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Third order Nonlinear Difference Equations with a Superlinear

Neutral term

S. Kaleeswari1 and Ercan Tunc2

Abstract - This paper deals with the oscillatroy and asymptotic behavior of third order nonlinear difference equations

with a superlinear neutral term. Sufficient conditions which improve, extend and simplify existing once in the literature are

presented. Two examples are provided in order to illustrate the significance of the main results.

Keywords Convergence, Nonlinear, Neutral term, Oscillations, Third order difference equations.

2010 Subject classification: 39A10.

1 Introduction

This paper is concerned with oscillatory and asymptotic results for all solutions of the third order nonlinear
difference equations with a superlinear neutral term of the form

∆
[
a(t)

(
∆2y(t)

)α]
+ c(t)xγ (σ(t)) = 0, t ≥ t0 > 0, (1)

where y(t) = x(t) + b(t)xβ (ζ(t)) and t ∈ N = {t0, t0 + 1, . . .} , t0 is a positive integer.

We assume that

(H1) {a(t)}, {b(t)} and {c(t)} are real sequences with a(t) > 0, b(t) ≥ 1, b(t) 6= 1 for large t, c(t) ≥ 0 and
q(t) is not identically zero for large t;

(H2) {ζ(t)} , {σ(t)} are real sequences such that ζ(t) < t, σ(t) < t, ζ is strictly increasing, σ(t) is
nondecreasing and limt→∞ ζ(t) = limt→∞ σ(t) =∞;

(H3) α, β and γ are the ratios of odd positive integers with β ≥ 1;

(H4) h(t) = ζ−1 (σ(t)) ≤ t− 1 and limt→∞ h(t) =∞.

We let

S1(v, u) =
v−1∑
s=u

a−
1
α (s), v ≥ u ≥ t0

and assume that
S1(t, t0)→∞ as t→∞. (2)

1Department of Mathematics, Nallamuthu Gounder Mahalingam College, Pollachi-642001,
Coimbatore, Tamilnadu, India.
E.mail: kaleesdesika@gmail.com

2Department of Mathematics, Faculty of Arts and Sciences, Tokat Gaziosmanpasa
University, Tokat, Turkey.
E-mail: ercantunc72@yahoo.com
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The real sequence {x(t)} is said to be solution of (1.1) if it is defined and satisfies (1.1) for all t ∈ N(t0).
We only consider those solutions of (1.1) that satisfy sup {|x(t)| : t ≥ T} > 0 for all T ≥ t0 and we tacitly
assume that (1) possesses such solutions. A solution of (1) is called oscillatory if it is neither eventually
positive nor eventually negative and it is called nonoscillatory otherwise. Equation (1) is said to be oscil-
latory if all its solutions are oscillatory.

For the basic theory of difference equations and its applications, one can refer the monographs by
Agarwal [1, 2], the papers [19-24] and reference cited therein. In recent years, numerous researchers have
analyzed the asymptotic and oscillatory behavior of solutions to various classes of neutral difference equa-
tions; see the papers [6-8, 10-14]. This is due to the fact that such equations find numerous applications
in natural sciences and technology. For instance, the equations of this type appear in the study of electric
networks, vibrating masses attached to an elastic bar and in the solution of variational problems with time
delays (see [9, 15-18]).

To the best of our knowledge, there are no papers at the present time dealing with third order difference
equations with superlinear neutral term. Motivated by these observations, the aim of this paper is to obtain
sufficient conditions under which every solution of equation (1) is either oscillates or converges to zero as
t→∞.

2 Main Results

For simplicity, we set

S2(t, t2) =
t−1∑
s=t2

S1(s, t1), t ≥ t2 ≥ t1,

where t1 ≥ t0.
Throughout this paper, we assume that,

P1(t) =
1

b (ζ−1(t))

[
1−

(
S2 (ζ−1 (ζ−1(t)) , t2)

S2 (ζ−1(t), t2)

) 1
β k

1
β
−1

b
1
β (ζ−1 (ζ−1(t)))

]
≥ 0 (3)

and

P2(t) =
1

b (ζ−1(t))

(
1− l

1
β
−1

b
1
β (ζ−1 (ζ−1(t)))

)
≥ 0 (4)

for all sufficiently large t and for every positive constants k and l.

Remark 2.1. Since

P (t, t2) =
S2 (ζ−1(t), t2)

S2(t, t2)

1

b(ζ−1(t))

≥ 1

b(ζ−1(t))
,

then the condition

lim
t→∞

P (t, t2) = 0; β > 1
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lim
t→∞

P (t, t2) < 1; β = 1

ensures the positivity of the sequences P1 and P2.

Lemma 2.2. Assume that the conditions [H1]-[H3] and (2) hold and let x(t) is an eventually positive
solution of equation (1). Then there exists t1 ≥ t0 such that the sequence {y(t)} satisfies one of the
following two cases:

(I) y(t) > 0,∆y(t) > 0,∆2y(t) > 0 and ∆
(
a(t) (∆2y(t))

α) ≤ 0

(I) y(t) > 0,∆y(t) < 0,∆2y(t) > 0 and ∆
(
a(t) (∆2y(t))

α) ≤ 0

for t ≥ t1.

Proof. The proof is immediate. Hence we omit the details.

Lemma 2.3. Suppose that the conditions [H1]-[H4] and (2) hold. Let x(t) be an eventually positive solution
of equation (1) with y(t) satisfying case (I) of Lemma 2.2. Then y(t) satisfies

∆
(
a(t)

(
∆2y(t)

)α)
+ c(t)P

γ
β

1 (σ(t)) y
γ
β (h(t)) ≤ 0 (5)

for large t.

Proof. Assume that x(t) is an eventually positive solution of (1), say x(t) > 0, x (ζ(t)) > 0 and x (σ(t)) > 0
for t ≥ t1 for some t1 ≥ t0. From the definition of y(t), we have

xβ (ζ(t)) =
1

b(t)
(y(t)− x(t)) ≤ y(t)

b(t)
.

Since ζ(t) < t is strictly increasing, we can see that

x
(
ζ−1(t)

)
≤ y

1
β (ζ−1 (ζ−1(t)))

b
1
β (ζ−1 (ζ−1(t)))

.

Using the above inequality in the definition of y(t) gives

xβ(t) =
1

b (ζ−1(t))

[
y
(
ζ−1(t)

)
− x

(
ζ−1(t)

)]
≥ 1

b (ζ−1(t))

[
y
(
ζ−1(t)

)
− y

1
β (ζ−1 (ζ−1(t)))

b
1
β (ζ−1 (ζ−1(t)))

]
. (6)

Since a(t) (∆2y(t))
α

is nonincreasing for t ≥ t1, we obtain

∆y(t) = ∆y(t1) +
t−1∑
s=t1

(
a(s) (∆2y(s))

α) 1
α

a
1
α (s)

≥
(
a(t)

(
∆2y(t)

)α) 1
α S1(t, t1). (7)
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From (7), for all t ≥ t2 = t1 + 1, we have

∆

(
∆y(t)

S1(t, t1)

)
=
a

−1
α (t)

[
a

1
α (t)∆2y(t)S1(t, t1)−∆y(t)

]
S1(t, t1)S1(t+ 1, t1)

≤ 0.

i.e. ∆y(t)
S1(t,t1)

is nonincreasing for t ≥ t2. Hence we obtain

y(t) = y(t2) +
t−1∑
s=t2

∆y(t)

S1(s, t1)
S1(s, t1)

≥ ∆y(t)

S1(t, t1)

t−1∑
s=t2

S1(s, t1)

=
S2(t, t2)

S1(t, t1)
∆y(t), t ≥ t2.

Thus for all t ≥ t3 = t2 + 1, we have

∆

[
y(t)

S2(t, t2)

]
=

∆y(t)S2(t, t2)− y(t)S1(t, t1)

S2(t, t2)S2(t+ 1, t2)
≤ 0.

i.e. y(t)
S2(t,t2)

is nonincreasing for t ≥ t3. Since ζ(t) < t and ζ is strictly increasing, we can see that ζ−1 is

increasing and t < ζ−1(t). Thus we obtain

ζ−1(t) ≤ ζ−1
(
ζ−1(t)

)
. (8)

Since y(t)
S2(t,t2)

is nonincreasing, from (8), we get

S2 (ζ−1 (ζ−1(t)) , t2) y (ζ−1(t))

S2 (ζ−1(t), t2)
≥ y

(
ζ−1

(
ζ−1(t)

))
.

Using this in (2.4) gives

xβ(t) ≥ y (ζ−1(t))

b (ζ−1(t))

[
1−

(
S2 (ζ−1 (ζ−1(t)) , t2)

S2 (ζ−1(t), t2)

) 1
β y

1
β
−1 (ζ−1(t))

b
1
β (ζ−1 (ζ−1(t)))

]
, (9)

for t ≥ t3. Since y(t) is positive and increasing for t ≥ t3, we can find t4 ≥ t3 and a constant k > 0 such
that

y(t) ≥ k for t ≥ t4. (10)

From (9) and (10), we have

xβ(t) ≥ y (ζ−1(t))

b (ζ−1(t))

[
1−

(
S2 (ζ−1 (ζ−1(t)) , t2)

S2 (ζ−1(t), t2)

) 1
β k

1
β
−1

b
1
β (ζ−1 (ζ−1(t)))

]
= P1(t)y(ζ−1(t)), t ≥ t4.
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So,

xβ (σ(t)) ≥ P1 (σ(t)) y
(
ζ−1 (σ(t))

)
for t ≥ t5;

where σ(t) ≥ t4 for t ≥ t5 for some t5 ≥ t4. Substituting this in (1) gives

∆
(
a(t)

(
∆2y(t)

)α) ≤ −c(t)P γ
β

1 (σ(t)) y
γ
β (h(t)) for t ≥ t5. (11)

i.e., (5) holds and hence the proof.

Lemma 2.4. Let conditions [H1]-[H4] and (2) hold and let x(t)be an eventually positive solution of equation
(1) with y(t) satisfying case (II) of Lemma 2.2. Then y(t) either satisfies

∆
(
a(t)

(
∆2y(t)

)α)
+ c(t)P

γ
β

2 (σ(t)) y
γ
β (h(t)) ≤ 0 (12)

for large t or limt→∞ x(t) = limt→∞ y(t) = 0.

Proof. Suppose that x(t) is an eventually positive solution of (1) such that x(t) > 0, x (ζ(t)) > 0 and
x (σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Proceeding as in the proof of Lemma 2.3, we can see that (6) and
(8) hold. Since ∆y(t) < 0, from (8), we obtain

y
(
ζ−1(t)

)
≥ y

(
ζ−1(ζ−1(t))

)
.

Using the last inequality in (6) gives

xβ(t) ≥ y (ζ−1(t))

b(ζ−1(t))

[
1− y

1
β
−1 (ζ−1(t))

b
1
β (ζ−1(ζ−1(t)))

]
. (13)

Since y(t) satisfies case (II) of Lemma 2.2, there exists a constant l such that limt→∞ y(t) = l <∞.
case(a): If l > 0, then there exists t2 ≥ t1 such that

y(t) ≥ l; for t ≥ t2. (14)

From (14), we obtain

y
1
β
−1(t) ≤ l

1
β
−1.

Using this in (13) yields

xβ(t) ≥ y(ζ−1(t))

b(ζ−1(t))

[
1− l

1
β
−1

b
1
β (ζ−1(ζ−1(t)))

]
= P2(t)y(ζ−1(t)).

Therefore (1) becomes

∆
(
a(t)

(
∆2y(t)

)α) ≤ −c(t)P γ
β

2 (σ(t))y
γ
β (h(t)), (15)

for t ≥ t3 for some t3 ≥ t2. i.e., (12) holds.
case(b): If l = 0, then limt→∞ y(t) = 0.
Since 0 < x(t) ≤ y(t) for t ≥ t1, we have limt→∞ x(t) = 0. This completes the proof.
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Theorem 2.5. Assume that conditions [H1]-[H4] and (2) hold. If for all sufficiently large t1 ≥ t0 and for
some t2 ≥ t1,

∞∑
s=t2

c(s)P
γ
β

1 (σ(t)) =∞ (16)

and
∞∑
s=t0

c(s)P
γ
β

2 (σ(t)) =∞ (17)

then every solution x(t) of equation (1) is either oscillatory or satisfies limt→∞ x(t) = 0.

Proof. Suppose that x(t) is a nonoscillatory solution of equation (1), say x(t) > 0, x(ζ(t)) > 0 and
x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Assume (3) and (4) hold for t ≥ t1. Then from Lemma 2.2, y(t)
satisfies either case (I) or case (II) for t ≥ t1.

First we consider case (I). From Lemma 2.3, we can see that inequalities (10) and (11) hold for t ≥ t5.
Using (10) in (11) yields

∆
(
a(t)

(
∆2y(t)

)α) ≤ −k γ
β c(t)P

γ
β

1 (σ(t)); for t ≥ t5. (18)

Summing (18) from t5 to t− 1 gives

a(t)
(
∆2y(t)

)α ≤ a(t5)
(
∆2y(t)

)α − k γ
β

t−1∑
s=t5

c(s)P
γ
β

1 (σ(t))→ −∞,

as t→∞. Which is a contradiction to the fact that a(t) (∆2y(t))
α

is positive.
Next we consider case (II). Then from Lemma 2.4, we again arive at case (a) or case (b). In case (a),

(14) and (15) hold for t ≥ t3. Using (14) in (15) gives

∆
(
a(t)

(
∆2y(t)

)α) ≤ −l γβ c(t)P γ
β

2 (σ(t)); t ≥ t3. (19)

Summing (19) from t3 to t− 1 gives

a(t)
(
∆2y(t)

)α ≤ a(t3)
(
∆2y(t3)

)α − l γβ t−1∑
s=t3

c(s)P
γ
β

2 (σ(s))→ −∞,

as t→∞. Which again contradicts the fact that a(t) (∆2y(t))
α

is positive. In case (b), as in Lemma 2.4,
y(t)→ 0 as t→∞. This completes the proof.

Theorem 2.6. Suppose that conditions [H1]-[H4] and (2) hold. Assume that there exist real sequences
{η(t)} and {ς(t)} such that h(t) ≤ η(t) ≤ ς(t) ≤ t−1 for t ≥ t0. If the first order delay difference equations

∆z(t) + c(t)P
γ
β

1 (σ(t))S
γ
β

2 (h(t), t0) z
γ
αβ (h(t)) = 0 (20)

and

∆r(t) + c(t)P
γ
β

2 (σ(t)) [(η(t)− h(t))S1 (ς(t), η(t))]
γ
β r

γ
αβ (ς(t)) = 0 (21)

are oscillatory, then every solution x(t) of equation (1) is either oscillatory or satisfies limt→∞ x(t) = 0.
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Proof. Let x(t) be a nonoscillatory solution of equation (1) say x(t) > 0, x(ζ(t)) > 0 and x(σ(t)) > 0 for
t ≥ t1 for some t1 ≥ t0 and assume (3) and (4) hold for t ≥ t1. Then from Lemma 2.2, x(t) satisfies either
case (I) or case (II) for t ≥ t1.

First we consider case (I), proceeding as in the proof of Lemma 2.3, we again arive at (7) for t ≥ t1
and (11) for t ≥ t5. Summing (7) from t1 to t− 1 gives

y(t) ≥
t−1∑
s=t1

S1(s, t1)
(
a(t)

(
∆2y(t)

)α) 1
α

= S2(t, t1)
(
a(t)

(
∆2y(t)

)α) 1
α

and so
y(h(t)) ≥ S2 (h(t), t1)

(
a(h(t))

(
∆2y(h(t))

)α) 1
α , t ≥ t2,

where h(t) ≥ t1 for t ≥ t2 for some t2 ≥ t1. Using this in (11), we can see that

∆
(
a(t)

(
∆2y(t)

)α)
+ c(t)P

γ
β

1 (σ(t))S
γ
β

2 (h(t), t1)
(
a(h(t))

(
∆2y(h(t))

)α) γ
β ≤ 0 (22)

for t ≥ t5.
Letting z(t) = a(t) (∆2y(t))

α
, we see that z(t) is a positive solution of the first order delay difference

inequality

∆z(t) + c(t)P
γ
β

1 (σ(t))S
γ
β

2 (h(t), t1) z
γ
αβ (h(t)) ≤ 0. (23)

The function z(t) is decreasing for t ≥ t5 and so by a well-known result [19, Theorem 1], there exists a
positive solution of equation (20) which is a contradiction to the fact that equation (20) is oscillatory.

Next we consider case (II). By Lemma 2.4, we again have case (a) or case (b). In case (a), we can see
that (15) holds for t ≥ t3. Since case (II) holds, for v ≥ u ≥ t3, we have

y(u) = y(v) +
v−1∑
s=u

(−∆y(s))

≥ (v − u) (−∆y(v)) . (24)

Setting u = h(t) and v = η(t) in (24), we get

y(h(t)) ≥ (η(t)− h(t)) (−∆y(η(t))) . (25)

Since ∆y(t) < 0 and a(t) (∆2y(t))
α

is decreasing, we have

−∆y(u) ≥ ∆y(v)−∆y(u)

=
v−1∑
s=u

a
−1
α (s)

(
a

1
α (s)∆2y(s)

)
≥ S1(v, u)

[
a(v)

(
∆2y(u)

)α] 1
α .

Letting u = η(t) and v = ς(t) in the last inequality, we have

−∆y(η(t)) ≥ S1(ς(t), η(t))
(
a(ς(t))

(
∆2y (ς(t))

)α) 1
α . (26)
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Combining (25) and (26) yields

y(h(t)) ≥ (η(t)− h(t))S1(y(t), η(t))
[
a(ς(t))

(
∆2y (ς(t))

)α] 1
α . (27)

Using (27) in (25) gives

∆r(t) + c(t)p
γ
β

2 (σ(t)) [(η(t)− h(t))S1(ς(t), η(t))]
α
β r

γ
αβ (ς(t)) ≤ 0, (28)

where r(t) = a(t) (∆2y(t))
α
> 0. As in case (I), we see that there exists a positive solution of equation (21)

which contradicts the fact that equation (21) is oscillatory.
In case (b), as in Lemma 2.4, we see that x(t)→ 0 as t→∞. This completes the proof.

The following are immediate consequences of Theorem 2.6.

Corollary 2.7. Let γ = αβ and assume that conditions [H1]-[H4] and (2) hold. Suppose that there exist
positive real sequences {η(t)} and {ς(t)} such that h(t) ≤ η(t) ≤ ς(t) ≤ t− 1 for t ≥ t0. If

lim inf
t→∞

t−1∑
s=h(t)

c(s)P
γ
β

1 (σ(s))S
γ
β

2 (h(s), t0) >
1

e
(29)

and

lim inf
t→∞

t−1∑
s=ς(t)

c(s)P
γ
β

2 (σ(s)) [(η(s)− h(s))S1(ς(s), η(s))]
γ
β >

1

e
(30)

then every solution x(t) of equation (1) either oscillates or satisfies
limt→∞ x(t) = 0.

Corollary 2.8. Let γ < αβ and assume that conditions [H1]-[H4] and (2) hold. Suppose that there exist
positive sequences {ηt} and {ς(t)} such that h(t) ≤ η(t) ≤ ς(t) ≤ t − 1 for t ≥ t0. If for all sufficiently
large t1 ≥ t0 and for some t2 ≥ t1

∞∑
s=t2

c(s)P
γ
β

1 (σ(s))S
γ
β

2 (h(s), t0) =∞ (31)

and
∞∑
s=t0

c(s)p
γ
β
s (σ(s)) [(η(s)− h(s))S1(ς(s), η(s))]

γ
β =∞ (32)

then every solution x(t) of equation (1) either oscillates or satisfies
limt→∞ x(t) = 0.

The following are examples to illustrate the above results.
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3 Examples

Example 3.1. Consider the third order difference equation with a superlinear neutral term

∆

[
1

t
1
3

(
∆2y(t)

) 1
3

]
+

2t

3
x3

(
t

3

)
= 0, t ≥ 2 (33)

with y(t) = x(t) + 4
(
x3
(
t
2

))
. Here b(t) = 4t, a(t) = 1

t
1
3
, c(t) = 8t

3
, ζ(t) = t

2
, σ(t) = t

3
, α = 1

3
, β = 3, γ = 3

and h(t) = ζ−1(σ(t)) = 2t
3
.

Then the conditions [H1]-[H4] and (2) hold.

S1(t, t1) = S1(t, 2) = t− 2

S2(ζ−1(t), t2) = S2(2t, 3) = 2t− 4

S2

(
ζ−1(ζ−1(t)), t2

)
= S2(4t, 3) = 4t− 8

and P2(t) = 1
8t

[
1− l

1
3−1

(16t)
1
3

]
, P1(t) = 1

8t

[
1−

(
4t−8
2t−4

) 1
3 k

1
3−1

(16t)
1
3

]
. Thus conditions (16) and (17) hold. Hence

by Theorem 2.5 any solution x(t) of equation (33) is either oscillatory or satisfies limt→∞ x(t) = 0.

Example 3.2. Consider the third order difference equation with a linear neutral term

∆

[
1

t
1
5

(
∆2y(t)

) 1
5

]
+ (1 + t2)x

1
5

(
t

8

)
= 0, t ≥ 12 (34)

with y(t) = x(t) + 16x
(
t
2

)
. Here a(t) = 1

t
1
5
, b(t) = 8, c(t) = (1 + t2), ζ(t) = t

2
, σ(t) = t

8
, α = 1

5
, β = 1,

γ = 1
5
, h(t) = t

4
.

Then the conditions [H1]-[H4] and (2) hold.

S1(t, 2) = t− 2

S2(h(t), 2) = S2

(
t

4
, 2

)
=
t− 12

4

η(t) =
t

3
, ς(t) =

t

2

S1(ς(t), η(t)) = S1

(
t

2
,
t

3

)
=
t

6
.

Thus conditions (31) and (32) hold. Hence by Corollary 2.8, any solution x(t) of equation (34) either
oscillates or satisfies limt→∞ x(t) = 0.

4 Concluding Remarks

This paper is presented in the form which is essentially new. The results obtained are different from
many known theorems reported in the literature. By comparision method, the oscillatory and asymptotic
behavior of every solution of equation (1.1) are discussed in Theorems 2.5 and 2.6. Examples reveal the
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illustration of the proved results.
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