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Abstract

A set of vertices S of a graph G is a geodetic set, if every vertex of graph G lies in at least one

interval between the vertices of S. The minimum size of a geodetic set in G is the geodetic number of

G. The comb product of a two connected graphs G and H at vertex o ∈ V (H), denoted by G ◃o H, is

a graph obtained by taking one copy of G and |V (G)| copies of H and identifying the ith copy of H at

the vertex o to the ith vertex of G. In this paper, we determine an exact value of geodetic number in

some classes of graphs.

Keywords: Distance, Geodesic, Geodetic Number , Geodetic closer, Comb product

Subject Classification: Graph Theory : 05C69

1.2 Introduction

By a simple and connected graph graph G = (V,E), We further assume that G has no isolated vertices.

For graph theoretic terminology we refer to Chartrand and Lesniak [8].

The notions of distance in graphs is a well-studied topic with several practical applications. For any

two vertices u and v of a connected graph G, the distance dG(u, v) is the length of a shortest u−v path in

G. The eccentricity of a vertex u of a graph G is the maximum distance between u and any other vertex

of G. The diameter of G, denoted by diam(G), is the maximum eccentricity of vertices in G, and the

radius is the minimum such eccentricity. The interval IG[u, v] between u and v is the set of all vertices on

all shortest u − v paths. Given a set S ⊆ V (G), its geodetic closure IG[S] is the set of all vertices lying

on some shortest path joining two vertices of S; that is,

IG[S] = {v ∈ V (G) : v ∈ IG[x, y], x, y ∈ S} =
∪

x,y∈S
IG[x, y].

Dr. S. Sivasankar1AssistantProfessor,Dept.ofMathematics,NGMCollege, Pollachi, E −mail : sssankar@gmail.com
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A set S ⊆ V (G) is called a geodetic set in G if IG[S] = V (G); that is, every vertex in G lies on

some geodesic between two vertices from S. The geodetic number g(G) of a graph G is the minimum

cardinality of a geodetic set in G.

In chemistry [1], some families of chemical graphs can be measured as the comb product graphs. Let

G and H be two connected graphs. Let o be a vertex of H. The comb product between G and H, denoted

by G ◃o H H, is a graph obtained by taking one copy of G and |V (G)| copies of H and identify the ith

copy of H at the vertex o with the ith vertex of G. By the definition of comb product, we can say that

V (G ◃o H) = (a, v)|a ∈ V (G), v ∈ V (H) and (a, v)(b, w) ∈ E(G ◃o H) whenever a = b and vw ∈ E(H), or

ab ∈ E(G) and v = w = o. We consider two different vertices a, b ∈ V (G) and a vertex o ∈ V (H). We

define H(a) = (a, v)|v ∈ V (H), G(o) = (v, o)|v ∈ V (G), and PG(a, b) is the shortest path from a to b in

G.

We find four main results. The first result is related to G◃o H when G is a connected graph and H is

the classes of graphs such as Path, Cycle, Completed Graph, Trees and Wheel Graph. In the literature,

the problem of the geodetic number of a graph was initiated by Harary, Loukakis, and Tsouros in 1986

and their result appeared as a published paper in 1993[10]. we collect the basic definitions in graphs and

geodetic sets which are used in the subsequent chapters; for graph theoretic terminology we refer to the

Chartrand and Lesniak [8]. few basic results on the geodetic number of cartesian and strong product of

graphs. These results are in Bresar et al. [3] and in Caceres et al. [5].

Lemma 1.1. [6] Every geodetic set of a graph contains its extreme vertices.

Lemma 1.2. [9] Let deg : V (A) → V (B) be an isomorphism between graphs A and B. The set S is a

geodetic set of A if and only if deg(x)|x ∈ S is a geodetic set of B

Lemma 1.3. [9] Let o ∈ V (H) be the identifying vertex and u, v be two distinct vertices of G ◃o H. For

l ∈ 1, 2, ..., n, if u ∈ Vl and v /∈ Vl, then every uv path in G ◃o H consists of (gl, o).

Lemma 1.4. [9] Let o ∈ V (H) be the identifying vertex and S be a geodetic set of G ◃o H. Then for

l ∈ 1, 2, ..., n, (S ∩ Vl) ∪ (gl, ho) is a geodetic set of G ◃o H[Vl].

2.2 Geodetic Number for Comb product of graph

Let CP = G◃oH. Let V (G) = {u1, u2, u3, ..., um} and V (Pn) = {v1, v2, v3, ..., vn}. From the definition

of the Comb product of graphs V (G ◃o H) = (a, v)|a ∈ V (G), v ∈ V (H) and (a, v)(b, w) ∈ E(G ◃o H)

Dr. S. Sivasankar1AssistantProfessor,Dept.ofMathematics,NGMCollege, Pollachi, E −mail : sssankar@gmail.com
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whenever a = b and vw ∈ E(H), or ab ∈ E(G) and v = w = o. We consider two different vertices

a, b ∈ V (G) and a vertex o ∈ V (H). We define H(a) = (a, v)|v ∈ V (H), G(o) = (v, o)|v ∈ V (G), and

PG(a, b) is the shortest path from a to b in G

Lemma 2.5. Let CP = G ◃o H and let S ∈ V (G), if any vertex of S is identifying in V (H) then

IG[S] = V (G ◃o H)

Proof. Let CP = G ◃o H and let S ∈ V (G), let us assume that {u, v, w} ∈ S by taking the comb product

of V (G ◃o H) = (a, v)|a ∈ V (G), v ∈ V (H) and (a, v)(b, w) ∈ E(G ◃o H) whenever a = b and vw ∈ E(H),

or ab ∈ E(G) and v = w = o. We consider two different vertices a, b ∈ V (G) and a vertex o ∈ V (H). We

define H(a) = (a, v)|v ∈ V (H), G(o) = (v, o)|v ∈ V (G), and PG(a, b) is the shortest path from a to b in

G. So that V (H) is an interior vertex of a shortest path between a vertex of S.

We obtain four main results. The first result is related to G ◃o H when G is a connected graph and

H is the family of graphs such as Path, Cycle, Completed Graph, Trees and Wheel Graph.

2.2 Geodetic Number for Comb product of graph G and H
Theorem 2.1. g(G ◃o Pn) = m.g(G)−m, where m,n ≥ 2

Proof. Let CP = G◃o Pn and let V (G) = {u1, u2, ..., um} and V (Pn) = {v1, v2, ..., vn}, let us assume that

vi and vj be a pendent vertices. then we know that S = {vi, vj} By the definition of comb product we can

identifying V (G) copies of H. Let us take vi is an identifying vertex of all the copies. Then the resultant

graph gives V (G) copies of pendent vertices. Already we know that all the pendent vertices should be

belongs to a geodetic set. by the Lemma 2.1 V (G) copies of pendent vertices is geodetic closure of V (H).

Therefore | S |= g(G).m−m

In this way we can proof the following corollary.

Corollary 2.1. g(G ◃o Pn) = m.g(G)−m, where m,n ≥ 2

Theorem 2.2. g(G ◃o Cn) = m.g(G)−m, where m,n ≥ 3

Proof. Let CP = G ◃o Cn and let V (G) = {u1, u2, ..., um} and V (Cn) = {v1, v2, ..., vn}
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Case i: If n is even

Let us assume that H is an even cycle then the geodetic set of H is S = {v1, vn
2
}. By the definition

of comb product we can identifying V (G) copies of H. Let us take v1 is an identifying vertex of all the

copies. Then the resultant graph gives V (G) copies of vn
2
vertex in G◃oCn. Already we know that vertex

vn
2
is center of the graph Hso that the shortest path between the V (G) copies of vn

2
is geodetic closure

of V (H). Therefore | S |≤ g(G).m−m.

We claim that | S | | ≥ g(G).m−m, Suppose We assume that {S− vn
2
} is geodetic set in G◃oCn, and

vn
2
∈ ith copy V (G) then that ith copy intermediate vertices are does not belongs to the geodetic closure

IG◃oCn [S] by the definition of the geodetic set its a contradiction. So | S | | ≥ g(G).m − m Therefore

g(G ◃o Cn) = m.g(G)−m

Case ii: If n is odd

Let us assume that H is an odd cycle then the geodetic set of H is S = {v1, vn
2
,vn

2 +1
}. By the definition

of comb product we can identifying V (G) copies of H. Let us take v1 is an identifying vertex of all the

copies. Then the resultant graph gives V (G) copies of {vn
2
, vn

2
+1} vertex in G ◃o Cn. Already we know

that vertex shortest path between (vn
2
,vn

2 +1
) geodetic closer H, so that the shortest path between the

V (G) copies of (vn
2
,vn

2 +1
) is geodetic closure of V (H). Therefore |S| ≤ g(G).m−m

We claim that | S | | ≥ g(G).m−m, Suppose We assume that {S− vn
2
} is geodetic set in G◃oCn, and

vn
2
∈ ith copy V (G) then that ith copy intermediate vertices are does not belongs to the geodetic closure

IG◃oCn [S] by the definition of the geodetic set its a contradiction. So | S | | ≥ g(G).m − m Therefore

g(G ◃o Cn) = m.g(G)−m

Theorem 2.3. g(G ◃o Kn) = m.g(G)−m, where m,n ≥ 3

Proof. Let CP = G ◃o Kn and let V (G) = {u1, u2, ..., um} and V (Kn) = {v1, v2, ..., vn}, we know that

S ∈ V (G), S = {v1, v2, ..., vn} By the definition of comb product we can identifying V (G) copies of H.

Let us take v1 is an identifying vertex of all the copies. Then the resultant graph gives V (G) copies of

{S/v1}. Already we know that distance between any vertex is 1 so that the Lemma 2.1 V (G) copies of

{S/v1} vertices is geodetic closure of V (H). Therefore | S |≤ g(G).m−m

Dr. S. Sivasankar1AssistantProfessor,Dept.ofMathematics,NGMCollege, Pollachi, E −mail : sssankar@gmail.com
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We claim that | S | | ≥ g(G).m−m, Suppose We assume that {S− vn
2
} is geodetic set in G◃oCn, and

vn
2
∈ ith copy V (G) then that ith copy intermediate vertices are does not belongs to the geodetic closure

IG◃oCn [S] by the definition of the geodetic set its a contradiction. So | S | | ≥ g(G).m − m Therefore

g(G ◃o Cn) = m.g(G)−m

Theorem 2.4. g(G ◃o W1,n) = m.g(G)−m, where m,n ≥ 4

Proof. Let CP = G ◃o W1,n and let V (G) = {u1, u2, ..., um} and V (W1,n) = {v1, v2, ..., vn}, we know that

S ∈ V (G), S = {v1, v3, v5..., vn−1} By the definition of comb product we can identifying V (G) copies of

H. Let us take v1 is an identifying vertex of all the copies. Then the resultant graph gives V (G) copies

of {S/v1}. Already we know that distance between any vertex is 1 so that the Lemma 2.1 V (G) copies of

{S/v1} vertices is geodetic closure of V (H). Therefore | S |≤ g(G).m−m

We claim that | S | | ≥ g(G).m−m, Suppose We assume that {S− vn
2
} is geodetic set in G◃oCn, and

vn
2
∈ ith copy V (G) then that ith copy intermediate vertices are does not belongs to the geodetic closure

IG◃oCn [S] by the definition of the geodetic set its a contradiction. So | S | | ≥ g(G).m − m Therefore

g(G ◃o Cn) = m.g(G)−m

References

[1] M. Azari and A. Iranmanesh, Chemical graphs constructed from rooted product and their Zagreb

indices, MATCH Commun. Math. Comput. Chem. 70 (2013), 901–919.

[2] B. Bresar, S. Klavzar and A. Douglas F. Rall, Dominating direct product of graphs, Discrete Math.

307 (2007) 1636-1642.

[3] B. Bresar, S. Klavzar and A. Tepeh Horvat, On the geodetic number and related metric sets in

Cartesian product graphs, Discrete Math. 308 (2008) 5555-5561.

[4] B. Bresar, S. Klavzar, T. K. Sumenjak and A. Tepeh Horvat, The geodetic number of lexicographic

product of graphs, Discrete Math. 311 (2011) 1693-1698.

Dr. S. Sivasankar1AssistantProfessor,Dept.ofMathematics,NGMCollege, Pollachi, E −mail : sssankar@gmail.com

M.Gnanasekar2, ResearchScholar,Dep.ofMathematics,NGMCollege, Pollachi, E −mail : gnanasekar.kalam@gmail.com

5250



International Conference on Emerging Trends in Science and Technology (ETIST 2021)
Jointly Organized by Department of Biological Science, Physical Science and Computational Science
Nallamuthu Gounder Mahalingam College, Affiliated to Bharathiar University, Tamilnadu, India.
Published by NGMC - November 2021 ISBN : 0000 - 0000

[5] J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, On the geodetic and the hull numbers

in strong product graphs, Comput. Math. Appl. 60 (2010) 3020-3031.

[6] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Diss. Math. Graph

theory 20 (2000) 129-138.

[7] G. Chartrand, F. Harary and P. Zhang, Geodetic sets in graph, Networks 39 (2002) 1-6.

[8] G. Chartrand and L. Lesniak (2005), Graphs and Digraphs, Fourth Edition, CRC Press, Boca Raton.

[9] Dimas Agus Fahrudin, Suhadi Wido Saputro (2020), The geodetic-dominating number of comb

product graphs, Electronic Journal of Graph Theory and Applications 8 (2) (2020), 373–381.

[10] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modelling

17 (1993) 89-95.

[11] T. Jiang, I. Pelayo and D. Pritikin, Geodesic convexity and Cartesian products in graphs, manuscript,

2004.

[12] W. Imrich and S. Klavzar. Products graphs: Structure and Recognition. Wiley-Interscience, New

York, 2000.

Dr. S. Sivasankar, presently working as an Assistant Professor in Department of

Mathematics, Nallamuthu Gounder Mahalingam College, Pollachi, Tamilnadu, India.

He has a Ph.D., in Mathematics from AnnamalaiUniversity, Annamalainagar. He has

around a decade of Teaching experience and two decades of research experience, and

the area of research is Graph Theory. He guided more than 14 M.Phil. Students and

presently 03 of them doing Ph.D. degree.

Mr. M. Gnanasekar, presently pursuing Ph.D in Mathematics under the guid-

ance of Dr. S. Sivasankar, Department of Mathematics, Nallamuthu Gounder Ma-

halingam College, Pollachi, Tamilnadu, India. Also, He is working as Assistant Profes-

sor in Department of Mathematics, Rathinam College of Arts and Science. Echanari,

Coimbatore.

Dr. S. Sivasankar1AssistantProfessor,Dept.ofMathematics,NGMCollege, Pollachi, E −mail : sssankar@gmail.com

M.Gnanasekar2, ResearchScholar,Dep.ofMathematics,NGMCollege, Pollachi, E −mail : gnanasekar.kalam@gmail.com

6
251


