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b-Hβ-open sets in HGTS

V. Chitra 1 ,R. Ramesh2

Abstract - In this paper we introduce and study the notions of b-Hβ-open sets π∗-B-Hβ-sets, α
∗-B-Hβ-sets and σ∗-B-

Hβ-sets in hereditary generalized topological space. Also we obtained decompositions of (µ, λ)-continuity.

Keywords hereditary generalized topology, α-Hσ-open, σ-Hσ-open and π-Hσ-open sets, b-Hσ-open sets.

2010 Subject classification: 54A05

1 Introduction and Preliminaries

In the year 2002, Csaszar [1] introduced very usefull notions of generalized topology and generalized
continuity. Consider Z be a nonempty set and µ be a collection from the subsets of Z. Then µ is called
a generalized topology (briefly GT) if ∅ ∈ µ and an arbitrary union of elements from µ belongs to µ. A
space Z is called a C0-space [12], if C0 = Z, where C0 is the set of all representative elements of sets of
µ. A subset L of a space (Z, µ) is called asµ-α-open [2] (resp. µ-σ-open [2], µ-π-open [2], µ-β-open [2],
µ-b-open [11], µ-t-set [5], µ-t∗-set [5]), if L ⊂ iµcµiµ(L) (resp. L ⊂ cµiµ(L), L ⊂ iµcµ(L), L ⊂ cµiµcµ(L),
L ⊂ cµiµ(L) ∪ iµcµ(L), iµcµ(L) = iµ(L), iµcµiµ(L) = iµ(L)). A subset L of Z is µ-locally closed set [4],
L = U ∩ V, where U is µ-open and V is µ-closed. A GTS (Z, µ) is called µ-extremally disconnected [?], if
the µ-closure of every µ-open set is µ-open. A function f : (Z, µ)→ (W,λ) is said to be (µ, λ)-continuous
[1], iff M ∈ λ implies that f−1(M) is µ-open. A nonempty family H of subsets of Z is called as a hereditary
class [3], if L ∈ H and B ⊂ L, then B ∈ H. For each L ⊆ Z, L∗(H, µ)={z ∈ Z : L ∩ V /∈ H for All V ∈ µ
such that z ∈ V }[3]. For L ⊂ Z, define c∗µ(L) = L ∪ L∗(H, µ) and µ∗ = {L ⊂ Z : Z − L = c∗µ(Z − L)}. If
H is a hereditary class on Z then (Z, µ,H) is called a hereditary generalized topological space (H.G.T.S.)

Definition 1.1. [6] Consider L be a subset of H.G.T.S. (Z, µ,H). Then L∗
β(H, µ)={z ∈ Z : L ∩ V /∈ H

for all V ∈ µ-β-open such that z ∈ V }.

Definition 1.2. [3] A subset L of a H.G.T.S. (Z, µ,H) is said to be

1. α-H-open, if L ⊆ iµc
∗
µiµ(L),

2. σ-H-open, if L ⊆ c∗µiµ(L),

3. π-H-open, if L ⊆ iµc
∗
µ(L),

4. β-H-open, if L ⊆ cµiµc
∗
µ(L),

5. strong β-H-open, if L ⊆ c∗µiµc
∗
µ(L),

6. µ∗-closed, if c∗µ(L) ⊂ L.

1Assistant Professor, Department of Mathematiccs Nallamuthu Gounder Mahalingam College, Pollachi.
2Assistant Professor Department of Science and Humanities, Dr. Mahalingam College of Engineeirng and Technology,

Pollachi.
E-mail: rameshwaran141@gmail.com
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Definition 1.3. A subset L of a H.G.T.S. (Z, µ,H) is said to be b-H-open [7], if L ⊆ iµc
∗
µ(L) ∪ c∗µiµ(L).

Proposition 1.4. [6] Let L be a µ-σ-closed. Then L∗
σ ⊂ L.

Let (Z, µ,H) be a hereditary generalized topological space. For L ⊂ Z, define c∗β(L) = L ∪ L∗
β [6] and

c∗β(L) is enlarging, monotone and idempotent.

Definition 1.5. [8] A subset L of a H.G.T.S. (Z, µ,H) is said to be

1. α-Hσ-open, if L ⊆ iµc
∗
σiµ(L),

2. σ-Hσ-open, if L ⊆ c∗σiµ(L),

3. π-Hσ-open, if L ⊆ iµc
∗
σ(L),

4. β-Hσ-open, if L ⊆ cµiµc
∗
σ(L).

Definition 1.6. [10] A subset L of a H.G.T.S. (Z, µ,H) is said to be

1. α-Hβ-open, if L ⊆ iµc
∗
βiµ(L),

2. σ-Hβ-open, if L ⊆ c∗βiµ(L),

3. π-Hβ-open, if L ⊆ iµc
∗
β(L),

4. β-Hβ-open, if L ⊆ cµiµc
∗
β(L).

Definition 1.7. [10] A function f : (Z, µ,H)→ (W,λ) is said to be (α-Hβ, λ)-continuous (resp.(σ-Hβ, λ)-
continuous, (π-Hβ, λ)-continuous), f−1(N) is α-Hβ-open (resp. σ-Hβ-open, π-Hβ-open) for each λ-open
set N in (W,λ).

Definition 1.8. [9] A function f : (Z, µ,H) → (W,λ) is said to be (µL, λ)-continuous, if f−1(N) is
µ-locally closed set for each λ-closed set N in (W,λ).

2 b-Hβ-open sets

Definition 2.1. A subset L of a H.G.T.S. (Z, µ,H) is said to be b-Hβ-open set, if L ⊆ iµc
∗
β(L)∪ c∗βiµ(L).

Proposition 2.2. In H.G.T.S. (Z, µ,H) all µ-open set is b-Hβ-open but not conversely.

Proof. Let a subset L of H.G.T.S. (Z, µ,H) is µ-open. Then L = iµ(L). Now L ⊆ iµ(L) ⊆ iµc
∗
β(L) ⊆

iµc
∗
β(L) ∪ c∗βiµ(L). Hence L is b-Hβ-open.

Example 2.3. Consider Z = {a, b, c, d} µ = {∅, {a}, {b}, {a, b}, {b, c, d}, Z}, H = {∅, {a}, }. Then L =
{a, b, c} is b-Hβ-open but not µ-open.

Proposition 2.4. Every b-Hβ-open is µ-b-open but not conversely.

Proof. Let L be a b-Hβ-open. Then L ⊆ iµc
∗
β(L)∪c∗βiµ(L) ⊆ iµc

∗
µ(L)∪c∗µiµ(L) ⊆ iµcµ(L)∪cµiµ(L). Hence

L is µ-b-open.

Proposition 2.5. Every b-Hβ-open is b-H-open but not conversely.
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Proof. Let L be a b-Hβ-open. Then L ⊆ iµc
∗
β(L) ∪ c∗βiµ(L) ⊆ iµc

∗
µ(L) ∪ c∗µiµ(L). Hence L is b-H-open.

Example 2.6. Consider Z = {a, b, c, d, e} µ = {∅, {a}, {b}, {c}, {a, b}, {a, c},
{b, c}, {a, b, c}, {a, c, d}, {b, c, d}, {a, b, c, d}}, H = {∅, {a}}. Then L = {e} is µ-b-open but not b-Hβ-open
and M = {a, e} is b-H-open but not b-Hβ-open.

Theorem 2.7. If L ⊂ Z is both b-Hβ-open and µ-σ-closed, then it is σ-Hσ-open.

Proof. Let L is both b-Hβ-open and µ-σ-closed. Then L ⊆ iµc
∗
β(L) ∪ c∗βiµ(L) ⊆ iµc

∗
σ(L) ∪ c∗σiµ(L) and

c∗σ(L) ⊆ L by Proposition 2.9 of [6]. Which implies iµc
∗
σ(L) ⊆ iµ(L). Now L ⊆ iµc

∗
β(L) ∪ c∗βiµ(L) ⊆

iµc
∗
σ(L) ∪ c∗σiµ(L) ⊆ c∗σiµ(L) ∪ iµ(L) = c∗σiµ(L). Hence σ-Hσ-open.

Theorem 2.8. If L ⊂ Z is b-Hβ-open such that iµ(L) = ∅, then it is π-Hσ-open.

Proof. Let L be a b-Hβ-open and iµ(L) = ∅. Then L ⊆ iµc
∗
β(L) ∪ c∗βiµ(L) ⊆ iµc

∗
σ(L) ∪ c∗σiµ(L) = iµc

∗
σ(L).

Hence L is π-Hσ-open.

Theorem 2.9. If L ⊂ Z is b-Hβ-open and L ∈ H, then it is σ-Hσ-open.

Proof. Let L is b-Hβ-open and L ∈ H. Then L ⊆ iµc
∗
β(L)∪ c∗βiµ(L) ⊆ iµc

∗
σ(L)∪ c∗σiµ(L) and c∗σ(L) = L by

Remark 2.10 of [6]. Now L ⊆ iµc
∗
β(L)∪ c∗βiµ(L) ⊆ iµc

∗
σ(L)∪ c∗σiµ(L) = iµ(L)∪ c∗σiµ(L) = c∗σiµ(L). Hence L

is σ-Hσ-open.

Theorem 2.10. If L ⊂ Z is b-Hβ-open and H = P (Z) then it is σ-Hσ-open.

Proof. Let L is b-Hσ-open and L ∈ H. Then L ⊆ iµc
∗
β(L)∪ c∗βiµ(L) ⊆ iµc

∗
σ(L)∪ c∗σiµ(L) and c∗σ(L) = L by

Remark 2.10 of [6]. Now L ⊆ iµc
∗
β(L)∪ c∗βiµ(L) ⊆ iµc

∗
σ(L)∪ c∗σiµ(L) = iµ(L)∪ c∗σiµ(L) = c∗σiµ(L). Hence L

is σ-Hσ-open.

Theorem 2.11. If L ⊂ Z is b-Hβ-open and L ⊂ L∗
β, then it is µ-β-open.

Proof. Let L is b-Hβ-open and L ⊂ L∗
β. Then L ⊆ iµc

∗
β(L) ∪ c∗βiµ(L) and c∗βiµ(L) ⊂ c∗βiµc

∗
β(L). Now

L ⊆ iµc
∗
β(L) ∪ c∗βiµ(L) ⊆ iµc

∗
β(L) ∪ c∗βiµc∗β(L) ⊆ c∗βiµc

∗
β(L) ⊆ c∗µiµc

∗
µ(L) ⊆ cµiµcµ(L). Hence L is µ-β-open.

Theorem 2.12. Let (Z, µ,H) be a strong H.G.T.S., where Z is C0-space and µ-extremally disconnected
space, L ⊂ Z. Then the following conditions are equivalent.

1. L is µ-open,

2. L is b-Hβ-open and µ-locally closed set.

Proof. (1)⇒ (2) This is obvious from definitions.
(2) ⇒ (1) Let L is b-Hβ-open and µ-locally closed set. Then L ⊆ iµc

∗
β(L) ∪ c∗βiµ(L) ⊆ iµcµ(L) ∪ cµiµ(L)

and L = U ∩ cµ(L). Now
L ⊂ U ∩ cµ(L).
⊂ U ∩ [iµcµ(L) ∪ cµiµ(L)]
⊂ [U ∩ iµcµ(L)] ∪ [U ∩ cµiµ(L)]
⊂ [iµ(U) ∩ iµcµ(L)] ∪ [iµ(U) ∩ cµiµ(L)]
⊂ [iµ(U) ∩ iµcµ(L)] ∪ [iµ(U) ∩ iµcµ(L)]
⊂ [iµ(U ∩ cµ(L))] ∪ [iµ(U ∩ cµ(L))]
= [iµ(L)] ∪ [iµ(L)]
= iµ(L).

Hence L is µ-open.
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Remark 2.13. The notions of b-Hβ-open sets and µ-locally closed sets independent.

Example 2.14. Let Z = {a, b, c, d, e}, µ = {∅, {a}, {b}, {a, b}, {a, c}, {b, c},
{a, b, c}, {a, c, d}, {b, c, d}, {a, b, c, d}} and H = {∅, {a}}. Then L = {a, d} is µ-locally closed set but not
b-Hβ-open.

Example 2.15. Let Z = {a, b, c, d}, µ = {∅, {a, b, c}, {c, d}, Z} and H = {∅, {a}, {b}}. Then L = {a, c, d}
is b-Hβ-open but not µ-locally closed set.

3 π∗-B-Hβ-sets, α∗-B-Hβ-sets and σ∗-B-Hβ-sets

Definition 3.1. A subset L of a H.G.T.S. (Z, µ,H) is called

1. π∗-Hσ-set, if iµc
∗
β(L) = iµ(L).

2. α∗-Hσ-set, iµc
∗
βiµ(L) = iµ(L).

3. σ∗-Hσ-set, if c∗βiµ(L) = iµ(L).

Remark 3.2. The notions of π∗-Hβ-set (resp. α∗-Hβ-set, σ∗-Hβ-set) and π-Hβ-open (resp. α-Hβ-open,
σ-Hβ-open) are independent.

Example 3.3. Let Z = {a, b, c, d, e}, µ = {∅, {a}, {b}, {a, b}, {a, c}, {b, c},
{a, b, c}, {a, c, d}, {b, c, d}, {a, b, c, d}} and H = {∅, {a}}. Then A = {a, d} is π∗-Hβ-set (resp. α∗-Hβ-set,
σ∗-Hβ-set) but not π-Hβ-open (resp. α-Hβ-open, σ-Hβ-open).

Example 3.4. let Z = {a, b, c, d}, µ = {∅, {a}, {b}, {a, b}, {b, c, d}, Z} and H = {∅, {a}, {c}}. Then
A = {a, b, c} is π-Hβ-open (resp. α-Hβ-open, σ-Hβ-open) but not π∗-Hβ-set (resp. α∗-Hβ-set, σ∗-Hβ-
set).

Definition 3.5. A subset L of H.G.T.S. (Z, µ,H) is called

1. π∗-B-Hβ-set, if L = M ∩N, where M is µ-open and N is π∗-Hβ-set.

2. α∗-B-Hβ-set, if L = M ∩N, where M is µ-open and N is α∗-Hβ-set.

3. σ∗-B-Hβ-set, if L = M ∩N, where M is µ-open and N is σ∗-Hβ-set

Theorem 3.6. If L ⊂ Z is both b-Hβ-open and π∗-Hσ-set, then it is σ-Hσ-open.

Proof. Let L is both b-Hβ-open and π∗-Hσ-set. Then L ⊆ iµc
∗
β(L) ∪ c∗βiµ(L) and iµc

∗
σ(L) = iµ(L). Now

L ⊆ iµc
∗
β(L) ∪ c∗βiµ(L) ⊆ iµc

∗
σ(L) ∪ c∗σiµ(L) ⊆ c∗σiµ(L) ∪ iµ(L) = c∗σiµ(L). Hence L is σ-Hσ-open.

Theorem 3.7. If L ⊂ Z is both b-Hβ-open and σ∗-Hσ-set, then it is π-Hσ-open.

Proof. Let L is both b-Hβ-open and σ∗-Hσ-set. Then L ⊆ iµc
∗
β(L) ∪ c∗βiµ(L) and c∗σiµ(L) = iµ(L). Now

L ⊆ iµc
∗
β(L) ∪ c∗βiµ(L) ⊆ iµc

∗
σ(L) ∪ c∗σiµ(L) ⊆ iµc

∗
σ(L) ∪ iµ(L) = iµc

∗
σ(L). Hence L is π-Hσ-open.

Proposition 3.8. Let (Z, µ,H) be a strong H.G.T.S. and L ⊂ Z. Then the following holds:

1. If L is π∗-Hβ-set, then L is π∗-B-Hβ-set,
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2. If L is α∗-Hβ-set, then L is α∗-B-Hβ-set,

3. If L is σ∗-Hβ-set, then L is σ∗-B-Hβ-set.

Proof.

1. Let L be a π∗-Hβ-set. If we take M = Z ∈ µ, then L = M ∩ L and hence L is a π∗-B-Hβ-set.

2. This is obvious.

3. Trivial.

Theorem 3.9. Let (Z, µ,H) be a strong H.G.T.S., where Z is C0-space and L ⊂ Z. Then the following
conditions are equivalent.

1. L is µ-open,

2. L is π-Hβ-open and π∗-B-Hβ-set,

3. α-Hβ-open and α∗-B-Hβ-set,

4. σ-Hβ-open and σ∗-B-Hβ-set.

Proof. (1)⇒ (2), (1)⇒ (3), (1)⇒ (4), are obvious.
(2)⇒ (1). Let L is both π-Hβ-open and π∗-B-Hβ-set. Then we have L ⊆ iµc

∗
β(L) = iµc

∗
β(M ∩N), where

M ∈ µ and N is π∗-Hβ-set. Hence L ⊆ iµc
∗
β(M) ∩ iµc∗β(N). Now L ⊆ M ∩ L ⊆ M ∩ [iµc

∗
β(M) ∩ iµ(N)] =

M ∩ iµ(N) = iµ(L). Hence L is µ-open.

(3)⇒ (1). Let L is both α-Hβ-open and α∗-B-Hβ-set. Then we have L ⊆ iµc
∗
βiµ(L) = iµc

∗
βiµ(M∩N), where

M ∈ µ and N is t∗-Hβ-set. Hence L ⊆ iµc
∗
βiµ(M)∩iµc∗βiµ(N). Now L ⊆M∩L ⊆M∩[iµc

∗
βiµ(M)∩iµ(N)] =

M ∩ iµ(N) = iµ(L). Hence L is µ-open.

(3)⇒ (1). Let L is both σ-Hβ-open and σ∗-B-Hβ-set. Then we have L ⊆ c∗βiµ(L) = c∗βiµ(M ∩N), where
M ∈ µ and N is β∗-B-Hβ-set. Hence L ⊆ c∗βiµ(M)∩ c∗βiµ(N). Now L ⊆M ∩L ⊆M ∩ [c∗βiµ(M)∩ iµ(N)] =
M ∩ iµ(N) = iµ(L). Hence L is µ-open.

Remark 3.10. The notions of π-Hβ-open and π∗-B-Hβ-set are independent.

Remark 3.11. The notions of α-Hβ-open and α∗-B-Hβ-set are independent.

Remark 3.12. The notions of σ-Hβ-open and σ∗-B-Hβ-set are independent.

Example 3.13. Let Z = {a, b, c, d, e}, µ = {∅, {a}, {b}, {a, b}, {a, c}, {b, c},
{a, b, c}, {a, c, d}, {b, c, d}, {a, b, c, d}} and H = {∅, {a}}. Then A = {c, d} is π∗-B-Hβ-set (resp. α∗-B-Hβ-
set, σ∗-B-Hβ-set) but not π-Hβ-open (resp. α-Hβ-open, σ-Hβ-open).

Example 3.14. let Z = {a, b, c, d}, µ = {∅, {a}, {b}, {a, b}, {b, c, d}, Z} and H = {∅, {a}, {c}}. Then
A = {a, b, c} is π-Hβ-open (resp. α-Hβ-open, σ-Hβ-open) but not π∗-B-Hβ-set (resp. α∗-B-Hβ-set,
σ∗-B-Hβ-set).
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4 Decomposition of (µ, λ)-continuity

Definition 4.1. A function f : (Z, µ,H) → (W,λ) is said to be (π∗-B-Hβ, λ)-continuous (resp.(α∗-B-
Hβ, λ)-continuous, (σ∗-B-Hβ, λ)-continuous, if f−1(N) is π∗-B-Hβ-set (resp. α∗-B-Hβ-set, σ∗-B-Hβ-set,
for each λ-open set N in (W,λ).

Theorem 4.2. Let (Z, µ,H) be a strong H.G.T.S. where Z is C0-space and µ-extremally disconnected
space, for a function f : (Z, µ,H)→ (W,λ). Then the following conditions are equivalent.

1. f is (µ, λ)-continuous,

2. f is (b-Hβ, λ)-continuous and (µL, λ)-continuous.

Proof. Proof is trivial from Theorem 2.12.

Theorem 4.3. Let (Z, µ,H) be a strong H.G.T.S., for a function f : (Z, µ,H) → (W,λ). Then the
following conditions are equivalent.

1. f is (µ, λ)-continuous,

2. f is (π-Hβ, λ)-continuous and (π∗-B-Hβ, λ)-continuous,

3. f is (α-Hβ, λ)-continuous and (α∗-B-Hβ, λ)-continuous,

4. f is (σ-Hβ, λ)-continuous and (σ∗-B-Hβ, λ)-continuous.

Proof. Proof is trivial from Theorem 3.9.

References

[1] A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar., 96(2002), 351-357.

[2] A. Csaszar, Generalized open sets in generalized topologies, Acta Mathematica Hungarica., 106(2005),
53-56.

[3] A. Csaszar, Modification of generalized topologies via hereditary classes, Acta Mathematica Hungar-
ica., 115, (2007), 29-36.

[4] E. Ekici, Generalized submaximal spaces, Acta Math. Hungar., 134(1-2)(2012), 132-138.

[5] K. Karuppayi On decompositions of continuity and complete continuity with hereditary class J. Adv.
Stud.Topol., 5 (2014), 18-26.

[6] M. Rajamani, V. Inthumathi and R. Ramesh, Some new generalized topologies via hereditary classes,
Bol. Soc. Paran. Mat., 30(2) (2012), 71-77.

[7] R. Ramesh and R. Mariappan Generalized open sets in hereditary generalized topological spaces, J.
Math. Comput. Sci., 5(2) (2015), 149-159.

[8] R. Ramesh, Decomposition of (α-Hσ, λ)-continuity (Communicated)

244 ETIST



b-Hβ-open sets in HGTS

[9] R. Ramesh, b-Hβ-open sets in HGTS (Communicated)

[10] R. Ramesh, Decomposition of (α-Hβ, λ)-continuity (Communicated)

[11] M.S. Sarsak, On some properties of Generalized open sets in Generalized topological spaces , Demon-
stratio Math. (2013).

[12] GE Xun and GE Ying, µ-Separations in generalized topological spaces, Appl. Math. J. Chinese Univ.,
25(2)(2010), 243-252.

BIOGRAPHY

Dr. V. Chitra is working as an Assistant Professor in the Department of Mathemat-
ics from 2002, in Nallamuthu Gounder Mahalingam College, Pollachi. Her areas of
interest includes Fluid Dynamics and Complex Analysis. She guided 15 M. Phil. schol-
ars and guiding 2 Ph. D. scholars. She published 18 papers in reputed national and
international Journals. Currently doing research in Soft topology and Soft ideal topol-
ogy.

Dr. R. Ramesh, was born and brought upon the district of Salem, Tamil Nadu, India
He obtained the M.Sc. and M.Phil degrees in Mathematics from Bharathiar University,
Coimbatore. He was awarded Ph.D. degree in Topology by the Bharathiar University
in 2014. He is working as an Assistant Professor, Department of Mathematics, Dr.
Mahalingam College of Engineering and Technology, Pollachi. He have totally Eight
years of Teaching experience and three years of research experience. He have published
23 research papers in various international reputed journals.

ETIST 245


