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Vague Soft Fundamental Groups

M. Pavithra1, Saeid Jafari2, V. Inthumathi3

Abstract - In this paper, we initiate the study of vague soft path and vague soft path connected spaces in vague soft

topological spaces. Also, we investigate the concepts of vague soft-path homotopy and vague soft fundamental groups.

Keywords Vague soft product spaces,Vague soft-path homotopy, Vague soft-fundamental groups.
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1 Introduction

Soft set theory, proposed by Molodtsov [17] has been regarded as an effective Mathematical tool to deal
with uncertainty. Many researchers have contributed towards the soft set theory and its applications in
various fields [2, 4, 11, 12, 15, 16, 23, 25, 29]. The theory of vague sets was first proposed by Gau et al. [9].
A vague set V is defined by a truth-membership function tV and a false-membership function fV , where
tV (x) is a lower bound on the grade of membership of x derived from the evidence for x, and fV (x) is a
lower bound on the negation of x derived from the evidence against x. These true membership function
and false membership function noted as tV (x) and fV (x) are associated as a real number in [0, 1] with
each point in a basic set X, which satisfies the condition 0 ≤ tV (x) + fV (x) ≤ 1. The vague group was first
introduced by Demirci [7] in 1999. Since then the theory of vague algebraic notions has been established
by [1, 3, 8, 10, 14, 20, 24].

In 2010, Xu et al. [27] combined the notions of vague sets and soft sets and introduced the notion
of vague soft sets and presented its basic properties. The concept of vague soft topology was initiated
by C. Wang et al. [6] which is defined over the initial universal set with a fixed set of parameter. They
studied the notions vague soft interior, vague soft closure, vague soft boundary, vague soft connectedness
and compacetness. The vague soft set theory also have been applied to several algebraic structures like
vague soft hemirings [28], vague soft groups [26], vague soft hypergroups, vague soft hyperrings and vague
soft hyperideals [21, 22] Anti vague soft R-subgroup of near ring [19]. Recently, works on the vague soft
set theory are progressing rapidly. In this work, we study the algebraic structure of vague soft sets by
defining the concept of vague soft-path, vague soft-path homotopy and vague soft fundamental groups.

2 Preliminaries

Definition 2.1. [17] Let X be an initial universe set, P (X) the set of all subsets of X, E a set of
parameters, and A ⊆ E. A pair (F,A) is called a soft set over X, where F is a mapping given by F : A→
P(X).

1Research Scholar, PG and Research Department of Mathematics, Nallamuthu Gounder Mahalingam College, Pollachi-
642001, Coimbatore, Tamilnadu, India. E.mail: inthumathi65@gmail.com
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Definition 2.2. [9] A vague set A = {(xi, [tA(xi), 1 − fA(xi)])|xi ∈ X} in the universe
X = {x1, x2, ..., xn} is characterized by a truth-membership function tA : X → [0, 1], and a false-
membership function fA : X → [0, 1], where tA(xi) is a lower bound on the grade of membership of xi
derived from the evidence of xi, fA(xi) is the lower bound on the negation of xi derived from the evidence
against xi and 0 ≤ tA(xi) + fA(xi) ≤ 1 for any xi ∈ X. The grade of membership of xi in the vague set is
bounded to a subinterval [tA(xi), 1− fA(xi)] of [0,1]. The vague value [tA(xi), 1− fA(xi)] indicates that the
exact grade of membership µA(xi) of xi may be unknown, but it is bounded by tA(xi) ≤ µA(xi) ≤ 1−fA(xi),
where 0 ≤ tA(xi) + fA(xi) ≤ 1.

Notations: Let I[0, 1] denotes the family of all closed subintervals of [0, 1]. If I1 = [a1, b1] and I2 =
[a2, b2] be two elements of I[0, 1], we call I1 ≥ I2 if a1 ≥ a2 and b1 ≥ b2. Similarly we understand the
relations I1 ≤ I2 and I1 = I2. Clearly the relation I1 ≥ I2 does not necessarily imply that I1 ⊇ I2 and
conversely. Also for any two unequal intervals I1 and I2, there is no necessity that either I1 ≥ I2 and
I1 ≤ I2 will be true.

Definition 2.3. [27] Let X be an initial universe set, V (X) the set of all vague sets on X, E be a set of
parameters, and A ⊆ E. A pair (F,A) is called a vague soft set over X, where F is a mapping given by
F : A → V (X). The set of all vague soft sets on X is denoted by V S̃(X,E), called vague soft classes. The
interval [tF (e)(x), 1 − fF (e)(x)] of (F,A) is called the vague soft value of x ∈ X for the parameter e ∈ A
and is denoted by VF (e)(x).

Definition 2.4. [27] A vague soft set (F,A) over X is said to be a null vague soft set denoted by ∅̂, if
∀e ∈ A, tF (e)(x) = 0, 1− fF (e)(x) = 0, x ∈ X.
That is, VF (e)(x) = [0, 0], ∀e ∈ A, x ∈ X.

Definition 2.5. [27] A vague soft set (F,A) over X is said to be an absolute vague soft set denoted by X̂,
if ∀e ∈ A, tF (e)(x) = 1, 1− fF (e)(x) = 1, x ∈ X.
That is, VF (e)(x) = [1, 1], ∀e ∈ A, x ∈ X.

Definition 2.6. [27] The complement of a vague soft set (F,A) is denoted by (F,A)c and is defined by
(F,A)c= (F c, A) and is given by tF c(e)(x) = fF (e)(x), 1− fF c(e)(x) = 1− tF (e)(x) , for all e ∈ A, x ∈ X.
That is, VF c(e)(x) = [fF (e)(x), 1− tF (e)(x)], ∀e ∈ A, x ∈ X.

Definition 2.7. [6] Let X be an initial universe set, E be the nonempty fixed set of parameters and
τ be the collection of vague soft sets over X, then τ is said to be a vague soft topology on X if

1. ∅̂E, X̂E belongs to τ .

2. the union of any number of vague soft sets in τ belongs to τ .

3. the intersection of any two vague soft sets in τ belongs to τ .

The triplet (X, τ, E) is called a vague soft topological space over X.

Theorem 2.8. [5] Let (X, τ, E) and (Y, σ,K) be two vague soft topological spaces. The vague soft function
gpu: V S̃(X,E)→ V S̃(Y,K) is called vague soft continuous, if and only if for all (G,K) ∈ σ, g−1

pu (G,K) ∈
τ .
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Definition 2.9. [13] Let X be an initial universal set, E be the nonempty set of parameters and x ∈ X a
fixed element in X. A vague soft set (F,E) ∈ V S̃(X,E) is called x-vague soft point, if for the element
e ∈ E,

VF (e′)(x
′) =

{
[α, 1− β] , if e′ = e and x′ = x,

[0, 0], Otherwise.

for all x′ ∈ X and e′ ∈ E, where α ∈ [0, 1] and β ∈ [0, 1) are two fixed real numbers such that 0 ≤ α+β ≤ 1
with [α, 1− β] 6= [0, 0]. And it is denoted by xe,[α,1−β] (shortly, xe). The family of all x-vague soft points

over (X,E) is denoted by V S̃Px(X,E).

Definition 2.10. [13] Let Y ⊆ X. The vague characteristic set of Y on X is a vague set χ
Y

=

{(x, [tχY (x), 1− fχY (x)]) | x ∈ X} over X, where

tχY (x) =

{
1, if x ∈ Y,
0, otherwise,

and 1− fχY (x) =

{
1, if x ∈ Y,
0, otherwise.

for all x ∈ X.

Definition 2.11. [13] Let X be an initial universe set, E be the set of parameters and let Y ⊆ X. The
vague soft characteristic set of Y over E is a vague soft set (FY , E) which is defined by FY : E → V (X)
such that FY (e) = χ

Y
for all e ∈ E. Thus, for all x ∈ X,

VχY (e)(x) =

{
[1, 1] , if x ∈ Y
[0, 0], otherwise,

for all e ∈ E. And it is denoted by (χ
Y
, E).

Notations: Throughout this paper, we use the notation V S̃Px1,x2,x3...(X,E) is the collection of all
xi-vague soft points V S̃Pxi(X,E), xi ∈ X. Clearly, V S̃PX(X,E) =

⋃
x∈X

V S̃Px(X,E).

Definition 2.12. [18] Euclidean space R is the set of all real numbers together with the topology by the
Euclidean metric, d(x, y) = |x− y|, for all x, y ∈ R.

3 Vague Soft Fundamental Groups

Definition 3.1. Let (G,E) ∈ V S̃(X,E), (H,E ′) ∈ V S̃(X ′, E ′). The vague soft product of (G,E) and
(H,E ′) is a vague soft set (M,E ×E ′) = (G,E)× (H,E ′) in V S̃(X ×X ′, E ×E ′) which is defined by the
mapping M : E × E ′ → V (X ×X ′), where M(e, e′) = G(e)×H(e′) such that

M(e, e′) =
{

[ min(tG(e)(x),tH(e′)(x
′)), max(1−fG(e1)

(x),1−fH(e′)(x
′)) ]

(x,x′)
; ∀(x, x′) ∈ X ×X ′

}
for all

(e, e′) ∈ E × E ′.

Example 3.2. Let X = {x1, x2} , E = {e1, e2}.

If (F,E) =


〈
e1,

[0, 0.9]

x1
,
[0.3, 0.6]

x2

〉
,〈

e2,
[0.2, 0.7]

x1
,
[1, 1]

x2

〉
 , (G,E) =


〈
e1,

[0.2, 0.5]

x1
,
[0.4, 0.5]

x2

〉
,〈

e2,
[0.2, 1]

x1
,
[0.2, 0.8]

x2

〉
 are two vague soft sets, then

their vague soft product is given by
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(F,E)× (G,E) =



〈
(e1, e1),

[0, 0.9]

(x1, x1)
,
[0, 0.9]

(x1, x2)
,
[0.2, 0.6]

(x2, x1)
,
[0.3, 0.6]

(x2, x2)

〉
,〈

(e1, e2),
[0, 1]

(x1, x1)
,
[0, 0.9]

(x1, x2)
,
[0.2, 1]

(x2, x1)
,
[0.2, 0.8]

(x2, x2)

〉
〈
(e2, e1),

[0.2, 0.7]

(x1, x1)
,
[0.2, 0.7]

(x1, x2)
,
[0.2, 1]

(x2, x1)
,
[0.4, 1]

(x2, x2)

〉
,〈

(e2, e2),
[0.2, 1]

(x1, x1)
,
[0.2, 0.8]

(x1, x2)
,
[0.2, 1]

(x2, x1)
,
[0.2, 1]

(x2, x2)

〉


.

Definition 3.3. Let (X, τ, E), (X ′, σ, E ′) be two vague soft topological spaces. The vague soft topology
on X × X ′ having the base of the form F = {(F,E) × (G,E ′) : (F,E) ∈ τ, (G,E ′) ∈ σ} is said to
be the vague soft product topology (denoted by τ × σ) of the vague soft topologies τ and σ. The triplet
(X ×X ′, τ × σ,E × E ′) is said to be the vague soft product topological space of the vague soft topological
spaces (X, τ, E) and (X ′, σ, E ′).

Proposition 3.4. Let (X, τ, E) and (Y, σ,K) be any two vague soft topological spaces. Let U and V be
the subsets of X. Let X̂E = (χ

U
, E) ∪ (χ

V
, E), where (χ

U
, E), (χ

V
, E) ∈ τ . If f : (U, τU , E) → (Y, σ,K),

h : (V, τV , E) → (Y, σ,K) are any two vague soft continuous functions such that f(F,E) = h(F,E),
∀ (F,E) ⊆ (χ

U
, E) ∩ (χ

V
, E), then g : (X, τ, E)→ (Y, σ,K) is defined by

g(G,E) =

{
f(G,E), if (G,E) ⊆ (χ

U
, E)

h(G,E), if (G,E) ⊆ (χ
V
, E).

is a vague soft continuous function.

Proof. Let (M,K) ∈ (Y, σ,K). Now
g−1(M,K) = g−1(M,K) ∩ X̂E

= g−1(M,K) ∩ ((χ
U
, E) ∪ (χ

U
, E))

= [ g−1(M,K) ∩ (χ
U
, E) ] ∪ [ g−1(M,K) ∩ (χ

V
, E) ]

= f−1(M,K) ∪ h−1(M,K) ∈ τ.
Hence, g is vague soft continuous.

Definition 3.5. Let (X,T ) be a topological space and Q be the set of all parameters over X. Let U be
the subset of X and (χ

U
, Q) be the vague soft characteristic function of U. Then the vague soft topology

introduced by T is V(T )Q = {(χ
U
, Q) : U ∈ T} and the pair (X,V(T )Q) is said to be a vague soft topological

space introduced by (X,T ).

Example 3.6. Let (X,T ) be a topological space where X = {a, b, c} and T = {∅, {a}, {b, c}, X}. Let
E = {e1, e2} be the parameters over X.

Then V(T )E = {(χ
∅
, E), (χ

{a}
, E), (χ

{b,c}
, E), (χ

X
, E)} forms a vague soft topology where

(χ
∅
, E) = ∅̂E, (χ{a}, E) =


〈
e1,

[1, 1]

a
,

[0, 0]

b
,

[0, 0]

c

〉
,〈

e2,
[1, 1]

a
,

[0, 0]

b
,

[0, 0]

c

〉
 , (χ{b,c}, E) =


〈
e1,

[0, 0]

a
,

[1, 1]

b
,

[1, 1]

c

〉
,〈

e2,
[0, 0]

a
,

[1, 1]

b
,

[1, 1]

c

〉
 and (χ

X
, E) = X̂E.

Hence (X,V(T )E) is a vague soft topological space introduced by (X,T ).

Notation: Let I be the unit interval and Q be the set all parameters over I. Let ξ be an Euclidean
topology on I. Then (I,V(ξ)Q) is a vague soft topological space introduced by the Euclidean space (I, ξ).
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Definition 3.7. Let (X, τ, E) be a vague soft topological space and (I,V(ξ)Q) be a vague soft topological
space introduced by the Euclidean space (I, ξ) and
xe,[α,1−β], x

′
e′,[γ,1−δ] ∈ V S̃Px,x′(X,E). A vague soft-path ω in (X, τ, E) from xe,[α,1−β] to x′e′,[γ,1−δ] is a

vague soft continuous function ω : (I,V(ξ)Q)→ (X, τ, E) such that ω(0) = xe,[α,1−β] and ω(1) = x′e′,[γ,1−δ].
Then the x-vague soft points xe,[α,1−β] and x′e′,[γ,1−δ] are called the initial and terminal points of ω.

Definition 3.8. Let ω be the vague soft-path in (X, τ, E) from xe,[α,1−β] to x′e′,[γ,1−δ], where xe,[α,1−β] ∈
V S̃Px(X,E), x′e′,[γ,1−δ] ∈ V S̃Px′(X,E). The inverse of ω is the vague soft-path in (X, τ, E) from x′e′,[γ,1−δ]
to xe,[α,1−β] defined by ω̄(t) = ω(1− t) for all t ∈ I.

Definition 3.9. Let (X, τ, E) be a vague soft topological space and xe,[α1,1−β1], x
′
e′,[α2,1−β2] ∈ V S̃Px,x′(X,E).

A vague soft topological space (X, τ, E) is said to be a vague soft path connected space if there exists
a vague soft-path in (X, τ, E) for every pair xe,[α1,1−β1], x

′
e′,[α2,1−β2] ∈ V S̃Px,x′(X,E).

Proposition 3.10. Let (X, τ, E) be a vague soft topological space and xe,[α1,1−β1], x
′
e′,[α2,1−β2] ∈ V S̃Px,x′(X,E).

If there is a vague soft-path in (X, τ, E) with initial and terminal points
xe,[α1,1−β1], x

′
e′,[α2,1−β2] respectively, then there exist a vague soft-path in (X, τ, E) with initial and terminal

points x′e′,[α2,1−β2], xe,[α1,1−β1] respectively.

Proof. Let (I,V(ζ)R) be a vague soft topological spaces introduced by the Euclidean space (I, ζ) and
xe′,[α1,1−β1], x

′
e′,[α2,1−β2] ∈ V S̃Px,x′(X,E). Let ω be a vague soft-path in (X, τ, E) from xe,[α1,1−β1] to x′e′,[α2,1−β2].

Then ω : (I,V(ζ)R) → (X, τ, E) is a vague soft continuous function with ω(0) = xe,[α,1−β] and ω(1) =
x′e′,[γ,1−δ]. Define σ : (I,V(ζ)R)→ (X, τ, E) by σ(t) = ω(1− t) for every t ∈ I. Therefore σ is a vague soft

continuous function with σ(0) = ω(1) = x′e′,[γ,1−δ] and σ(1) = ω(0) = xe,[α,1−β]. Therefore, σ is a vague soft

-path in (X, τ, E) with initial and terminal points x′e′,[α2,1−β2], xe,[α1,1−β1] respectively.

Theorem 3.11. The vague soft continuous image of a vague soft path connected space is vague soft path
connected.

Proof. Let gpu: (X, τ, E)→ (Y, σ,K) be a vague soft continuous function from a vague soft path connected
space (X, τ, E) to vague soft topological space (Y, σ,K). Let yk,[α,1−β], y

′
k′,[γ,1−δ] be any two (y, y′)-vague soft

points in gpu(X, τ, E). Then there exist xe,[α,1−β], x
′
e′,[γ,1−δ] ∈ V S̃Px,x′(X,E) such that u(x) = y, u(x′) = y′

p(e) = k, p(e′) = k′. Since (X, τ, E) is a vague soft path connected space, there exist a vague soft-
path ω in (X, τ, E) from xe,[α,1−β] to x′e′,[γ,1−δ]. Thus, there exist a vague soft continuous function ω :

(I,V(ξ)Q) → (X, τ, E) such that ω(0) = xe,[α,1−β] and ω(1) = x′e′,[γ,1−δ]. clearly, the vague soft mapping

gpu ◦ ω : (I,V(ξ)Q) → (Y, σ,K) is vague soft continuous with (gpu ◦ ω)(0) = gpu(ω(0)) = gpu(xe,[α,1−β]) =
yk,[α,1−β] and (gpu ◦ ω)(1) = gpu(ω(1)) = gpu(x

′
e′,[γ,1−δ]) = y′k′,[γ,1−δ]. Hence, gpu(X, τ, E) is a vague soft path

connected space.

Definition 3.12. Let (X, τ, E) be a vague soft topological space and (I,V(ξ)Q) be a vague soft topological
space introduced by the Euclidean space (I, ξ). Let
xe,[α1,1−β1], x

′
e′,[α2,1−β2], x

′′
e′′,[α3,1−β3] ∈ V S̃Px,x′,x′′(X,E) and ω1 & ω2 be any two vague soft-path in (X, τ, E)

from xe,[α1,1−β1] to x′e′,[α2,1−β2] & from x′e′,[α2,1−β2] to x′′e′′,[α3,1−β3] respectively. The product of ω1 and ω2 is

the vague soft-path ω1 ∗ ω2 in (X, τ, E) from xe,[α1,1−β1] to x′′e′′,[α3,1−β3] which is defined by
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(ω1 ∗ ω2)(tq,[µ,1−ν]) =


ω1((2t)q,[µ,1−ν]), if 0 ≤ t ≤ 1

2
,

ω2((2t− 1)q,[µ,1−ν]), if
1

2
≤ t ≤ 1,

for each tq,[µ,1−ν] ∈ (I,V(ξ)Q).

Definition 3.13. Let (X, τ, E) be a V S̃TS. Let (I,V(ζ)R) and (I,V(ξ)Q) be any two vague soft topological
spaces introduced by the Euclidean spaces (I, ζ) and (I, ξ) respectively. Two vague soft-paths ω1 & ω2 in
(X, τ, E) from xe,[α1,1−β1] to x′e′,[α2,1−β2] are said to be a vague soft-path homotopic if there exists a vague
soft continuous function
H : (I,V(ζ)R)× (I,V(ξ)Q)→ (X, τ, E) such that

H(tr,[γ,1−δ], 0) = ω1(tr,[γ,1−δ]) and H(tr,[γ,1−δ], 1) = ω2(tr,[γ,1−δ])

for each tr,[γ,1−δ] ∈ V S̃Pt(I, R) in (I,V(ζ)R) where t ∈ I.
H(0, t′q,[µ,1−ν]) = xe,[α1,1−β1] and H(1, t′q,[µ,1−ν]) = x′e′,[α2,1−β2]

for each t′q,[µ,1−ν] ∈ V S̃Pt′(I,Q) in (I,V(ξ)Q) where t′ ∈ I.
Moreover, the function H is said to be a vague soft-path homotopy between ω1 and ω2, denoted as

ω1
∼= ω2.

Definition 3.14. Let (X, τ, E) be a vague soft topological space and (I,V(ξ)Q) be a vague soft topological
space introduced by the Euclidean space (I, ξ). Let xe,[α,1−β] ∈ V S̃Px(X,E). Let ω : (I,V(ξ)Q)→ (X, τ, E)
be a vague soft-path. If the initial point of ω equals its terminal point, that is, ω(0) = ω(1) = xe,[α,1−β],
then the vague soft-path ω is called as vague soft-loop based at the vague soft base point xe,[α,1−β]. The
collection of all vague soft-loops based at xe,[α,1−β] in (X, τ, E) is denoted by Ω( (X, τ, E), xe,[α,1−β] ).

Proposition 3.15. Let (X, τ, E) be a vague soft topological space and
xe,[α,1−β] ∈ V S̃Px(X,E). Then the relation ∼= is an equivalence relation on
Ω( (X, τ, E), xe,[α,1−β] ).

Proof. The proof is obvious.

Definition 3.16. Let (X, τ, E) be a vague soft topological space and xe,[α1,1−β1] ∈ V S̃Px(X,E). If ω ∈
Ω( (X, τ, E), xe,[α,1−β] ), then [ω] denotes the vague soft-path homotopy equivalence classes of vague soft
loops based at xe,[α,1−β] that contains ω and Π( (X, τ, E), xe,[α,1−β] ) denotes the set of all vague soft-path
homotopy equivalence classes on Ω( (X, τ, E), xe,[α,1−β] ). Define an operation ◦ on Π( (X, τ, E), xe,[α,1−β] )
by [ω1] ◦ [ω2] = [ω1 ∗ ω2].

Proposition 3.17. Let (X, τ, E) be a vague soft topological space and
xe,[α,1−β] ∈ V S̃Px(X,E). Let ω1, ω2, λ1, λ2 ∈ Ω( (X, τ, E), xe,[α,1−β] ) be vague soft-loops in (X, τ, E). If
ω1
∼= ω2 and λ1

∼= λ2, then ω1 ∗ λ1
∼= ω2 ∗ λ2.

Proof. Let (I,V(ζ)R) and (I,V(ξ)Q) be any two vague soft topological spaces introduced by the Euclidean
space (I, ζ) and (I, ξ) respectively. Since ω1

∼= ω2 and λ1
∼= λ2, there exist vague soft continuous functions

H, K : (I,V(ζ)R)× (I,V(ξ)Q)→ (X, τ, E) such that
H(tr,[γ,1−δ], 0) = ω1(tr,[γ,1−δ]), H(tr,[γ,1−δ], 1) = ω2(tr,[γ,1−δ]),
K(tr,[γ,1−δ], 0) = λ1(tr,[γ,1−δ]) and K(tr,[γ,1−δ], 1) = λ2(tr,[γ,1−δ])

for each tr,[γ,1−δ] ∈ V S̃Pt(I, R) in (I,V(ζ)R),
H(0, t′q,[µ,1−ν]) = H(1, t′q,[µ,1−ν]) = K(0, t′q,[µ,1−ν]) = K(1, t′q,[µ,1−ν]) = xe,[α,1−β]

for each t′q,[µ,1−ν] ∈ V S̃Pt′(I,Q) in (I,V(ξ)Q) and xe,[α,1−β] ∈ V S̃Px(X,E).
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Let G : (I,V(ζ)R)× (I,V(ξ)Q)→ (X, τ, E) be such that

G(tr,[γ,1−δ], t
′
q,[µ,1−ν]) =


H((2t)r,[γ,1−δ], t

′
q,[µ,1−ν]), if 0 ≤ t ≤ 1

2
and 0 ≤ t′ ≤ 1,

K((2t− 1)r,[γ,1−δ], t
′
q,[µ,1−ν]), if

1

2
≤ t ≤ 1 and 0 ≤ t′ ≤ 1,

for all

tr,[γ,1−δ] ∈ V S̃Pt(I, R) in (I,V(ζ)R), t′q,[µ,1−ν] ∈ V S̃Pt′(I,Q) in (I,V(ξ)Q). Thus G is vague soft continuous
function.

Also, G(tr,[γ,1−δ], 0) =


H((2t)r,[γ,1−δ], 0), if 0 ≤ t ≤ 1

2
,

K((2t− 1)r,[γ,1−δ], 0), if
1

2
≤ t ≤ 1,

=


ω1((2t)r,[γ,1−δ]), if 0 ≤ t ≤ 1

2
,

λ1((2t− 1)r,[γ,1−δ]), if
1

2
≤ t ≤ 1,

G(tr,[γ,1−δ], 0) = (ω1 ∗ λ1)(tr,[γ,1−δ]) for all tr,[γ,1−δ] ∈ V S̃Pt(I, R) in (I,V(ζ)R),

Similarly, G(tr,[γ,1−δ], 1) =


H((2t)r,[γ,1−δ], 1), if 0 ≤ t ≤ 1

2
,

K((2t− 1)r,[γ,1−δ], 1), if
1

2
≤ t ≤ 1,

=


ω2((2t)r,[γ,1−δ]), if 0 ≤ t ≤ 1

2
,

λ2((2t− 1)r,[γ,1−δ]), if
1

2
≤ t ≤ 1,

G(tr,[γ,1−δ], 1) = (ω2 ∗ λ2)(tr,[γ,1−δ]) for all tr,[γ,1−δ] ∈ V S̃Pt(I, R) in (I,V(ζ)R) and

G(0, t′q,[µ,1−ν]) = H(0, t′q,[µ,1−ν]) = xe,[α,1−β], G(1, t′q,[µ,1−ν]) = K(1, t′q,[µ,1−ν]) = xe,[α,1−β]

for each t′q,[µ,1−ν] ∈ V S̃Pt′(I,Q) in (I,V(ξ)Q) and xe,[α,1−β] ∈ V S̃Px(X,E).
Hence, ω1 ∗ λ1

∼= ω2 ∗ λ2.

Proposition 3.18. Let (X, τ, E) be a vague soft topological space. Let
[ω1], [ω2] ∈ Π( (X, τ, E), xe,[α,1−β] ) where xe,[α,1−β] ∈ V S̃Px(X,E) be a x-vague soft point. Then
[ω1] ◦ [ω2] ∈ Π( (X, τ, E), xe,[α,1−β] ).

Proof. Assume that, [ω1], [ω2] ∈ Π( (X, τ, E), xe,[α,1−β] ) where xe,[α,1−β] ∈ V S̃Px(X,E).
We know that, [ω1] ◦ [ω2] = [ω1 ∗ ω2].

Now by the Definition 3.12, the product ω1 ∗ ω2 is also a vague soft-loop based at xe,[α,1−β]. Clearly,
[ω1] ◦ [ω2] = [ω1 ∗ ω2] ∈ Π( (X, τ, E), xe,[α,1−β] ).

Proposition 3.19. Let (X, τ, E) be a vague soft topological space. Let
[ω1], [ω2], [ω3] ∈ Π( (X, τ, E), xe,[α,1−β] ) where xe,[α,1−β] ∈ V S̃Px(X,E) be a x-vague soft point. Then
( [ω1] ◦ [ω2] ) ◦ [ω3] = [ω1] ◦ ( [ω2] ◦ [ω3] ).

Proof. It is sufficient to prove that ( ω1 ∗ ω2 ) ∗ ω3
∼= ω1 ∗ ( ω2 ∗ ω3 ). Now for all tr,[γ,1−δ] ∈ V S̃Pt(I, R)

in (I,V(ζ)R),
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( ( ω1 ∗ ω2 ) ∗ ω3) (tr,[γ,1−δ]) =


( ω1 ∗ ω2 )((2t)r,[γ,1−δ]), if 0 ≤ t ≤ 1

2
,

ω3((2t− 1)r,[γ,1−δ]), if
1

2
≤ t ≤ 1.

( ( ω1 ∗ ω2 ) ∗ ω3) (tr,[γ,1−δ]) =


ω1((4t)r,[γ,1−δ]), if 0 ≤ t ≤ 1

4
,

ω2((4t− 1)r,[γ,1−δ]), if
1

4
≤ t ≤ 1

2
,

ω3((2t− 1)r,[γ,1−δ]), if
1

2
≤ t ≤ 1.

and ( ω1 ∗ (ω2 ∗ ω3) ) (tr,[γ,1−δ]) =


ω1((2t)r,[γ,1−δ]), if 0 ≤ t ≤ 1

2
,

ω2((4t− 2)r,[γ,1−δ]), if
1

2
≤ t ≤ 3

4
,

ω3((4t− 3)r,[γ,1−δ]), if
3

4
≤ t ≤ 1.

Now define G : (I,V(ζ)R)× (I,V(ξ)Q)→ (X, τ, E) by

G(tr,[γ,1−δ], t
′
q,[µ,1−ν]) =



ω1((
4t

1 + t′
)r,[γ,1−δ]), if 0 ≤ t′ ≤ 1 and 0 ≤ t ≤ 1 + t′

4
,

ω2((4t− 1− t′)r,[γ,1−δ]), if 0 ≤ t′ ≤ 1 and
1 + t′

4
≤ t ≤ 2 + t′

4
,

ω3((
(4t− 2− t′)

2− t′
)r,[γ,1−δ]), if 0 ≤ t′ ≤ 1 and

2 + t′

4
≤ t ≤ 1.

for all tr,[γ,1−δ] ∈ V S̃Pt(I, R) in (I,V(ζ)R), t′q,[µ,1−ν] ∈ V S̃Pt′(I,Q) in (I,V(ξ)Q). Hence G is a vague
soft continuous function, by Proposition 3.4.
Also, G(tr,[γ,1−δ], 0) = ( ( ω1 ∗ ω2 ) ∗ ω3)(tr,[γ,1−δ]) and G(tr,[γ,1−δ], 1) = ( ω1 ∗ (ω2 ∗ ω3) )(tr,[γ,1−δ]) for

all tr,[γ,1−δ] ∈ V S̃Pt(I, R) in (I,V(ζ)R) and G(0, t′q,[µ,1−ν]) = G(1, t′q,[µ,1−ν]) = xe,[α,1−β] for each t′q,[µ,1−ν] ∈
V S̃Pt′(I,Q) in (I,V(ξ)Q) and xe,[α,1−β] ∈ V S̃Px(X,E).
Hence ( [ω1] ◦ [ω2] ) ◦ [ω3] = [ω1] ◦ ( [ω2] ◦ [ω3] ).

Proposition 3.20. Let (X, τ, E) be a vague soft topological space and (I,V(ζ)R) be a vague soft topological
space introduced by the Euclidean space (I, ζ). Also let % : (I,V(ζ)R) → (X, τ, E) be the vague soft-loop
defined by %(tr,[γ,1−δ]) = xe,[α,1−β] for each tr,[γ,1−δ] ∈ V S̃Pt(I, R) in (I,V(ζ)R) and xe,[α,1−β] ∈ V S̃Px(X,E).
Then [ω] ◦ [%] = [%] ◦ [ω] = [ω] for each
[ω] ∈ Π( (X, τ, E), xe,[α,1−β]).

Proof. Let ω : (I,V(ξ)Q) → (X, τ, E) be a vague soft-loop such that ω(0) = ω(1) = xe,[α,1−β] where

xe,[α,1−β] ∈ V S̃Px(X,E) is a x-vague soft point.
Define G : (I,V(ζ)R)× (I, ωS(ξ)Q)→ (X, τ, E) by

G (tr,[γ,1−δ], t
′
q,[µ,1−ν]) =


ω((

2t

1 + t′
)r,[γ,1−δ]), if 0 ≤ t′ ≤ 1 and 0 ≤ t ≤ 1 + t′

2
,

%((2t− 1)r,[γ,1−δ]) = xe,[α,1−β], if 0 ≤ t′ ≤ 1 and
1 + t′

2
≤ t ≤ 1.
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for all tr,[γ,1−δ] ∈ V S̃Pt(I, R) in (I,V(ζ)R), t′q,[µ,1−ν] ∈ V S̃Pt′(I,Q) in (I,V(ξ)Q). Hence

G (tr,[γ,1−δ], 0) =


ω((2t)r,[γ,1−δ]), if 0 ≤ t ≤ 1

2
,

%((2t− 1)r,[γ,1−δ]) = xe,[α,1−β], if
1

2
≤ t ≤ 1.

Thus, G (tr,[γ,1−δ], 0) = (ω ∗ %)(tr,[γ,1−δ]), G (tr,[γ,1−δ], 1) = ω(tr,[γ,1−δ]), for all

tr,[γ,1−δ] ∈ V S̃Pt(I, R) in (I,V(ζ)R), G (0, t′q,[µ,1−ν]) = ω(0) = xe,[α,1−β] and G (1, t′q,[µ,1−ν]) = %(1) = xe,[α,1−β]

for each t′q,[µ,1−ν] ∈ V S̃Pt′(I,Q) in (I,V(ξ)Q) and xe,[α,1−β] ∈ V S̃Px(X,E). By Proposition 3.4, G is vague

soft-continuous function and ω ∗ % ∼= ω. Thus [ω] ◦ [%] = [ω].
Similarly the proof of [%] ◦ [ω] = [ω] can be obtained by defining the vague soft-path homotopy

H : (I,V(ζ)R)× (I,V(ξ)Q)→ (X, τ, E) by

H (tr,[γ,1−δ], t
′
q,[µ,1−ν]) =


%((2t)r,[γ,1−δ]) = xe,[α,1−β], if 0 ≤ t′ ≤ 1 and 0 ≤ t ≤ 1− t′

2
,

ω((
2t+ t′ − 1

1 + t′
)r,[γ,1−δ]), if 0 ≤ t′ ≤ 1 and

1− t′

2
≤ t ≤ 1.

for all tr,[γ,1−δ] ∈ V S̃Pt(I, R) in (I,V(ζ)R), t′q,[µ,1−ν] ∈ V S̃Pt′(I,Q) in (I,V(ξ)Q).

Hence H (tr,[γ,1−δ], 0) =


%((2t)r,[γ,1−δ]) = xe,[α,1−β], if 0 ≤ t ≤ 1

2
,

ω((2t− 1)r,[γ,1−δ]), if
1

2
≤ t ≤ 1.

Thus, H (tr,[γ,1−δ], 0) = (% ∗ ω)(tr,[γ,1−δ]), H (tr,[γ,1−δ], 1) = ω(tr,[γ,1−δ]), for all tr,[γ,1−δ] ∈ V S̃Pt(I, R) in
(I,V(ζ)R), H (0, t′q,[µ,1−ν]) = %(0) = xe,[α,1−β] and H (1, t′q,[µ,1−ν]) = ω(1) = xe,[α,1−β] for each t′q,[µ,1−ν] ∈
V S̃Pt′(I,Q) in (I,V(ξ)Q) and xe,[α,1−β] ∈ V S̃Px(X,E). By Proposition 3.4, H is vague soft-continuous
function and % ∗ ω ∼= ω. Thus [%] ◦ [ω] = [ω]. Hence [ω] ◦ [%] = [%] ◦ [ω] = [ω].

Proposition 3.21. Let (X, τ, E) be a vague soft topological space and let
[ω] ∈ Π( (X, τ, E), xe,[α,1−β] ) where xe,[α,1−β] ∈ V S̃Px(X,E). Then [ω̄] ∈ Π( (X, τ, E), xe,[α,1−β]).

Proof. Assume that, (X, τ, E) is a vague soft topological space and [ω] ∈ Π( (X, τ, E), xe,[α,1−β] ) where

xe,[α,1−β] ∈ V S̃Px(X,E). Then ω ∈ Ω( (X, τ, E), xe,[α,1−β] ) is vague soft-loop based at xe,[α,1−β]. Clearly,
the inverse ω̄ is also a vague soft-loop based at xe,[α,1−β] in (X, τ, E). Therefore, ω̄ ∈ Ω( (X, τ, E), xe,[α,1−β] )
and hence [ω̄] ∈ Π( (X, τ, E), xe,[α,1−β]).

Proposition 3.22. Let (X, τ, E) be a vague soft topological space and xe,[α1,1−β1] ∈ V S̃Px(X,E). Let [ω] ∈
Π( (X, τ, E), xe,[α,1−β] ). Then there exists [ω̄] ∈ Π( (X, τ, E), xe,[α1,1−β1] ) such that [ω]◦[ω̄] = [%] = [ω̄]◦
[ω].

Proof. The existence of [ω̄] follows from the above Proposition 3.21.
Now consider % : (I,V(ζ)R) → (X, τ, E) be the vague soft-loop defined by

%(tr,[γ,1−δ]) = xe,[α,1−β] for each tr,[γ,1−δ] ∈ V S̃Pt(I, R) in (I,V(ζ)R).
Next, to prove [ω] ◦ [ω̄] = [%] = [ω̄] ◦ [ω] , it is sufficient to prove that ω ∗ ω̄ ∼= % ∼= ω̄ ∗ ω.

Let H : (I,V(ζ)R)× (I,V(ξ)Q)→ (X, τ, E) be defined by
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H (tr,[γ,1−δ], t
′
q,[µ,1−ν]) =



xe,[α,1−β], if 0 ≤ t′ ≤ 1 and 0 ≤ t ≤ t′

2
,

ω((2t− t′)r,[γ,1−δ]), if 0 ≤ t′ ≤ 1 and
t′

2
≤ t ≤ 1

2
,

ω̄((2t− 1− t′)r,[γ,1−δ]), if 0 ≤ t′ ≤ 1 and
1

2
≤ t ≤ 1− t′

2
,

xe,[α,1−β], if 0 ≤ t′ ≤ 1 and 1− t′

2
≤ t ≤ 1,

for all tr,[γ,1−δ] ∈ V S̃Pt(I, R) in (I,V(ζ)R), t′q,[µ,1−ν] ∈ V S̃Pt′(I,Q) in (I,V(ξ)Q). Thus

H (tr,[γ,1−δ], 0) =


ω(2t)r,[γ,1−δ], if 0 ≤ t ≤ 1

2
,

ω̄(2t− 1)r,[γ,1−δ], if
1

2
≤ t ≤ 1.

⇒ H (tr,[γ,1−δ], 0) = (ω ∗ ω̄)(tr,[γ,1−δ]), and H (tr,[γ,1−δ], 1) = xe,[α,1−β] = %(tr,[γ,1−δ]) for all tr,[γ,1−δ] ∈
V S̃Pt(I, R) in (I,V(ζ)R), H (0, t′q,[µ,1−ν]) = H (1, t′q,[µ,1−ν]) = xe,[α,1−β] for each t′q,[µ,1−ν] ∈ V S̃Pt′(I,Q) in

(I,V(ξ)Q) and xe,[α,1−β] ∈ V S̃Px(X,E). Thus, ω ∗ ω̄ ∼= %.
Similarly, the proof for ω̄ ∗ ω ∼= % can be obtained by defining the vague soft-path homotopy G :

(I,V(ζ)R)× (I,V(ξ)Q)→ (X, τ, E) by

G (tr,[γ,1−δ], t
′
q,[µ,1−ν]) =



xe,[α,1−β], if 0 ≤ t′ ≤ 1 and 0 ≤ t ≤ t′

2
,

ω̄((2t− t′)r,[γ,1−δ]), if 0 ≤ t′ ≤ 1 and
t′

2
≤ t ≤ 1

2
,

ω((2t− 1− t′)r,[γ,1−δ]), if 0 ≤ t′ ≤ 1 and
1

2
≤ t ≤ 1− t′

2
,

xe,[α,1−β], if 0 ≤ t′ ≤ 1 and 1− t′

2
≤ t ≤ 1,

for all tr,[γ,1−δ] ∈ V S̃Pt(I, R) in (I,V(ζ)R), t′q,[µ,1−ν] ∈ V S̃Pt′(I,Q) in (I,V(ξ)Q).

Thus, ω̄ ∗ ω ∼= %. Hence [ω] ◦ [ω̄] = [ω̄] ◦ [ω] = [%].

Theorem 3.23. The set Π( (X, τ,E), xe,[α,1−β] ) of vague soft-path homotopy equivalence classes of vague
soft-loops at xe,[α,1−β] forms a group under an operation ◦, is called the
vague soft fundamental group of (X, τ, E) relative to the vague soft base point xe,[α,1−β].

Proof. It follows from the Propositions 3.18, 3.19, 3.20, 3.22.

Definition 3.24. Let Π( (X, τ, E), xe,[α,1−β] ) and Π( (Y, σ,K), yk,[γ,1−δ]) be any two vague soft fundamen-
tal groups. A function f : Π( (X, τ, E), xe,[α,1−β] )→ Π( (Y, σ,K), yk,[γ,1−δ]) is said to be a vague soft homo-
morphism if f([ω1] ◦ [ω2]) = f([ω1]) ◦ f([ω2]) for all
[ω1], [ω2] ∈ Π( (X, τ, E), xe,[α,1−β] ). Moreover the vague soft homomorphism is said to be vague soft
isomorphism if it is bijective.

Proposition 3.25. Let (X, τ, E) be a vague soft-path connected space and
xe,[α,1−β], x

′
e′,[α′,1−β′] ∈ V S̃Px,x′(X,E). Then there exists a vague soft isomorphism of

Π( (X, τ, E), xe,[α,1−β] ) onto Π( (X, τ, E), x′e′,[α′,1−β′] ).
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Proof. Proof is obvious.

Note 3.26. If f : (X, τ, E) → (Y, σ,K) is a vague soft continuous function and if ω1, ω2 are the vague
soft-paths with ω1(1) = ω2(0), then f(ω1 ∗ ω2) = f(ω1) ∗ f(ω2).

Definition 3.27. Let (X, τ, E) and (Y, σ,K) be any two vague soft path connected spaces, [ω] ∈ Π( (X, τ, E), xe,[α,1−β] )
and f : (X, τ, E) → (Y, σ,K) be a vague soft continuous function with f(xe,[α,1−β]) = yk,[γ,1−δ]. Then
the function f∗ : Π( (X, τ, E), xe,[α,1−β] ) → Π( (Y, σ,K), yk,[γ,1−δ]), defined by f∗( [ω]) = [fω] for all
[ω] ∈ Π( (X, τ, E), xe,[α,1−β] ) is called the vague soft function induced by f.

Proposition 3.28. Let (X, τ, E) and (Y, σ,K) be any two vague soft-path connected spaces. Let f :
(X, τ, E) → (Y, σ,K) be a vague soft continuous function and xe,[α,1−β] ∈ V S̃Px(X,E). Then f induces
a vague soft homomorphism f∗ : Π( (X, τ, E), xe,[α,1−β] )→ Π( (Y, σ,K), f(xe,[α,1−β]) ).

Proof. For each [ω1], [ω2] ∈ Π( (X, τ, E), xe,[α,1−β] ),
f∗([ω1] ◦ [ω2]) = f∗( [ω1 ∗ ω2]) (by Definition 3.16)

= [f(ω1 ∗ ω2)] (by Definition 3.27)
= [fω1 ∗ fω2] (by note 3.26)
= [fω1] ◦ [fω2] (by Definition 3.16)
= f∗([ω1]) ◦ f∗([ω2]) (by Definition 3.27)

Thus, f∗([ω1] ◦ [ω2]) = f∗([ω1]) ◦ f∗([ω2]) ∀ [ω1], [ω2] ∈ Π( (X, τ, E), xe,[α,1−β] ).
Hence f∗ is a vague soft homomorphism.

Proposition 3.29. Let (X, τ, E), (X ′, τ ′, E ′) and (X ′′, τ ′′, E ′′) be any three vague soft-path connected
spaces. If g : (X, τ, E) → (X ′, τ ′, E ′) and f : (X ′, τ ′, E ′) → (X ′′, τ ′′, E ′′) are two vague soft continuous
functions and xe,[α,1−β] is a x-vague soft point of (X,E), then (f ◦ g)∗ = f∗ ◦ g∗.
Proof. For each [ω] ∈ Π( (X, τ, E), xe,[α,1−β] ),

(f ◦ g)∗( [ω] ) = [(f ◦ g)ω]
= [f(g(ω))]
= f∗([g(ω)])
= f∗(g∗([ω]))
= (f∗ ◦ g∗)([ω])

Thus,(f ◦ g)∗( [ω] ) = (f∗ ◦ g∗)([ω]), ∀ [ω] ∈ Π( (X, τ, E), xe,[α,1−β] ). Hence, (f ◦ g)∗ = f∗ ◦ g∗.
Theorem 3.30. Let f be a vague soft isomorphism between the vague soft-path connected spaces (X, τ, E)
and (X ′, τ ′, E ′). Then f∗ : Π( (X, τ, E), xe,[α,1−β] )→ Π( (X ′, τ ′, E ′), f(xe,[α,1−β]) ) is a vague soft isomor-
phism.

Proof. Let (X, τ, E) and (X ′, τ ′, E ′) be any two vague soft topological spaces. Let
Id(X,E) : (X, τ, E) → (X, τ, E) and Id(Π(X,E), xe,[α,1−β]) : Π( (X, τ, E), xe,[α,1−β] ) →
Π( (X, τ, E), xe,[α,1−β] ) be any two vague soft identity functions on (X, τ, E) and
Π( (X, τ, E), xe,[α,1−β] ) respectively.

For each [ω] ∈ Π( (X, τ, E), xe,[α,1−β] ),
(Id(X,E))∗([ω]) = [Id(X,E) (ω)] = [ω] = Id(Π(X,E), xe,[α,1−β])([ω]).

Thus, (Id(X,E))∗ = Id(Π(X,E), xe,[α,1−β]).
By Proposition 3.28, f induces a vague soft homomorphism

f∗ : Π( (X, τ, E), xe,[α,1−β] )→ Π( (X ′, τ ′, E ′), f(xe,[α,1−β]) ).
Now (f−1)∗◦f∗ = (f−1 ◦ f)∗ = (Id(X,E))∗ = Id(Π(X,E), xe,[α,1−β]) and similarly, f∗◦(f−1)∗ = Id(Π(X,E), xe,[α,1−β]).

Since (f∗)
−1 = (f−1)∗, we have f∗ is bijective. Hence f∗ is a vague soft isomorphism.
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