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Intuitionistic fuzzy soft positive implicative ideals of BCK-algebras

Nana Liu1, Chang Wang 2. V. Inthumathi3.

Abstract - The aim of this paper is to apply the concept of intuitionistic fuzzy soft set to positive implicative ideal in BCK-algebras,
and introduce the notion of intuitionistic fuzzy soft positive implicative ideal in BCK-algebras with several related properties are in-
vestigated. Furthermore, the operations, namely “extended intersection”, “restricted intersection”, “union” and “AND” on intuitionistic
fuzzy soft positive implicative ideal are discussed. Finally, the homomorphism of intuitionistic fuzzy soft positive implicative ideal of
BCK-algebras are given.

Keywords BCK-algebra; positive implicative ideal; intuitionistic fuzzy soft ideal; intuitionistic fuzzy soft positive implicative ideal.
2010 Subject classification: 06F35; 03G25

1 Introduction
BCK-algebras and BCI-algebras are two types of logic algebras, they were introduced by Imai and Iséki

[1, 2] and have been extensively studied by many researchers. BCI-algebras are generalizations of BCK-algebras,
since then, many mathematicians at home and abroad have done meaningful research. For the properties of
BCK-algebras, we refer the reader to Iséki and Tanaka [3].

The real world is inherently indeterminate, imprecise and vague. The concept of fuzzy set was introduced
by Zadeh [4], and the concept has now been applied to many mathematical branches, such as group, functional
analysis, probability theory, topology and so on. Xi [5] applied the concept of fuzzy sets to BCK-algebras,
introduced the concept of fuzzy subalgebra and fuzzy ideal and obtained some meaningful results. The soft sets
theory was introduced by Molodtsov [6] in 1999 as a new mathematical tool for dealing with fuzzy and uncertain
models. Since the parameters in soft sets can take arbitrary forms, the theory has been widely used in various
fields. In recent years, many scholars have devoted themselves to applying soft set theory to algebraic structures,
proposing concepts such as soft groups [7], soft semirings [8], soft modules [9] and soft d-algebras [10]. In 1986,
Atanassov [11] introduced the concept of intuitionistic fuzzy set, which is an extension of fuzzy set theory. While
fuzzy sets give the degree of membership of an element in a given set, intuitionistic fuzzy sets give both a degree
of membership and a degree of non-membership. For more details about intuitionistic fuzzy sets, we refer the
reader to [12].

For the general development of BCK-algebras, the ideal theory and its intuitionistic fuzzification play an
important role. The notion of positive implicative ideal and fuzzy positive implicative ideal in BCI-algebras was
first introduced by Jun and Meng [13] in 1994. In [14], B. L. Meng gave some characterizations of fuzzy positive
implicative ideal in BCK-algebras and investigate its some extension properties.
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In 2011, Jun et al. [15] applied soft set theory to the positive implicative ideal, as well as proposed some basic
properties, then the intuitionistic fuzzy positive implicative ideal was discussed by Satyanarayana [16] in 2011.

In this paper, we introduce the notion of intuitionistic fuzzy soft positive implicative ideal in BCK-algebras
and investigate related properties. We provide relations between intuitionistic fuzzy soft ideal and intuitionistic
fuzzy soft positive implicative ideal, and relations between intuitionistic fuzzy soft set and intuitionistic fuzzy soft
positive implicative ideal. In addition, the “extended intersection”, “restricted intersection”, “union” and “AND”
operations of intuitionistic fuzzy soft positive implicative ideal, and homomorphism of intuitionistic fuzzy soft
positive implicative ideal are considered.

We first review the definitions of the algebras we have studied, the basic definitions of soft sets and intuition-
istic fuzzy soft sets and some related operations.

2 Preliminaries

2.1 Basic results on BCK-algebras
In this section, we will recall some basic notions in BCK-algebra.

Definition 2.1. [2] An algebra (X; ∗, 0) of type (2, 0) is called a BCI-algebra if it satisfies the following conditions:
(1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(2) (x ∗ (x ∗ y)) ∗ y = 0,
(3) x ∗ x = 0,
(4) x ∗ y = 0, y ∗ x = 0⇒ x = y, for all x, y, z ∈ X.
If a BCI-algebra X satisfies the following identity:
(5) 0 ∗ x = 0, for all x ∈ X, then X is called a BCK-algebra.

In any BCK/BCI-algebra X one can define a partial order “ ≤ ” by putting x ≤ y if and only if x ∗ y = 0.
In any BCK-algebra X the following holds:
(1) x ∗ 0 = x;
(2) (x ∗ y) ∗ z = (x ∗ z) ∗ y;
(3) x ≤ y⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x;
(4) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y.
A BCK-algebras X is said to be positive implicative if (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) for all x, y, z ∈ X.
A nonempty subset A of a BCK/BCI-algebra X is called a BCK/BCI-subalgebra of X if x ∗ y ∈ A for all

x, y ∈ A.
A nonempty subset A of a BCK/BCI-algebra X is called an ideal of X if it satisfies the following axioms:
(1) 0 ∈ A;
(2) x ∗ y ∈ A, y ∈ A⇒ x ∈ A, for all x ∈ X.
A nonempty subset A of a BCK-algebra X is called a positive implicative ideal of X if it satisfies the following

axioms:
(1) 0 ∈ A;
(2) (x ∗ y) ∗ z ∈ A, y ∗ z ∈ A⇒ x ∗ z ∈ A, for all x, y, z ∈ X.
Note that, in BCK-algebras, every positive implicative ideal is an ideal, but not the converse.

Definition 2.2. [5] A fuzzy set µ in BCK/BCI-algebra X is called a fuzzy ideal of X if it satisfies the following
conditions:

(1) µ(0) ≥ µ(x);
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(2) µ(x) ≥ min{µ(x ∗ y), µ(y)};
for all x, y ∈ X.

Definition 2.3. [14] A fuzzy set µ in BCK-algebra X is called a fuzzy positive implicative ideal of X if it satisfies
the following conditions:

(1) µ(0) ≥ µ(x);
(2) µ(x ∗ z) ≥ min{µ((x ∗ y) ∗ z), µ(y ∗ z)};

for all x, y, z ∈ X.

Definition 2.4. [17] An intuitionistic fuzzy set in BCK/BCI-algebra X is said an intuitionistic fuzzy BCK/BCI-
subalgebra of X if satisfies:

(1) µ(x ∗ y) ≥ min{µ(x), µ(y)};
(2) γ(x ∗ y) ≤ max{γ(x), γ(y)};

for all x, y ∈ X.

Definition 2.5. [17] A mapping f : X → Y of BCK-algebras is called a homomorphism if f (x ∗ y) = f (x) ∗ f (y)
for all x, y, z ∈ X. Note that if f : X → Y is a homomorphism of BCK-algebras, then f (0) = 0.

Let f : X → Y is a homomorphism of BCK-algebras, for any intuitionistic fuzzy set (F̃, A) in Y , defined a
new intuitionistic fuzzy set preimage (F̃, A) f in X by µF̃

f (x) = µF̃( f (x)), γF̃
f (x) = γF̃( f (x)) for all x ∈ X.

2.2 Basic results on intuitionistic fuzzy soft sets
Molodtsov [6] defined the soft set in the following way: Let U be an initial universe set and E be a set of

parameters. Let P(U) denotes the power set of U and A ⊂ E.

Definition 2.6. [6] A pair (F, A) is called a soft set over U, where F is a mapping given by F : A→ P(U).
In other words, a soft set over U is a parametrized family of subsets of the universe U. For α ∈ A, F(α) may

be considered as the set of α -approximate elements of the soft set (F, A).

Definition 2.7. [11] Let U be an initial universe set and E be a set of parameters. Let F(U) denote the set of all
intuitionistic fuzzy sets in U. Then (F̃, A) is called an intuitionistic fuzzy soft set over U where A ⊆ E and F̃ is a
mapping given by F̃ : A→ F(U).

In general, for every α ∈ A, F̃[α] is an intuitionistic fuzzy set in U and it is called an intuitionistic fuzzy value
set of parameter α.Clearly, F̃[α] can be written as an intuitionistic fuzzy set such that F̃[α] =

{
< x, µF̃[α](x), γF̃[α](x) >| x ∈ U, α ∈ A

}
,

where µF̃[α](x) and γF̃[α](x) denotes the degree of membership and non-membership functions respectively. If for
every α ∈ A, µF̃[α](x) = 1 − γF̃[α](x) then F̃[α] will be generated to be a standard fuzzy set and then (F̃, A) will be
generated to be a traditional fuzzy soft set.

Definition 2.8. [18] Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft sets over a common universe U, we say
that (F̃, A) is an intuitionistic fuzzy soft subset of (G̃, B), denoted by (F̃, A)⊆̃(G̃, B), if it satisfies:

(1) A ⊆ B;
(2) F̃[e] and G̃[e] are identical approximations, for all e ∈ A.

Definition 2.9. [18] Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft sets over a common universe U, then
“extended intersection” of (F̃, A) and (G̃, B) is defined to be the intuitionistic fuzzy soft set (H̃,C) satisfying the
following conditions:
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H̃[e] =


F̃[e], if e ∈ A\B,
G̃[e], if e ∈ B\A,
F̃[e] ∩ G̃[e], if e ∈ A ∩ B.

where C = A ∪ B and for all e ∈ C. In this case, we write (F̃, A)∩̃e(G̃, B) = (H̃,C).

Definition 2.10. [18] Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft sets over a common universe U such
that A ∩ B , ∅, then “restricted intersection” of (F̃, A) and (G̃, B) is defined to be the intuitionistic fuzzy soft set
(H̃,C) satisfying the condition: H̃[e] = F̃[e] ∩ G̃[e],
where C = A ∩ B and for all e ∈ C. In this case, we write (F̃, A)∩̃r(G̃, B) = (H̃,C).

Definition 2.11. [18] Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft sets over a common universe U,
then “union” of (F̃, A) and (G̃, B) is defined to be the intuitionistic fuzzy soft set (H̃,C) satisfying the following
conditions:

H̃[e] =


F̃[e], if e ∈ A\B,
G̃[e], if e ∈ B\A,
F̃[e] ∪ G̃[e], if e ∈ A ∩ B.

where C = A ∪ B and for all e ∈ C. In this case, we write (F̃, A)∪̃(G̃, B) = (H̃,C).

Definition 2.12. [18] Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft sets over a common universe U, then
(F̃, A)AND(G̃, B) denoted by (F̃, A)∧̃(G̃, B) is defined by (F̃, A)∧̃(G̃, B) = (H̃, A×B), where H̃[α, β] = F̃[α]∩G̃[β]
for all (α, β) ∈ A × B.

Definition 2.13. [18] Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft sets over a common universe U, then
(F̃, A)OR(G̃, B) denoted by (F̃, A)∨̃(G̃, B) is defined by (F̃, A)∨̃(G̃, B) = (H̃, A× B), where H̃[α, β] = F̃[α]∪ G̃[β]
for all (α, β) ∈ A × B.

Definition 2.14. [18] Let (F̃, A) is an intuitionistic fuzzy soft set over a common universe U, we say that the
complement of (F̃, A) is denoted by (F̃, A)c and is defined as µF̃[α](x) = 1 − µF̃[α](x) and γF̃[α](x) = 1 − γF̃[α](x)
for all x ∈ X, α ∈ A.

Definition 2.15. [18] Let (F̃, A) is an intuitionistic fuzzy soft set over a common universe U, then ¬(F̃, A) ={
µF̃[α](x), µF̃[α](x)

}
and ◦(F̃, A) =

{
γF̃[α](x), γF̃[α](x)

}
for all x ∈ X, α ∈ A.

Definition 2.16. [19] Let (F̃, A) be an intuitionistic fuzzy soft set over a BCK/BCI-algebra X where A is the
subset of E. We say that (F̃, A) is an intuitionistic fuzzy soft BCK/BCI-algebra over a BCK/BCI-algebra X if
F̃[α] is an intuitionistic fuzzy BCK/BCI-subalgebra in a BCK/BCI-algebra X for all α ∈ A.

Definition 2.17. [19] Let (F̃, A) be an intuitionistic fuzzy soft set, then (F̃, A) is an intuitionistic fuzzy soft ideal
over a BCK/BCI-algebra X if F̃[α] =

{
< x, µF̃[α](x), γF̃[α](x) >| x ∈ X, α ∈ A

}
is an intuitionistic fuzzy ideal of X

satisfies the following assertions:
(1) µF̃[α](0) ≥ µF̃[α](x);
(2) γF̃[α](0) ≤ γF̃[α](x);
(3) µF̃[α](x) ≥ min

{
µF̃[α](x ∗ y), µF̃[α](y)

}
;

(4) γF̃[α](x) ≤ max
{
γF̃[α](x ∗ y), γF̃[α](y)

}
;

for all x, y, z ∈ X and α ∈ A.
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3 Intuitionistic fuzzy soft positive implicative ideals
In this section, X denotes a BCK-algebra unless otherwise is specified.

Definition 3.1. Let (F̃, A) be an intuitionistic fuzzy soft set, then (F̃, A) is an intuitionistic fuzzy soft positive
implicative ideal over a BCK-algebra X if F̃[α] =

{
< x, µF̃[α](x), γF̃[α](x) >| x ∈ X, α ∈ A

}
is an intuitionistic fuzzy

positive implicative ideal of X satisfies the following assertions:
(1) µF̃[α](0) ≥ µF̃[α](x);
(2) γF̃[α](0) ≤ γF̃[α](x);
(3) µF̃[α](x ∗ z) ≥ min

{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](y ∗ z)

}
;

(4) γF̃[α](x ∗ z) ≤ max
{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](y ∗ z)

}
;

for all x, y, z ∈ X and α ∈ A.

Let us illustrate this definition using the following example.

Example 3.1. Let U = {0, a, b} with Cayley table given by:

∗ 0 a b
0 0 0 0
a a 0 0
b b b 0

Then (U; ∗, 0) is a BCK-algebra.
Consider a set of parameters A = {content, sad}.
Let {F̃, A} is an intuitionistic fuzzy soft set over U, then F̃[content] and F̃[sad] are intuitionistic fuzzy sets.

We define them as follows:

F̃ 0 a b
content (0.7,0.2) (0.6,0.4) (0.5,0.5)

sad (0.9,0.1) (0.9,0.1) (0.6,0.3)

Then {F̃, A} is an intuitionistic fuzzy soft positive implicative ideal over U based on parameter “content” and
“sad”.

Theorem 3.1. For any BCK-algebra X, every intuitionistic fuzzy soft positive implicative ideal is order preserv-
ing.

Proof. Assume that (F̃, A) is an intuitionistic fuzzy soft positive implicative ideal over X based on the parameter
α ∈ A, Let x, y ∈ X be such that x ≤ y, then for all z ∈ X, putting z = 0 in

µF̃[α](x ∗ z) ≥ min
{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](y ∗ z)

}
and

γF̃[α](x ∗ z) ≤ max
{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](y ∗ z)

}
.

we have
µF̃[α](x ∗ 0) ≥ min

{
µF̃[α]((x ∗ y) ∗ 0), µF̃[α](y ∗ 0)

}
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⇒ µF̃[α](x) ≥ min
{
µF̃[α](x ∗ y), µF̃[α](y)

}
= min

{
µF̃[α](0), µF̃[α](y)

}
= µF̃[α](y)

and
γF̃[α](x ∗ 0) ≤ max

{
γF̃[α]((x ∗ y) ∗ 0), γF̃[α](y ∗ 0)

}
⇒ γF̃[α](x) ≤ max

{
γF̃[α](x ∗ y), γF̃[α](y)

}
= max

{
γF̃[α](0), γF̃[α](y)

}
= γF̃[α](y),

for all x, y, z ∈ X, α ∈ A.
Hence, intuitionistic fuzzy soft positive implicative ideal (F̃, A) is order preserving. �

Theorem 3.2. For any BCK-algebra, every intuitionistic fuzzy soft positive implicative ideal is an intuitionistic
fuzzy soft ideal.

Proof. Assume that (F̃, A) is an intuitionistic fuzzy soft positive implicative ideal over X based on the parameter
α ∈ A, so for all x, y, z ∈ X, we have

µF̃[α](x ∗ z) ≥ min
{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](y ∗ z)

}
and

γF̃[α](x ∗ z) ≤ max
{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](y ∗ z)

}
.

Putting z = 0, we have
µF̃[α](x ∗ 0) = µF̃[α](x) ≥ min

{
µF̃[α]((x ∗ y) ∗ 0), µF̃[α](y ∗ 0)

}
= min

{
µF̃[α](x ∗ y), µF̃[α](y)

}
and

γF̃[α](x ∗ 0) = γF̃[α](x) ≤ max
{
γF̃[α]((x ∗ y) ∗ 0), γF̃[α](y ∗ 0)

}
= max

{
γF̃[α](x ∗ y), γF̃[α](y)

}
,

for all x, y, z ∈ X, α ∈ A.
Thus (F̃, A) is an intuitionistic fuzzy soft ideal over X based on the parameter α ∈ A. �

Note that an intuitionistic fuzzy soft ideal of BCK-algebras X may not be an intuitionistic fuzzy soft positive
implicative ideal of X is shown in the following example.

Example 3.2. Let U = {0, a, b, c} with Cayley table given by:

∗ 0 a b c
0 0 0 0 0
a a 0 0 a
b b a 0 b
c c c c 0

Then (U; ∗, 0) is a BCK-algebra.
Consider a set of parameters A = {mouth, hair, ear}.
Let {F̃, A} be an intuitionistic fuzzy soft set over U. Then F̃[mouth], F̃[hair] and F̃[ear] are intuitionistic

fuzzy sets. We define them as follows:

F̃ 0 a b c
mouth (0.8,0.1) (0.7,0.2) (0.7,0.2) (0.6,0.3)

hair (0.7,0.2) (0.5,0.4) (0.5,0.4) (0.3,0.5)
ear (0.6,0.3) (0.6,0.3) (0.6,0.3) (0.2,0.4)

Then {F̃, A} is an intuitionistic fuzzy soft ideal over U based on the parameter “mouth”, “hair” and “ear”,
but {F̃, A} is not an intuitionistic fuzzy soft positive implicative ideal over U based on the parameter “mouth”.
Since
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µF̃[mouth](b ∗ a) = µF̃[mouth](a) = 0.7
< min

{
µF̃[mouth]((b ∗ a) ∗ a), µF̃[mouth](a ∗ a)

}
= min

{
µF̃[mouth](0), µF̃[mouth](0)

}
= min{0.8, 0.8} = 0.8

and
γF̃[mouth](b ∗ a) = γF̃[mouth](a) = 0.2
> max

{
γF̃[mouth]((b ∗ a) ∗ a), γF̃[mouth](a ∗ a)

}
= max

{
γF̃[mouth](0), γF̃[mouth](0)

}
= max{0.1, 0.1} = 0.1.

In the following theorem, we can see that the converse of Theorem 3.2 holds in a positive implicative BCK-
algebra.

Theorem 3.3. In a positive implicative BCK-algebra X, every intuitionistic fuzzy soft ideal is an intuitionistic
fuzzy soft positive implicative ideal.

Proof. Let (F̃, A) be an intuitionistic fuzzy soft ideal over a positive implicative BCK-algebra X.
Let x, y ∈ X, then

µF̃[α](x) ≥ min
{
µF̃[α](x ∗ y), µF̃[α](y)

}
and

γF̃[α](x) ≤ max
{
γF̃[α](x ∗ y), γF̃[α](y)

}
.

By replacing x by x ∗ z and y by y ∗ z, we have
µF̃[α](x ∗ z) ≥ min

{
µF̃[α]((x ∗ z) ∗ (y ∗ z)), µF̃[α](y ∗ z)

}
and

γF̃[α](x ∗ z) ≤ max
{
γF̃[α]((x ∗ z) ∗ (y ∗ z)), γF̃[α](y ∗ z)

}
.

Since X is a positive implicative BCK-algebra, then (x ∗ z) ∗ (y ∗ z) = (x ∗ y) ∗ z, for all x, y, z ∈ X.
Hence

µF̃[α](x ∗ z) ≥ min
{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](y ∗ z)

}
and

γF̃[α](x ∗ z) ≤ max
{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](y ∗ z)

}
,

for all x, y, z ∈ X, α ∈ A.
This shows that (F̃, A) is an intuitionistic fuzzy soft positive implicative ideal of X. �

Next we give the conditions under which the intuitionistic fuzzy soft ideal is the intuitionistic fuzzy soft
positive implicative ideal in BCK-algebras.

Theorem 3.4. Let (F̃, A) be an intuitionistic fuzzy soft ideal over a BCK-algebra X, then (F̃, A) is an intuitionistic
fuzzy soft positive implicative ideal of X if and only if

(1) µF̃[α](x ∗ y) ≥ µF̃[α]((x ∗ y) ∗ y);
(2) γF̃[α](x ∗ y) ≤ γF̃[α]((x ∗ y) ∗ y);

for all x, y ∈ X, α ∈ A.

Proof. Assume that (F̃, A) is an intuitionistic fuzzy soft positive implicative ideal of X based on the parameter
α ∈ A, for all x, y, z ∈ X. If we put z = y in

µF̃[α](x ∗ z) ≥ min
{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](y ∗ z)

}
and
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γF̃[α](x ∗ z) ≤ max
{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](y ∗ z)

}
,

we have
µF̃[α](x ∗ y) ≥ min

{
µF̃[α]((x ∗ y) ∗ y), µF̃[α](y ∗ y)

}
= min

{
µF̃[α]((x ∗ y) ∗ y), µF̃[α](0)

}
= µF̃[α]((x ∗ y) ∗ y)

and
γF̃[α](x ∗ y) ≤ max

{
γF̃[α]((x ∗ y) ∗ y), γF̃[α](y ∗ y)

}
= max

{
γF̃[α]((x ∗ y) ∗ y), γF̃[α](0)

}
= γF̃[α]((x ∗ y) ∗ y),

for all x, y ∈ X, α ∈ A.
Conversely, assume that (F̃, A) is an intuitionistic fuzzy soft ideal of X satisfies the following conditions:
µF̃[α](x ∗ y) ≥ µF̃[α]((x ∗ y) ∗ y) and γF̃[α](x ∗ y) ≤ γF̃[α]((x ∗ y) ∗ y), for all x, y, z ∈ X, α ∈ A.

Note that ((x ∗ z) ∗ z) ∗ (y ∗ z) ≤ (x ∗ z) ∗ y = (x ∗ y) ∗ z for all x, y, z ∈ X, implies that
µF̃[α](((x ∗ z) ∗ z) ∗ (y ∗ z)) ≥ µF̃[α]((x ∗ y) ∗ z)

and
γF̃[α](((x ∗ z) ∗ z) ∗ (y ∗ z)) ≤ γF̃[α]((x ∗ y) ∗ z).

Using
µF̃[α](x) ≥ min

{
µF̃[α](x ∗ y), µF̃[α](y)

}
and

γF̃[α](x) ≤ max
{
γF̃[α](x ∗ y), γF̃[α](y)

}
,

we have
µF̃[α](x ∗ z) ≥ µF̃[α]((x ∗ z) ∗ z)
≥ min

{
µF̃[α](((x ∗ z) ∗ z) ∗ (y ∗ z)), µF̃[α](y ∗ z)

}
≥ min

{
µF̃[α]((x ∗ y) ∗ z), µF̃[α]

(y ∗ z)
}

and
γF̃[α](x ∗ z) ≤ γF̃[α]((x ∗ z) ∗ z)
≤ max

{
γF̃[α](((x ∗ z) ∗ z) ∗ (y ∗ z)), γF̃[α](y ∗ z)

}
≤ max

{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](y ∗ z)

}
,

for all x, y, z ∈ X, α ∈ A.
Hence, (F̃, A) is an intuitionistic fuzzy soft positive implicative ideal over X. �

Theorem 3.5. Let (F̃, A) be an intuitionistic fuzzy soft ideal over a BCK-algebra X, then (F̃, A) is an intuitionistic
fuzzy soft positive implicative ideal of X if and only if

(1) µF̃[α]((x ∗ z) ∗ (y ∗ z)) ≥ µF̃[α]((x ∗ y) ∗ z);
(2) γF̃[α]((x ∗ z) ∗ (y ∗ z)) ≤ γF̃[α]((x ∗ y) ∗ z);

for all x, y, z ∈ X, α ∈ A.

Proof. Assume that (F̃, A) is an intuitionistic fuzzy soft positive implicative ideal of X, then (F̃, A) is an intuition-
istic fuzzy soft ideal of X by Theorem 3.2. Since

(x ∗ (y ∗ z)) ∗ (x ∗ y) ≤ y ∗ (y ∗ z),
we have

µF̃[α](((x ∗ (y ∗ z)) ∗ (x ∗ y)) ∗ z) ≥ µF̃[α]((y ∗ (y ∗ z)) ∗ z) = µF̃[α]
(0),

then
µF̃[α]((x ∗ z) ∗ (y ∗ z))
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= µF̃[α]((x ∗ (y ∗ z)) ∗ z)
≥ min

{
µF̃[α](((x ∗ (y ∗ z)) ∗ (x ∗ y)) ∗ z), µF̃[α]((x ∗ y) ∗ z)

}
≥ min

{
µF̃[α](0), µF̃[α]((x ∗ y) ∗ z)

}
= µF̃[α]((x ∗ y) ∗ z),

then
µF̃[α]((x ∗ z) ∗ (y ∗ z)) ≥ µF̃[α]((x ∗ y) ∗ z), for all x, y, z ∈ X, α ∈ A.
Similarly, γF̃[α](((x ∗ (y ∗ z)) ∗ (x ∗ y)) ∗ z) ≤ γF̃[α]((y ∗ (y ∗ z)) ∗ z) = γF̃[α]

(0),
then

γF̃[α]((x ∗ z) ∗ (y ∗ z))
= γF̃[α]((x ∗ (y ∗ z)) ∗ z)
≤ max

{
γF̃[α](((x ∗ (y ∗ z)) ∗ (x ∗ y)) ∗ z), γF̃[α]((x ∗ y) ∗ z)

}
≤ max

{
γF̃[α](0), γF̃[α]((x ∗ y) ∗ z)

}
= γF̃[α]((x ∗ y) ∗ z),

then
γF̃[α]((x ∗ z) ∗ (y ∗ z)) ≤ γF̃[α]((x ∗ y) ∗ z), for all x, y, z ∈ X, α ∈ A.
Conversely, assume that (F̃, A) is an intuitionistic fuzzy soft ideal of X and satisfies the following conditions:
µF̃[α]((x ∗ z) ∗ (y ∗ z)) ≥ µF̃[α]((x ∗ y) ∗ z)

and
γF̃[α]((x ∗ z) ∗ (y ∗ z)) ≤ γF̃[α]((x ∗ y) ∗ z), for all x, y, z ∈ X, α ∈ A.

Then
µF̃[α](x ∗ z) ≥ min

{
µF̃[α]((x ∗ z) ∗ (y ∗ z)), µF̃[α](y ∗ z)

}
≥ min

{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](y ∗ z)

}
and

γF̃[α](x ∗ z) ≤ max
{
γF̃[α]((x ∗ z) ∗ (y ∗ z)), γF̃[α](y ∗ z)

}
≤ max

{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](y ∗ z)

}
,

for all x, y, z ∈ X, α ∈ A.
Hence, (F̃, A) is an intuitionistic fuzzy soft positive implicative ideal of X. �

Theorem 3.6. Let (F̃, A) be an intuitionistic fuzzy soft ideal over a BCK-algebra X, then (F̃, A) is an intuitionistic
fuzzy soft positive implicative ideal of X if and only if

(1) µF̃[α](x ∗ y) ≥ min
{
µF̃[α](((x ∗ y) ∗ y) ∗ z), µF̃[α](z)

}
;

(2) γF̃[α](x ∗ y) ≤ max
{
γF̃[α](((x ∗ y) ∗ y) ∗ z), γF̃[α](z)

}
;

for all x, y, z ∈ X, α ∈ A.

Proof. Assume that (F̃, A) is an intuitionistic fuzzy soft positive implicative ideal of X, then (F̃, A) is an intuition-
istic fuzzy soft ideal of X by Theorem 3.2. Using Theorem 3.5, we have

µF̃[α](x ∗ y) ≥ min
{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](z)

}
= min

{
µF̃[α]((x ∗ z) ∗ y), µF̃[α](z)

}
= min

{
µF̃[α](((x ∗ z) ∗ y) ∗ 0), µF̃[α](z)

}
= min

{
µF̃[α](((x ∗ z) ∗ y) ∗ (y ∗ y)), µF̃[α](z)

}
≥ min

{
µF̃[α](((x ∗ z) ∗ y) ∗ y), µF̃[α](z)

}
= min

{
µF̃[α](((x ∗ y) ∗ y) ∗ z), µF̃[α](z)

}
and

γF̃[α](x ∗ y) ≤ max
{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](z)

}
= max

{
γF̃[α]((x ∗ z) ∗ y), γF̃[α](z)

}
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= max
{
γF̃[α](((x ∗ z) ∗ y) ∗ 0), γF̃[α](z)

}
= max

{
γF̃[α](((x ∗ z) ∗ y) ∗ (y ∗ y)), γF̃[α](z)

}
≤ max

{
γF̃[α](((x ∗ z) ∗ y) ∗ y), γF̃[α](z)

}
= max

{
γF̃[α](((x ∗ y) ∗ y) ∗ z), γF̃[α](z)

}
.

Conversely, assume that (F̃, A) is an intuitionistic fuzzy soft ideal of X and satisfies the following conditions:
µF̃[α](x ∗ y) ≥ min

{
µF̃[α](((x ∗ y) ∗ y) ∗ z), µF̃[α](z)

}
and

γF̃[α](x ∗ y) ≤ max
{
γF̃[α](((x ∗ y) ∗ y) ∗ z), γF̃[α](z)

}
, for all x, y, z ∈ X, α ∈ A.

Using (x ∗ y) ∗ z = (x ∗ z) ∗ y and (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y, we have
((x ∗ z) ∗ z) ∗ (y ∗ z) ≤ (x ∗ z) ∗ y = (x ∗ y) ∗ z.

Therefore, we obtain
µF̃[α](((x ∗ z) ∗ z) ∗ (y ∗ z)) ≥ µF̃[α]((x ∗ y) ∗ z)

and
γF̃[α](((x ∗ z) ∗ z) ∗ (y ∗ z)) ≤ γF̃[α]((x ∗ y) ∗ z).

It follows from hypothesis, if we put z = 0, we obtain
µF̃[α](x ∗ y) ≥ min

{
µF̃[α](((x ∗ y) ∗ y) ∗ 0), µF̃[α](0)

}
= µF̃[α]((x ∗ y) ∗ y)

and
γF̃[α](x ∗ y) ≤ max

{
γF̃[α](((x ∗ y) ∗ y) ∗ 0), γF̃[α](0)

}
= γF̃[α]((x ∗ y) ∗ y),

then
µF̃[α](x ∗ z) ≥ µF̃[α]((x ∗ z) ∗ z)
≥ min

{
µF̃[α](((x ∗ z) ∗ z) ∗ (y ∗ z)), µF̃[α](y ∗ z)

}
≥ min

{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](y ∗ z)

}
and

γF̃[α](x ∗ z) ≤ γF̃[α]((x ∗ z) ∗ z)
≤ max

{
γF̃[α](((x ∗ z) ∗ z) ∗ (y ∗ z)), γF̃[α](y ∗ z)

}
≤ max

{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](y ∗ z)

}
,

for all x, y, z ∈ X, α ∈ A.
Hence, (F̃, A) is an intuitionistic fuzzy soft positive implicative ideal of X. �

Combining the above results, we have characterizations of intuitionistic fuzzy soft positive implicative ideals
in BCK-algebras.

Theorem 3.7. For an intuitionistic fuzzy soft set (F̃, A) over a BCK-algebra X, the following are equivalent:
(1) (F̃, A) is an intuitionistic fuzzy soft positive implicative ideal of X;
(2) (F̃, A) is an intuitionistic fuzzy soft ideal of X, and satisfying the conditions in Theorem 3.4;
(3) (F̃, A) is an intuitionistic fuzzy soft ideal of X, and satisfying the conditions in Theorem 3.5;
(4) (F̃, A) is an intuitionistic fuzzy soft ideal of X, and satisfying the conditions in Theorem 3.6.

Next we give the conditions under which the intuitionistic fuzzy soft set is the intuitionistic fuzzy soft positive
implicative ideal in BCK-algebras.

Lemma 3.1. [19] Let (F̃, A) be an intuitionistic fuzzy soft BCK/BCI-algebra over a BCK/BCI-algebra X, then
(F̃, A) is an intuitionistic fuzzy soft ideal of X if and only if it satisfies x ∗ y ≤ z, then

(1) µF̃[α](x) ≥ min
{
µF̃[α](y), µF̃[α](z)

}
;
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(2) γF̃[α](x) ≤ max
{
γF̃[α](y), γF̃[α](z)

}
;

for all x, y, z ∈ X, and α ∈ A.

Theorem 3.8. Let (F̃, A) be an intuitionistic fuzzy soft set over a BCK-algebra X, then (F̃, A) is an intuitionistic
fuzzy soft positive implicative ideal of X if and only if satisfies the conditions:

(1) µF̃[α](0) ≥ µF̃[α](x) and γF̃[α](0) ≤ γF̃[α](x);
(2) (((x ∗ y) ∗ y) ∗ a) ∗ b = 0⇒ µF̃[α](x ∗ y) ≥ min

{
µF̃[α](a), µF̃[α](b)

}
and γF̃[α](x ∗ y) ≤ max

{
γF̃[α](a), γF̃[α](b)

}
;

for all x, y, a, b ∈ X, α ∈ A.

Proof. Assume that (F̃, A) is an intuitionistic fuzzy soft positive implicative ideal of X, then (F̃, A) is an intuition-
istic fuzzy soft ideal of X by Theorem 3.2, and so (1) is true.

Let x, y, a, b ∈ X be such that (((x ∗ y) ∗ y) ∗ a) ∗ b = 0, i.e, ((x ∗ y) ∗ y) ∗ a ≤ b, it follows from Lemma 3.1 that
µF̃[α]((x ∗ y) ∗ y) ≥ min

{
µF̃[α](a), µF̃[α](b)

}
and

γF̃[α]((x ∗ y) ∗ y) ≤ max
{
γF̃[α](a), γF̃[α](b)

}
, for all α ∈ A.

It follows from Theorem 3.4 that
µF̃[α](x ∗ y) ≥ µF̃[α]((x ∗ y) ∗ y) ≥ min

{
µF̃[α](a), µF̃[α](b)

}
and

γF̃[α](x ∗ y) ≤ γF̃[α]((x ∗ y) ∗ y) ≤ max
{
γF̃[α](a), γF̃[α](b)

}
.

Therefore (F̃, A) satisfies
(((x ∗ y) ∗ y) ∗ a) ∗ b = 0⇒ µF̃[α](x ∗ y) ≥ min

{
µF̃[α]

(a), µF̃[α](b)
}

and γF̃[α](x ∗ y) ≤ max
{
γF̃[α](a), γF̃[α](b)

}
, for

all x, y, a, b ∈ X, α ∈ A, which proves (2).
Conversely, assume that (F̃, A) is an intuitionistic fuzzy soft set of X satisfies the following conditions:
µF̃[α](0) ≥ µF̃[α](x) and γF̃[α](0) ≤ γF̃[α](x);
(((x ∗ y) ∗ y) ∗ a) ∗ b = 0⇒ µF̃[α](x ∗ y) ≥ min

{
µF̃[α](a), µF̃[α](b)

}
and γF̃[α](x ∗ y) ≤ max

{
γF̃[α](a), γF̃[α](b)

}
, for

any x, y, a, b ∈ X, α ∈ A, and let x, a, b ∈ X be such that (x ∗ a) ∗ b = 0, then
(((x ∗ 0) ∗ 0) ∗ a) ∗ b = 0,

and so
µF̃[α](x) = µF̃[α](x ∗ 0) ≥ min

{
µF̃[α](a), µF̃[α](b)

}
and

γF̃[α](x) = γF̃[α](x ∗ 0) ≤ max
{
γF̃[α](a), γF̃[α](b)

}
, for all α ∈ A.

By Lemma 3.1 we know that (F̃, A) is an intuitionistic fuzzy soft ideal of X.
Note that (((x ∗ y) ∗ y) ∗ ((x ∗ y) ∗ y)) ∗ 0 = 0 for all x, y ∈ X, it follows from conditions that

µF̃[α](x ∗ y) ≥ min
{
µF̃[α]((x ∗ y) ∗ y), µF̃[α](0)

}
= µF̃[α]((x ∗ y) ∗ y)

and
γF̃[α](x ∗ y) ≤ max

{
γF̃[α]((x ∗ y) ∗ y), γF̃[α](0)

}
= γF̃[α]((x ∗ y) ∗ y), for all α ∈ A.

By Theorem 3.4, (F̃, A) is an intuitionistic fuzzy soft positive implicative ideal of X. �

Theorem 3.9. Let (F̃, A) be an intuitionistic fuzzy soft set over a BCK-algebra X, then (F̃, A) is an intuitionistic
fuzzy soft positive implicative ideal of X if and only if satisfies the conditions:

(1) µF̃[α](0) ≥ µF̃[α](x) and γF̃[α](0) ≤ γF̃[α](x);
(2) (((x ∗ y) ∗ z) ∗ a) ∗ b = 0⇒ µF̃[α]((x ∗ z) ∗ (y ∗ z)) ≥ min

{
µF̃[α](a), µF̃[α](b)

}
and γF̃[α]((x ∗ z) ∗ (y ∗ z)) ≤ max

{
γF̃[α](a), γF̃[α](b)

}
;

for all x, y, z, a, b ∈ X, α ∈ A.
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Proof. Assume that (F̃, A) is an intuitionistic fuzzy soft positive implicative ideal of X, then (F̃, A) is an intuition-
istic fuzzy soft ideal of X by Theorem 3.2, and so (1) is true.

Let x, y, z, a, b ∈ X be such that (((x ∗ y) ∗ z) ∗a) ∗b = 0, i.e, ((x ∗ y) ∗ z) ∗a ≤ b, it follows from Lemma 3.1 that
µF̃[α]((x ∗ y) ∗ z) ≥ min

{
µF̃[α](a), µF̃[α](b)

}
and

γF̃[α]((x ∗ y) ∗ z) ≤ max
{
γF̃[α](a), γF̃[α](b)

}
, for all α ∈ A.

By Theorem 3.5 we obtain
µF̃[α]((x ∗ z) ∗ (y ∗ z)) ≥ µF̃[α]((x ∗ y) ∗ z) ≥ min

{
µF̃[α](a), µF̃[α](b)

}
and

γF̃[α]((x ∗ z) ∗ (y ∗ z)) ≤ γF̃[α]((x ∗ y) ∗ z) ≤ max
{
γF̃[α](a), γF̃[α](b)

}
,

Therefore (F̃, A) satisfies
(((x ∗ y) ∗ z) ∗ a) ∗ b = 0 ⇒ µF̃[α]((x ∗ z) ∗ (y ∗ z)) ≥ min

{
µF̃[α](a), µF̃[α](b)

}
and γF̃[α]((x ∗ z) ∗ (y ∗ z)) ≤

max
{
γF̃[α](a), γF̃[α](b)

}
, for all x, y, a, b ∈ X, α ∈ A, which proves (2).

Conversely, assume that (F̃, A) is an intuitionistic fuzzy soft set of X satisfies the following conditions:
µF̃[α](0) ≥ µF̃[α](x) and γF̃[α](0) ≤ γF̃[α](x);
(((x ∗ y) ∗ z) ∗ a) ∗ b = 0 ⇒ µF̃[α]((x ∗ z) ∗ (y ∗ z)) ≥ min

{
µF̃[α](a), µF̃[α](b)

}
and γF̃[α]((x ∗ z) ∗ (y ∗ z)) ≤

max
{
γF̃[α](a), γF̃[α](b)

}
, for any x, y, z, a, b ∈ X, α ∈ A.

We assume (((x ∗ y) ∗ y) ∗ a) ∗ b = 0, by the conditions, we have
µF̃[α](x ∗ y) = µF̃[α]((x ∗ y) ∗ (y ∗ y)) ≥ min

{
µF̃[α](a), µF̃[α](b)

}
and

γF̃[α](x ∗ y) = γF̃[α]((x ∗ y) ∗ (y ∗ y)) ≤ max
{
γF̃[α](a), γF̃[α](b)

}
,

It follows from Theorem 3.8 ,(F̃, A) is an intuitionistic fuzzy soft positive implicative ideal of X. �

By the mathematical induction, the above two theorems have more general forms.

Theorem 3.10. Let (F̃, A) be an intuitionistic fuzzy soft set over a BCK-algebra X, then (F̃, A) is an intuitionistic
fuzzy soft positive implicative ideal of X if and only if satisfies the conditions:

(1) µF̃[α](0) ≥ µF̃[α](x) and γF̃[α](0) ≤ γF̃[α](x);
(2) (. . . (((x ∗ y) ∗ y) ∗ a1) . . .) ∗ an = 0⇒ µF̃[α](x ∗ y) ≥ min

{
µF̃[α] (a1) , . . . , µF̃[α] (an)

}
and γF̃[α](x ∗ y) ≤ max

{
γF̃[α] (a1) , . . . , γF̃[α] (an)

}
;

for all x, y, a1, .., an ∈ X, α ∈ A.

Proof. Assume that (F̃, A) is an intuitionistic fuzzy soft positive implicative ideal of X, then (F̃, A) is an intuition-
istic fuzzy soft ideal of X by Theorem 3.2, and so (1) is true.

Let x, y, a1, . . . , an ∈ X be such that (. . . (((x ∗ y) ∗ y) ∗ a1) ∗ . . .) ∗ an = 0, it follows from Lemma 3.1 that
µF̃[α]((x ∗ y) ∗ y) ≥ min

{
µF̃[α] (a1) , . . . , µF̃[α] (an)

}
and

γF̃[α]((x ∗ y) ∗ y) ≤ max
{
γF̃[α] (a1) , . . . , γF̃[α] (an)

}
, for all α ∈ A.

It follows from Theorem 3.4 that
µF̃[α](x ∗ y) ≥ µF̃[α]((x ∗ y) ∗ y) ≥ min

{
µF̃[α] (a1) , . . . , µF̃[α] (an)

}
and

γF̃[α](x ∗ y) ≤ γF̃[α]((x ∗ y) ∗ y) ≤ max
{
γF̃[α] (a1) , . . . , γF̃[α] (an)

}
.

Therefore (F̃, A) satisfies (. . . (((x ∗ y) ∗ y) ∗ a1) . . .) ∗ an = 0 ⇒ µF̃[α](x ∗ y) ≥ min
{
µF̃[α] (a1) , . . . , µF̃[α] (an)

}
, and

γF̃[α](x ∗ y) ≤ max
{
γF̃[α] (a1) , . . . , γF̃[α] (an)

}
, for all x, y, a1, . . . , an ∈ X, α ∈ A, which proves (2).
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Conversely, assume that (F̃, A) is an intuitionistic fuzzy soft set of X satisfies the following conditions:
µF̃[α](0) ≥ µF̃[α](x) and γF̃[α](0) ≤ γF̃[α](x);
(. . . (((x ∗ y) ∗ y) ∗ a1) . . .)∗an = 0⇒ µF̃[α](x∗y) ≥ min

{
µF̃[α] (a1) , . . . , µF̃[α] (an)

}
and γF̃[α](x∗y) ≤ max

{
γF̃[α] (a1) , . . . , γF̃[α] (an)

}
for all x, y, a1, . . . , an ∈ X, α ∈ A, and let x, a1, . . . , an ∈ X be such that ((x ∗ a1) ∗ . . .) ∗ an = 0, then

((((x ∗ 0) ∗ 0) ∗ a1) ∗ . . .) ∗ an = 0
and so

µF̃[α](x) = µF̃[α](x ∗ 0) ≥ min
{
µF̃[α] (a1) , . . . , µF̃[α] (an)

}
and

γF̃[α](x) = γF̃[α](x ∗ 0) ≤ max
{
γF̃[α] (a1) , . . . , γF̃[α] (an)

}
, for all α ∈ A.

By Lemma 3.1 we know that (F̃, A) is an intuitionistic fuzzy soft ideal of X.
Note that ((((x ∗ y) ∗ y) ∗ ((x ∗ y) ∗ y)) ∗ 0) ∗ . . .) ∗ 0 = 0 for all x, y ∈ X, it follows from conditions that

µF̃[α](x ∗ y) ≥ min
{
µF̃[α]((x ∗ y) ∗ y), µF̃[α](0), . . . , µF̃[α](0)

}
= µF̃[α]((x ∗ y) ∗ y)

and
γF̃[α](x ∗ y) ≤ max

{
γF̃[α]((x ∗ y) ∗ y), γF̃[α](0), . . . , γF̃[α](0)

}
= γF̃[α]((x ∗ y) ∗ y), for all α ∈ A.

By Theorem 3.4, (F̃, A) is an intuitionistic fuzzy soft positive implicative ideal of X. �

Theorem 3.11. Let (F̃, A) be an intuitionistic fuzzy soft set over a BCK-algebra X, then (F̃, A) is an intuitionistic
fuzzy soft positive implicative ideal of X if and only if satisfies the conditions:

(1) µF̃[α](0) ≥ µF̃[α](x) and γF̃[α](0) ≤ γF̃[α](x);
(2) (. . . (((x ∗ y) ∗ z) ∗ a1) ∗ . . .) ∗ an = 0⇒ µF̃[α]((x ∗ z) ∗ (y ∗ z)) ≥ min

{
µF̃[α] (a1) , . . . , µF̃[α] (an)

}
and γF̃[α]((x ∗ z) ∗ (y ∗ z)) ≤ max

{
γF̃[α] (a1) , . . . , γF̃[α] (an)

}
;

for all x, y, z, a1, . . . , an ∈ X, α ∈ A.

Proof. It is similar to Theorem 3.9 and is omitted. �

4 Some properties of intuitionistic fuzzy soft positive implicative ideals
In this section, X denotes a BCK-algebra unless otherwise is specified, we will consider Some properties of

intuitionistic fuzzy soft positive implicative ideals in BCK-algebras.

Theorem 4.1. Let (F̃, A) be an intuitionistic fuzzy soft positive implicative ideal over a BCK-algebra X, then
¬(F̃, A) =

{
µF̃[α](x), µF̃[α](x)

}
is also an intuitionistic fuzzy soft positive implicative ideal of X, for all x ∈ X, α ∈ A.

Proof. Let (F̃, A) be an intuitionistic fuzzy soft positive implicative ideal over a BCK-algebra X, we have
µF̃[α](0) ≥ µF̃[α](x)
⇒ 1 − µF̃[α](0) ≤ 1 − µF̃[α](x)
⇒ µF̃[α](0) ≤ µF̃[α](x),

for all x ∈ X, α ∈ A.
Consider for any x, y, z ∈ X, α ∈ A,
µF̃[α](x ∗ z) ≥ min

{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](y ∗ z)

}
⇒ 1 − µF̃[α](x ∗ z) ≥ min

{
1 − µF̃[α]((x ∗ y) ∗ z), 1 − µF̃[α](y ∗ z)

}
⇒ µF̃[α](x ∗ z) ≤ 1 −min

{
1 − µF̃[α]((x ∗ y) ∗ z), 1 − µF̃[α](y ∗ z)

}
⇒ µF̃[α](x ∗ z) ≤ max

{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](y ∗ z)

}
Hence, ¬(F̃, A) =

{
µF̃[α](x), µF̃[α](x)

}
is an intuitionistic fuzzy soft positive implicative ideal of X, for all x ∈ X, α ∈

A. �
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Theorem 4.2. Let (F̃, A) be an intuitionistic fuzzy soft positive implicative ideal over a BCK-algebra X, then
◦(F̃, A) =

{
γF̃[α](x), γF̃[α](x)

}
is also an intuitionistic fuzzy soft positive implicative ideal of X, for all x ∈ X, α ∈ A.

Proof. Let (F̃, A) be an intuitionistic fuzzy soft positive implicative ideal over a BCK-algebra X, we have
γF̃[α](0) ≤ γF̃[α](x)
⇒ 1 − γF̃[α](0) ≥ 1 − γF̃[α](x)
⇒ γF̃[α](0) ≥ γF̃[α](x)

for all x ∈ X, α ∈ A.
Consider for any x, y, z ∈ X, α ∈ A,
γF̃[α](x ∗ z) ≤ max

{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](y ∗ z)

}
⇒ 1 − γF̃[α](x ∗ z) ≤ max

{
1 − γF̃[α]((x ∗ y) ∗ z), 1 − γF̃[α](y ∗ z)

}
⇒ γF̃[α](x ∗ z) ≥ 1 −max

{
1 − γF̃[α]((x ∗ y) ∗ z), 1 − γF̃[α](y ∗ z)

}
⇒ γF̃[α](x ∗ z) ≥ min

{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](y ∗ z)

}
Hence, ◦(F̃, A) =

{
γF̃[α](x), γF̃[α](x)

}
is an intuitionistic fuzzy soft positive implicative ideal of X, for all x ∈ X, α ∈

A. �

Theorem 4.3. Let (F̃, A) be an intuitionistic fuzzy soft positive implicative ideal over a BCK-algebra X if and
only if µF̃[α](x) and γF̃[α](x) are fuzzy soft positive implicative ideals of X for all x ∈ X, α ∈ A.

Proof. Let (F̃, A) be an intuitionistic fuzzy soft positive implicative ideal over a BCK-algebra X, clearly µF̃[α](x)
is a fuzzy soft positive implicative ideal of X.

Let x, y, z ∈ X, α ∈ A, then
γF̃[α](0) = 1 − γF̃[α](0) ≥ 1 − γF̃[α](x) = γF̃[α](x)

and
γF̃[α](x ∗ z) = 1 − γF̃[α](x ∗ z)
≥ 1 −max

{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](y ∗ z)

}
= min

{
1 − γF̃[α]((x ∗ y) ∗ z), 1 − γF̃[α](y ∗ z)

}
= min

{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](y ∗ z)

}
.

Hence, γF̃[α](x) is a fuzzy soft positive implicative ideal of X.
Conversely, assume that µF̃[α](x) and γF̃[α](x) are fuzzy soft positive implicative ideals of X for all x ∈ X, α ∈ A.

For all x ∈ X, we have
µF̃[α](0) ≥ µF̃[α](x)

and
1 − γF̃[α](0) = γF̃[α](0) ≥ γF̃[α](x) = 1 − γF̃[α](x).

Which show that γF̃[α](0) ≤ γF̃[α](x).
Now let x, y, z ∈ X, α ∈ A, then
µF̃[α](x ∗ z) ≥ min

{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](y ∗ z)

}
and

1 − γF̃[α](x ∗ z) = γF̃[α](x ∗ z)
≥ min

{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](y ∗ z)

}
= min

{
1 − γF̃[α]((x ∗ y) ∗ z), 1 − γF̃[α](y ∗ z)

}
= 1 −max

{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](y ∗ z)

}
and so
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γF̃[α](x ∗ z) ≤ max
{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](y ∗ z)

}
.

Hence, (F̃, A) is an intuitionistic fuzzy soft positive implicative ideal of X. �

Theorem 4.4. Let (F̃, A) be an intuitionistic fuzzy soft positive implicative ideal over a BCK-algebra X if and only
if ¬(F̃, A) =

{
µF̃[α](x), µF̃[α](x)

}
and ◦(F̃, A) =

{
γF̃[α](x), γF̃[α](x)

}
are intuitionistic fuzzy soft positive implicative

ideals of X, for all x ∈ X, α ∈ A.

Proof. It is straightforward by Theorem 4.3. �

In the following we discuss other properties of intuitionistic fuzzy soft positive implicative ideals in BCK-
algebras.

Theorem 4.5. Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft positive implicative ideals over a BCK-algebra
X, then the “extended intersection” (F̃, A)∩̃e(G̃, B) is an intuitionistic fuzzy soft positive implicative ideal over X.

Proof. Let (F̃, A)∩̃e(G̃, B) = (H̃,C) be the “extended intersection” of intuitionistic fuzzy soft positive implicative
ideal (F̃, A) and (G̃, B) over X, where C = A ∪ B. For any e ∈ C,

if e ∈ A\B, then H̃[e] = F̃[e] is an intuitionistic fuzzy positive implicative ideal in X because (F̃, A) is an
intuitionistic fuzzy soft positive implicative ideal over a BCK-algebra X;

if e ∈ B\A, then H̃[e] = G̃[e] is an intuitionistic fuzzy positive implicative ideal in X because (G̃, B) is an
intuitionistic fuzzy soft positive implicative ideal over a BCK-algebra X;

if A∩B , ∅, then H̃[e] = F̃[e]∩G̃[e] is an intuitionistic fuzzy positive implicative ideal for all e ∈ A∩B, since
the intersection of two intuitionistic fuzzy positive implicative ideals is an intuitionistic fuzzy positive implicative
ideal.

Therefore (H̃,C) = (F̃, A)∩̃e(G̃, B) is an intuitionistic fuzzy soft positive implicative ideal over a BCK-algebra
X. �

The following two corollaries are straightforward results of Theorem 4.5.

Corollary 4.1. Let (F̃, A) and (G̃, A) be two intuitionistic fuzzy soft positive implicative ideals over a BCK-
algebra X, then the “extended intersection” (F̃, A)∩̃e(G̃, A) is an intuitionistic fuzzy soft positive implicative ideal
over X.

Corollary 4.2. Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft positive implicative ideals over a BCK-algebra
X, then the “restricted intersection” (F̃, A)∩̃r(G̃, B) is an intuitionistic fuzzy soft positive implicative ideal over
X.

Theorem 4.6. Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft positive implicative ideals over a BCK-algebra
X, if A and B are disjoint, then the “union” (F̃, A)∪̃(G̃, B) is an intuitionistic fuzzy soft positive implicative ideal
over X.

Proof. Let (F̃, A)∪̃(G̃, B) = (H̃,C) be the “union” of intuitionistic fuzzy soft positive implicative ideal (F̃, A) and
(G̃, B) over X. Since A and B are disjoint, then for all e ∈ C, either e ∈ A\B or e ∈ B\A, by means of Definition
2.11,

if e ∈ A\B, then H̃[e] = F̃[e] is an intuitionistic fuzzy positive implicative ideal in X because (F̃, A) is an
intuitionistic fuzzy soft positive implicative ideal over a BCK-algebra X;

if e ∈ B\A, then H̃[e] = G̃[e] is an intuitionistic fuzzy positive implicative ideal in X because (G̃, B) is an
intuitionistic fuzzy soft positive implicative ideal over a BCK-algebra X.

Hence (H̃,C) = (F̃, A)∪̃(G̃, B) is an intuitionistic fuzzy soft positive implicative ideal over a BCK-algebra
X. �
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Theorem 4.7. Let (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft positive implicative ideals over a BCK-algebra
X, then the “AND ” (F̃, A)∧̃(G̃, B) is an intuitionistic fuzzy soft positive implicative ideal over X.

Proof. By means of Definition 2.12, we know that (F̃, A)∧̃(G̃, B) = (H̃, A × B), where H̃[α, β] = F̃[α] ∩ G̃[β] for
all (α, β) ∈ A × B.

Since (F̃, A) and (G̃, B) be two intuitionistic fuzzy soft positive implicative ideals over a BCK-algebra X, then
F̃[α] and G̃[α] are intuitionistic fuzzy positive implicative ideals of X, then the intersection is F̃[α] ∩ G̃[β] also
an intuitionistic fuzzy positive implicative ideal of X.

Hence, H̃[α, β] is an intuitionistic fuzzy positive implicative ideal of X for all (α, β) ∈ A × B.
Therefore, (F̃, A)∧̃(G̃, B) = (H̃, A × B) is an intuitionistic fuzzy soft positive implicative ideal over X based

on the parameter (α, β). �

At the end of the paper, we discuss the homomorphism between intuitionistic fuzzy soft positive implicative
ideals in BCK-algebras.

Theorem 4.8. Let f : X → Y is an onto homomorphism of BCK-algebras. If an intuitionistic fuzzy soft set (F̃, A)
of Y is an intuitionistic fuzzy soft positive implicative ideal, then preimage (F̃, A) f is also an intuitionistic fuzzy
soft positive implicative ideal of X.

Proof. Since (F̃, A) is an intuitionistic fuzzy soft positive implicative ideal of Y , and (F̃, A) f is the preimage of
(F̃, A) under f of X, then µF̃[α]( f (x)) = µF̃[α]

f (x), γF̃[α]( f (x)) = γF̃[α]
f (x) for all x ∈ X, α ∈ A.

Since (F̃, A) is an intuitionistic fuzzy soft positive implicative ideal of Y , then for any x ∈ X, α ∈ A, we have
µF̃α]

f (x) = µF̃[α]( f (x)) ≤ µF̃[α](0) = µF̃[α]( f (0)) = µF̃[α]
f (0)

and
γF̃[α]

f (x) = γF̃[α]( f (x)) ≥ γF̃[α](0) = γF̃[α]( f (0)) = γF̃[α]
f (0).

Moreover,
min
{
µF̃[α]

f ((x ∗ y) ∗ z), µF̃[α]
f (y ∗ z)

}
= min

{
µF̃[α]( f ((x ∗ y) ∗ z)), µF̃[α]( f (y ∗ z))

}
= min

{
µF̃[α]( f (x ∗ y) ∗ f (z)), µF̃[α]( f (y) ∗ f (z))

}
= min

{
µF̃[α](( f (x) ∗ f (y)) ∗ f (z)), µF̃α]( f (y) ∗ f (z))

}
≤ µF̃[α]( f (x) ∗ f (z))
= µF̃[α]( f (x ∗ z))
= µF̃[α]

f (x ∗ z)
and

max
{
γF̃[α]

f ((x ∗ y) ∗ z), γF̃[α]
f (y ∗ z)

}
= max

{
γF̃[α]( f ((x ∗ y) ∗ z)), γF̃[α]( f (y ∗ z))

}
= max

{
γF̃[α]( f (x ∗ y) ∗ f (z)), γF̃[α]( f (y) ∗ f (z))

}
= max

{
γF̃[α](( f (x) ∗ f (y)) ∗ f (z)), γF̃α]

( f (y) ∗ f (z))
}

≥ γF̃[α]( f (x) ∗ f (z))
= γF̃[α]( f (x ∗ z))
= γF̃[α]

f (x ∗ z).
Hence, (F̃, A) f is also an intuitionistic fuzzy soft positive implicative ideal of X, for any x, y, z ∈ X, α ∈ A. �

If we strengthen the condition of f , then we can construct the converse of the above theorem as follows.
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Theorem 4.9. Let f : X → Y is an epimorphism of BCK-algebras. If an intuitionistic fuzzy soft set (F̃, A) f is
an intuitionistic fuzzy soft positive implicative ideal of X, then (F̃, A) is also an intuitionistic fuzzy soft positive
implicative ideal of Y.

Proof. Since (F̃, A) f is an intuitionistic fuzzy soft positive implicative ideal of X, and (F̃, A) f is the preimage of
(F̃, A) under f of X, then µ f

F̃[α]
(x) = µF̃[α]( f (x)), γF̃[α]

f (x) = γF̃[α]( f (x)) for all x ∈ X, α ∈ A.
Let x, y, z ∈ Y, α ∈ A, there exist a, b, c ∈ X such that f (a) = x, f (b) = y and f (c) = z.

Now,
µF̃[α](x) = µF̃[α]( f (a)) = µF̃[α]

f (a) ≤ µF̃[α]
f (0) = µF̃[α]( f (0)) = µF̃[α](0)

and
γF̃α](x) = γF̃[α]( f (a)) = γF̃[α]

f (a) ≥ γF̃[α]
f (0) = γF̃[α]( f (0)) = γF̃[α](0).

Moreover,
µF̃[α](x ∗ z)
= µF̃[α]( f (a) ∗ f (c))
= µF̃[α]( f (a ∗ c))
= µF̃[α]

f (a ∗ c)
≥ min

{
µF̃[α]

f ((a ∗ b) ∗ c), µF̃[α]
f (b ∗ c)

}
= min

{
µF̃[α]( f ((a ∗ b) ∗ c)), µF̃[α]( f (b ∗ c))

}
= min

{
µF̃[α]( f (a ∗ b) ∗ f (c)), µF̃[α]( f (b) ∗ f (c))

}
= min

{
µF̃[α](( f (a) ∗ f (b)) ∗ f (c)), µF̃[α]( f (b) ∗ f (c))

}
= min

{
µF̃[α]((x ∗ y) ∗ z), µF̃[α](y ∗ z)

}
and

γF̃[α](x ∗ z)
= γF̃[α]( f (a) ∗ f (c))
= γF̃[α]( f (a ∗ c))
= γF̃[α]

f (a ∗ c)
≤ max

{
γF̃[α]

f ((a ∗ b) ∗ c), γF̃[α]
f (b ∗ c)

}
= max

{
γF̃[α]( f ((a ∗ b) ∗ c)), γF̃[α]( f (b ∗ c))

}
= max

{
γF̃[α]( f (a ∗ b) ∗ f (c)), γF̃[α]( f (b) ∗ f (c))

}
= max

{
γF̃[α](( f (a) ∗ f (b)) ∗ f (c)), γF̃[α]( f (b) ∗ f (c))

}
= max

{
γF̃[α]((x ∗ y) ∗ z), γF̃[α](y ∗ z)

}
.

Hence, (F̃, A) is an intuitionistic fuzzy soft positive implicative ideal of Y . �

5 Conclusion
In order to study the structure of algebraic systems, ideals with special properties obviously play an important

role. We introduced the notion of intuitionistic fuzzy soft positive implicative ideal, and investigated related
properties. Meanwhile, we discussed relations between intuitionistic fuzzy soft ideal and intuitionistic fuzzy soft
positive implicative ideal over a BCK-algebras, and relations between intuitionistic fuzzy soft set and intuitionistic
fuzzy soft positive implicative ideal over a BCK-algebras. We believe that such discussion could clarify some
misunderstandings and clean the ground for further development of that interesting theory.
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