α]( f (x ∗ y) ∗ f (z)), µF̃[α]( f (z))

}
= min

{
µF̃[α](( f (x) ∗ f (y)) ∗ f (z)), µF̃[α]( f (z))

}
≤ µF̃[α]( f (x) ∗ ( f (y) ∗ ( f (y) ∗ f (x))))
= µF̃[α]( f (x) ∗ ( f (y) ∗ ( f (y ∗ x))))
= µF̃[α]( f (x) ∗ ( f (y ∗ (y ∗ x))))
= µF̃[α]( f (x ∗ (y ∗ (y ∗ x))))
= µF̃[α]

f (x ∗ (y ∗ (y ∗ x)))
and

max
{
γF̃[α]

f ((x ∗ y) ∗ z), γF̃[α]
f (z)

}
= max

{
γF̃[α]( f ((x ∗ y) ∗ z)), γF̃[α]( f (z))

}
= max

{
γF̃[α]( f (x ∗ y) ∗ f (z)), γF̃[α]( f (z))

}
= max

{
γF̃[α](( f (x) ∗ f (y)) ∗ f (z)), γF̃[α]( f (z))

}
≥ γF̃[α]( f (x) ∗ ( f (y) ∗ ( f (y) ∗ f (x))))
= γF̃[α]( f (x) ∗ ( f (y) ∗ ( f (y ∗ x))))
= γF̃[α]( f (x) ∗ ( f (y ∗ (y ∗ x))))
= γF̃[α]( f (x ∗ (y ∗ (y ∗ x))))
= γF̃[α]

f (x ∗ (y ∗ (y ∗ x))).
Hence, (F̃, A) f is also an intuitionistic fuzzy soft commutative ideal of X, for any x, y, z ∈ X, α ∈ A. �

If we strengthen the condition of f , then we can construct the converse of the above theorem as follows.

Theorem 4.17. Let f : X → Y is an epimorphism of BCK-algebras. If an intuitionistic fuzzy soft set (F̃, A) f is an
intuitionistic fuzzy soft commutative ideal of X, then (F̃, A) is also an intuitionistic fuzzy soft commutative ideal
of Y.

Proof. Since (F̃, A) f is an intuitionistic fuzzy soft commutative ideal of X, and (F̃, A) f is the preimage of (F̃, A)
under f of X, then µ f

F̃[α]
(x) = µF̃[α]( f (x)), γF̃[α]

f (x) = γF̃[α]( f (x)) for all x ∈ X, α ∈ A.
Let x, y, z ∈ Y, α ∈ A, there exist a, b, c ∈ X such that f (a) = x, f (b) = y and f (c) = z.

Now,
µF̃[α](x) = µF̃[α]( f (a)) = µF̃[α]

f (a) ≤ µF̃[α]
f (0) = µF̃[α]( f (0)) = µF̃[α](0)

and
γF̃α](x) = γF̃[α]( f (a)) = γF̃[α]

f (a) ≥ γF̃[α]
f (0) = γF̃[α]( f (0)) = γF̃[α](0).

Moreover,
µF̃[α](x ∗ (y ∗ (y ∗ x)))
= µF̃[α]( f (a) ∗ ( f (b) ∗ ( f (b) ∗ f (a))))
= µF̃[α]( f (a) ∗ ( f (b) ∗ ( f (b ∗ a))))
= µF̃[α]( f (a) ∗ ( f (b ∗ (b ∗ a))))
= µF̃[α]( f (a ∗ (b ∗ (b ∗ a))))
= µF̃[α]

f (a ∗ (b ∗ (b ∗ a)))
≥ min

{
µF̃[α]

f ((a ∗ b) ∗ c), µF̃[α]
f (c)

}
= min

{
µF̃[α]( f ((a ∗ b) ∗ c)), µF̃[α]( f (c))

}
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= min
{
µF̃[α]( f (a ∗ b) ∗ f (c)), µF̃[α]( f (c))

}
= min

{
µF̃[α](( f (a) ∗ f (b)) ∗ f (c)), µF̃[α]( f (c))

}
= min

{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](z)

}
and

γF̃[α](x ∗ (y ∗ (y ∗ x)))
= γF̃[α]( f (a) ∗ ( f (b) ∗ ( f (b) ∗ f (a))))
= γF̃[α]( f (a) ∗ ( f (b) ∗ ( f (b ∗ a))))
= γF̃[α]( f (a) ∗ ( f (b ∗ (b ∗ a))))
= γF̃[α]( f (a ∗ (b ∗ (b ∗ a))))
= γF̃[α]

f (a ∗ (b ∗ (b ∗ a)))
≤ max

{
γF̃[α]

f ((a ∗ b) ∗ c), γF̃[α]
f (c)

}
= max

{
γF̃[α]( f ((a ∗ b) ∗ c)), γF̃[α]( f (c))

}
= max

{
γF̃[α]( f (a ∗ b) ∗ f (c)), γF̃[α]( f (c))

}
= max

{
γF̃[α](( f (a) ∗ f (b)) ∗ f (c)), γF̃[α]( f (c))

}
= max

{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](z)

}
.

Hence, (F̃, A) is an intuitionistic fuzzy soft commutative ideal of Y . �

5 Conclusion
In this paper, we introduced the notion of intuitionistic fuzzy soft commutative ideal, and investigated related

properties. Meanwhile, we discussed relations between intuitionistic fuzzy soft commutative ideal and intuition-
istic fuzzy soft ideal over a BCK-algebras, we also discuss some results of intuitionistic fuzzy soft commutative
ideal in BCK-algebras. Based on these results, we will apply intuitionistic fuzzy soft sets to another type of ideals
in BCK-algebras, and discuss the relevant results.

Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgements
The works described in this paper are supported by the National Natural Science Foundation of China under

Grant nos. 11501444, 11726019.

References
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