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Magnitude based Ordering of triangular neutrosophic numbers  
1K.Radhika*, 2K.Arun Prakash, 3R.Santhi 

©NGMC 2021 

ABSTRACT: Ranking of neutrosophic number plays an important part in linguistic decision 

problems. But ranking neutrosophic number is a difficult task. Different strategies have been 

proposed till now to order triangular neutrosophic number.  In this work a new ranking method is 

introduced to rank triangular neutrosophic number by using its magnitude value. Properties of 

the ranking method is also studied. The new ranking method is justified for its better result by 

comparing with the existing method. 
 

KEYWORDS:Neutrosophic sets, neutrosophic number, triangular neutrosophic number, 

Magnitude ranking. 

 

1. INTRODUCTION 

Since most of the problems in real life consist of uncertainty and vagueness we need a 

suitable tool to handle such problems. Zadeh [1] introduced Fuzzy set theory to deal 

uncertainty and vagueness. Later Atanassov [2] extended to intuitionistic fuzzy set in which 

he considered membership and non-membership function. Fuzzy sets and intuitionistic fuzzy 

sets cannot produce accuracy where the data is adequate, and uncertain. Neutrosophic sets 

was first introduced by Smarandache [3,4] to overcome the drawbacks in fuzzy sets and 

intuitionistic fuzzy sets. Neutrosophic logic is characterized by three components namely (i) 

truth membership degree (ii) indeterminacy-membership degree and (iii) falsity-membership 

degree. Smarandache further extended neutrosophic probability, to neutrosophic measure, 

neutrosophic integral [5]. This gives a way to apply neutrosophic logic in all mathematical 

concept especially engineering problems. After many researcher’s showed interest in this 

area. To represent an interval number or real number in uncertain situation neutrosophic 

numbers was introduced. To apply neutrosophic numbers in decision making problems and 

linear programming problems ranking of neutrosophic numbers is essential. Deli, Subas[6] 

ranked single valued neutrosophic number and applied in decision making problems. 

Chakraborty [7] studied representation of triangular neutrosophic numbers in different forms 

and also introduced a new de-fuzzification technique. Ye [8] applied single valued 

neutrosophic numbers to find shortest path. Said Broumi [9] considered shortest path of 

network in the view of triangular neutrosophic number. TuhinBera [10] introduced single 

valued neutrosophic number ranked the same and applied in linear programming problems. 

 

Novelty and Motivation: 

Fuzzy sets, intuitionistic fuzzy sets, interval valued fuzzy sets, and other structures have 

been used to deal with ambiguous data in recent years. Neutrosophic sets, which were introduced 
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recently, have proven to be better adapted to dealing with vagueness than previous set theoretical 

structures. Only uncertainty can be measured by a fuzzy number, however intuitionistic and 

interval valued intuitionistic fuzzy numbers can measure both uncertainty and vagueness, but not 

hesitation. Only the neutrosophic number can effectively measure all three characteristics. As a 

result, the triangular neutrosophic number garners more attention and opens the door to new 

study. 

 

Structure of the work 

Section 1 of this paper discusses the fundamental concepts of neutrosophic set theory, as 

well as a study of existing neutrosophic numbers, their ranking mechanism, and their application 

in real-world applications. The preliminaries are included in Section 2. Section 3 generates a 

triangular neutrosophic number and related arithmetic operations. We present a novel method for 

ranking triangular neutrosophic numbers based on their magnitude. Section 4 provides a 

numerical example, while section 5 provides a conclusion. 

  

 

2. PRELIMINARIES 

The basic and crucial definitions of neutrosophic set and neutrosophic numbers are 

outlined in this section. 

 

Definition 2.1: [11] Let X be the universal of discourse. A neutrosophic set A in X is defined by 

truth membership function𝐴𝑇(𝑥), indeterminacy-membership function𝐴𝐼(𝑥), and falsity 

membership function 𝐴𝐹(𝑥), so that 𝐴𝑇(𝑥),𝐴𝐼(𝑥),𝐴𝑇(𝑥),→]-0,1+[.Also 0 ≤ 𝑠𝑢𝑝𝐴𝑇(𝑥) +
𝑠𝑢𝑝𝐴𝐼(𝑥) + 𝑠𝑢𝑝𝐴𝐹(𝑥) ≤ 3+. 
 

Definition 2.2: [11] Let X be the universal of discourse. A single valued neutrosophic set A in X 

is defined as 𝐴 = {< 𝑥, 𝐴𝑇(𝑥), 𝐴𝐼(𝑥), 𝐴𝐹(𝑥) > 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝐴𝑇(𝑥), 𝐴𝐼(𝑥), 𝐴𝐹(𝑥) ∈ [0,1]} with 

0 ≤ 𝑠𝑢𝑝𝐴𝑇(𝑥) + 𝑠𝑢𝑝𝐴𝐼(𝑥) + 𝑠𝑢𝑝𝐴𝐹(𝑥) ≤ 3. 
 

Definition 2.3: [12] (α,β,𝛾)-cut of a neutrosophic set is defined as 𝐶𝛼,𝛽,𝛾 = {𝑥 ∈ 𝑋: 𝐶𝑇(𝑥) ≥

𝛼, 𝐶𝐼(𝑥) ≤ 𝛽, 𝐶𝐹(𝑥) ≤ 𝛾} with 𝛼, 𝛽, 𝛾 ∈ [0,1] and 𝛼 + 𝛽 + 𝛾 ≤ 3. 
 

Definition 2.4:[12]A neutrosophic set A defined on the universal set of real numbers R is said to  

be neutrosophic number if it has the following properties. 

(i) A  is normal  

(ii) A is convex set for truth function. 

(iii) A is concave for the indeterministic function and false function. 

 

3. TRIANGULAR NEUTROSOPHIC NUMBERS 

 Here single valued neutrosophic number and its arithmetic operation are discussed. 

 

Definition 3.1.1: A single valued neutrosophic number 

𝐴̃ = {< (𝑎1, 𝑎2, 𝑎3; 𝑝), (𝑏1, 𝑏2, 𝑏3; 𝑞), (𝑐1, 𝑐2, 𝑐3); 𝑟 >} is a subset of single valued neutrosophic 

set on R whose truth membership function𝐴𝑇(𝑥),indeterminacy-membership function𝐴𝐼(𝑥),and 

falsity membership function 𝐴𝐹(𝑥) is defined as  
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𝐴̃𝑇(𝑥) = {
𝐴𝑇,   
𝐿 𝑎1 ≤ 𝑥 ≤ 𝑎2
𝑝,           𝑥 = 𝑎2
𝐴𝑇
𝑅 , 𝑎2 ≤ 𝑥 ≤ 𝑎3

 

𝐴̃𝐼(𝑥) = {

𝐴𝐼,   
𝐿 𝑏1 ≤ 𝑥 ≤ 𝑏2
𝑞,           𝑥 = 𝑏2
𝐴𝐼
𝑅 , 𝑏2 ≤ 𝑥 ≤ 𝑏3

 

𝐴̃𝐹(𝑥) = {
𝐴𝐹,   
𝐿 𝑐1 ≤ 𝑥 ≤ 𝑐2
𝑟,           𝑥 = 𝑐2
𝐴𝐹
𝑅 , 𝑐2 ≤ 𝑥 ≤ 𝑐3

 

Where 𝑝, 𝑞, 𝑟 ∈ [0,1] and 𝐴𝑇
𝐿 (𝑥), 𝐴𝐼

𝑅(𝑥), 𝐴𝐹
𝑅(𝑥) are continuous strictly monotonically increasing 

function, 𝐴𝑇
𝑅(𝑥), 𝐴𝐼

𝐿(𝑥), 𝐴𝐹
𝐿 (𝑥) are continuous strictly monotonically decreasing function. Inverse 

function  𝐴𝑇
𝐿′(𝛼), 𝐴𝑇

𝑅′(𝛼), 𝐴𝐼
𝐿′(𝛼), 𝐴𝐼

𝑅′(𝛼), 𝐴𝐹
𝐿′(𝛼), 𝐴𝐹

𝑅′(𝛼)exist and is integrable in [0, 1]. 

Definition 3.1.2: A single valued triangular neutrosophic number 

𝐴̃ = {< (𝑎1, 𝑎2, 𝑎3; 𝑝), (𝑏1, 𝑏2, 𝑏3; 𝑞), (𝑐1, 𝑐2, 𝑐3); 𝑟 >}is a subset of single valued neutrosophic 

set on R whose truth membership function𝐴𝑇(𝑥),indeterminacy-membership function𝐴𝐼(𝑥),and 

falsity membership function 𝐴𝐹(𝑥) is defined as  

 

𝐴𝑇(𝑥) =

{
 
 

 
 𝑝 (

𝑥 − 𝑎1
𝑎2 − 𝑎1

) ,   𝑎1 ≤ 𝑥 ≤ 𝑎2

𝑝                          𝑥 = 𝑎2

𝑝 (
𝑎3 − 𝑥

𝑎3 − 𝑎2
) , 𝑎2 ≤ 𝑥 ≤ 𝑎3

 

         𝐴I(𝑥) =

{
 
 

 
 (

𝑞(𝑥 − 𝑏1) + (𝑏2 − 𝑥)

𝑏2 − 𝑏1
),     𝑏1 ≤ 𝑥 ≤ 𝑏2

𝑞                                           𝑥 =  𝑏2

(
(𝑥 − 𝑏2) + 𝑞(𝑏3 − 𝑥)

𝑏3 − 𝑏2
) , 𝑏2 ≤ 𝑥 ≤ 𝑏3

 

        𝐴F(𝑥) =

{
 
 

 
 (

𝑟(𝑥 − 𝑐1) + (𝑐2 − 𝑥)

𝑐2 − 𝑐1
),     𝑐1 ≤ 𝑥 ≤ 𝑐2

𝑟                                          𝑥 =  𝑐2

(
(𝑥 − 𝑐2) + 𝑟(𝑐3 − 𝑥)

𝑐3 − 𝑐2
) , 𝑐2 ≤ 𝑥 ≤ 𝑐3

 

whose inverse is as follows 

 𝐴𝑇
𝐿′(𝛼) = 𝑎1 + 𝛼

(𝑎2−𝑎1)

𝑝
, 𝐴𝐼

𝑅′(𝛼) = 𝑎3 +
(𝑎2−𝑎3)𝛼

𝑝
 

𝐴𝐼
𝐿′(𝛼) =

𝑏1(𝑞 − 𝛼) + 𝑏2(𝛼 − 1)

𝑞 − 1
, 𝐴𝐼

𝑅′(𝛼) =
𝑏2(1 − 𝛼) + 𝑏3(𝛼 − 𝑞)

1 − 𝑞
 

𝐴𝐹
𝐿′(𝛼) =

𝑐1(𝑟 − 𝛼) + 𝑐2(𝛼 − 1)

𝑟 − 1
,    𝐴𝐹

𝑅′(𝛼) =
𝑐(1 − 𝛼) + 𝑐3(𝛼 − 𝑟)

1 − 𝑟
 

 

3.2 Arithmetic operation of triangular neutrosophic number 

We define the arithmetic operation on triangular neutrosophic number by extending the 

arithmetic operation defined in [13]. 

Consider two triangular neutrosophic number  
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𝐴 = {< (𝑎1, 𝑎2, 𝑎3; 𝑝), (𝑏1, 𝑏2, 𝑏3; 𝑞), (𝑐1, 𝑐2, 𝑐3); 𝑟 >} and 

𝐵 = {< (𝑑1, 𝑑2, 𝑑3; 𝑠), (𝑒1, 𝑒2, 𝑒3; 𝑡), (𝑓1, 𝑓2, 𝑓3); 𝑢 >} 
 

(i) Addition of two triangular neutrosophic number: 

Addition of two triangular neutrosophic number 𝐴 + 𝐵 = {< (𝑎1 + 𝑑1, 𝑎2 + 𝑑2, 𝑎3 +
𝑑3; 𝑣), (𝑏1 + 𝑒1, 𝑏2 + 𝑒2, 𝑏3 + 𝑒3; 𝑤)(𝑐1 + 𝑓1, 𝑐2 + 𝑓2, 𝑐3 + 𝑓3; 𝑧) >} 
Where 𝑣 = min{𝑝, 𝑠} , 𝑤 = max{𝑞, 𝑡} , 𝑧 = max{𝑟, 𝑢}. 
 

(ii) Subtraction of two triangular neutrosophic number: 

 Subtraction of two triangular neutrosophic number𝐴 − 𝐵 = {< (𝑎1 − 𝑑3, 𝑎2 − 𝑑2, 𝑎3 −
𝑑1; 𝑣), (𝑏1 − 𝑒3, 𝑏2 − 𝑒2, 𝑏3 − 𝑒1; 𝑤)(𝑐1 − 𝑓3, 𝑐2 − 𝑓2, 𝑐3 − 𝑓1; 𝑧) >} 
Where 𝑣 = min{𝑝, 𝑠} , 𝑤 = max{𝑞, 𝑡} , 𝑧 = max{𝑟, 𝑢}. 
 

(iii) Multiplication of triangular neutrosophic number by scalar: 

 Scalar multiplication of a triangular neutrosophic number  

𝐴𝜆 = {
{< (𝜆𝑎1, 𝜆𝑎2, 𝜆𝑎3; 𝑝), (𝜆𝑏1, 𝜆𝑏2, 𝜆𝑏3; 𝑞), (𝜆𝑐1, 𝜆𝑐2, 𝜆𝑐3); 𝑟 >, 𝜆 > 0

{< (𝜆𝑎3, 𝜆𝑎2, 𝜆𝑎1; 𝑝), (𝜆𝑏3, 𝜆𝑏2, 𝜆𝑏1; 𝑞), (𝜆𝑐3, 𝜆𝑐2, 𝜆𝑐1); 𝑟 >, 𝜆 < 0
 

 

3.3 Ranking of triangular neutrosophic number 

 In this section, the magnitude of the triangular neutrosophic number is used to rank it, 

and a ranking procedure is also provided. 

 

3.3.1 Ranking function 

For an arbitrary triangular neutrosophic number 𝐴 = {< (𝐴𝑇
𝐿 (𝑥), 𝐴𝑇

𝑅(𝑥)), 
(𝐴𝐼
𝐿(𝑥), 𝐴𝐼

𝑅(𝑥))(𝐴𝐹
𝐿 (𝑥), 𝐴𝐹

𝑅(𝑥)>whose inverse is 𝐴′ = {< (𝐴𝑇
′𝐿(𝛼), 𝐴𝑇

′𝑅(𝛼)), 
(𝐴𝐼
′𝐿(𝛼), 𝐴𝐼

′𝑅(𝛼))(𝐴′𝐹
𝐿(𝛼), 𝐴𝐹

′𝑅(𝛼) )>} we define magnitude of triangular neutrosophic number A 

as  

𝑀𝑎𝑔(𝐴) =
1

2
[∫𝐴𝑇

′𝐿(𝛼) + 𝐴𝑇
′𝑅(𝛼)

𝑝

0

+ 𝑎2 +∫𝐴𝐼
′𝐿(𝛼) + 𝐴𝐼

′𝑅(𝛼

1

𝑞

) + 𝑏2𝐴
′
𝐹
𝐿(𝛼)

+ ∫𝐴′𝐹
𝐿(𝛼) + 𝐴𝐹

′𝑅(𝛼) + 𝑐3

1

𝑟

] 𝑓(𝛼)𝑑𝛼 

=
1

12
{[𝑝2[𝑎1 + 10𝑎2 + 𝑎3]] − ([𝑏1 + 𝑏3][𝑞

2 + 𝑞 − 2]) + 𝑏2[−10𝑞
2 + 2𝑞 + 8]

− ([𝑐1 + 𝑐3][𝑟
2 + 𝑟 − 2]) + 𝑐2[−10𝑟

2 + 2𝑟 + 8]} 
where the function 𝑓(𝛼) is non-negative and increasing function on [0, 1] with 𝑓(0) = 0, 𝑓(1) =

1 and ∫ 𝑓(𝛼) =
1

2
.

1

0
 Here the function 𝑓(𝛼) is a weighted function and can be chosen by 

considering the situation. In this paper we have considered 𝑓(𝛼) = 𝛼.The scalar obtained from 

𝑀𝑎𝑔(𝐴) is used to rank triangular neutrosophic number. 

3.3.2 Ranking procedure 
For any two triangular neutrosophic number A,B 

(i) 𝑀𝑎𝑔(𝐴) > 𝑀𝑎𝑔(𝐵) 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐴 > 𝐵 

(ii) 𝑀𝑎𝑔(𝐴) < 𝑀𝑎𝑔(𝐵) 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐴 < 𝐵 

(iii) 𝑀𝑎𝑔(𝐴) = 𝑀𝑎𝑔(𝐵) 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐴 = 𝐵 
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3.3.3 Reasonable Properties of the ranking function 

Theorem 3.1: For any arbitrary triangular neutrosophic number A   𝑀𝑎𝑔(−𝐴) = −𝑀𝑎𝑔(𝐴). 
Theorem 3.2: For any two arbitrary triangular neutrosophic number 

𝐴 = {< (𝑎1, 𝑎2, 𝑎3), (𝑏1, 𝑏2, 𝑏3), (𝑐1, 𝑐2, 𝑐3) >}and 

𝐵 = {< (𝑑1, 𝑑2, 𝑑3), (𝑒1, 𝑒2, 𝑒3), (𝑓1, 𝑓2, 𝑓3) >} 
𝑀𝑎𝑔(𝐴 ± 𝐵) = 𝑀𝑎𝑔(𝐴) ± 𝑀𝑎𝑔(𝐵). 
Theorem 3.3: For any two arbitrary triangular neutrosophic number 

𝐴 = {< (𝑎1, 𝑎2, 𝑎3), (𝑏1, 𝑏2, 𝑏3), (𝑐1, 𝑐2, 𝑐3) >} 
𝐵 = {< (𝑑1, 𝑑2, 𝑑3), (𝑒1, 𝑒2, 𝑒3), (𝑓1, 𝑓2, 𝑓3) >}, 
𝐶 = {< (𝑔1, 𝑔2, 𝑔3), (ℎ1, ℎ2, ℎ), (𝑖1, 𝑖2, 𝑖3) >} 
𝑀𝑎𝑔(𝐴 + 𝐶) > 𝑀𝑎𝑔(𝐵 + 𝐶) Implies 𝐴 + 𝐶 > 𝐵 + 𝐶. 
Proof: By Theorem 3.2,𝑀𝑎𝑔(𝐴 + 𝐵) = 𝑀𝑎𝑔(𝐴) + 𝑀𝑎𝑔(𝐵) 
Similarly 𝑀𝑎𝑔(𝐵 + 𝐶) = 𝑀𝑎𝑔(𝐵) + 𝑀𝑎𝑔(𝐶) 
Therefore if 𝐴 > 𝐵 

𝑀𝑎𝑔(𝐴 + 𝐶) > 𝑀𝑎𝑔(𝐵 + 𝐶) 
Hence 𝐴 + 𝐶 > 𝐵 + 𝐶. 

 
 

4. NUMERICAL EXAMPLES 

This section provides some numerical illustrations to explain the above ranking 

procedure. 

Example 4.1 Consider the triangular neutrosophic number  [14] 

𝐴 = {< (0.37, 0.52, 0.72), (0.02, 0.06, 0.15), (0.12, 0.25, 0.42) >}, 
𝐵 =  {< (0.19, 0.44, 0.58), (0.06, 0.12, 0.25), (0.02, 0.06, 0.18) >} 
𝐶 = {< (0.44, 0.76, 0.85), (0.03, 0.1, 0.18), (0.01, 0.08, 0.15) >} 
By our new ranking approach 𝑀𝑎𝑔(𝐴) = .849,𝑀𝑎𝑔(𝐵) = .635,𝑀𝑎𝑔(𝐶) = 922. 
Hence 𝐶 > 𝐴 > 𝐵. However by using score function and accuracy function method used in [9] 

gives the score value as 𝐴 = .73, 𝐵 = .73, 𝐶 = .84 which gives the order𝐴 = 𝐵 > 𝐶. So our 

method overcomes the shortcoming of “score function and accuracy function” method. 

 

Example 4.2 Consider the triangular neutrosophic number  given by [6] 

S1= ((1.18, 1.468, 1.705); .4, .7, .5)  

S2= ((1.176, 1.572, 1.801); .6, .8, .8)  

S3= ((1.288, 1.592, 1.818); .6, .8, .8) 

Using weighted value ambiguity the author has ordered S1>S3>S2.But we come across problems 

to fix the weighted value and also the ranking process is tedious. 𝑀𝑎𝑔(𝑆1) = 2.07,𝑀𝑎𝑔(𝑆2) =
1.67,𝑀𝑎𝑔(𝑆3) = 1.70.Hence by ranking procedure we get S1>S3>S2. 

 

Example 4.3 The three triangular neutrosophic number   

A={<(1,2,3), (.5,1.5,2.5), (1.2,2.7,3.5)>} 

B= {<(.5,1.5,2.5,), (.3,1.3,2.2), (.7,1.7,2.2)>} 

C={<(1,3,5), (.5,1.5,2.5), (1.2,2.7,4.5)>} 

taken from paper[16] are ranked by our method. 

 

𝑀𝑎𝑔(𝐴) = 6,𝑀𝑎𝑔(𝐵) = 4.4,𝑀𝑎𝑔(𝐶) = 7.5 Producing a ranking order 𝐶 > 𝐴 > 𝐵 though is 

the same as in [15] our method is simple and time consuming one. The author has considered the 
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area of the trapezium for ordering. Also 𝑀𝑎𝑔(−𝐴) = −6,𝑀𝑎𝑔(−𝐵) = −4.4,𝑀𝑎𝑔(−𝐶) =
−7.5 

Which results in −𝐵 > −𝐴 > −𝐶. clearly our method has consistency in ranking triangular 

neutrosophic number and their images. 

 

Example 4.4 TuhinBera [10] proposed k-weighted method to rank triangular neutrosophic 

number. Let A={<(-11,-8,-7);.6, (-12,-8,-5);.2, (-9,-8,-6);.5>} and  

B= {<(-12,-6,-4);.7, (-9,-6,-2);.4, (-11,-6,-3).3>} according to his method A>B. But The 𝐾 ∈
[0,1] which is not clear also n value is considered as any natural number.𝑀𝑎𝑔(𝐴) −
16.66,𝑀𝑎𝑔(𝐵) = −13.75.Hence B>A.  

All the above numerical examples shows that the proposed method can produce better result than 

the existing method. 

Consider the following set of triangular neutrosophic number. 

Set 1  

A= ((2,4,6); .8, .7, .6)  

B= ((2,4,6); .4, .6, .5)  

Set 2 

A= ((.528,.640,.847); .3,.8,.3)  

B= ((.653,.804,.879); .4,.5,.6)  

C= ((.587,.765,.881); .5,.2,.8) 

Set 3 

S1= ((1.18, 1.468, 1.705); .4, .7, .5)  

S2= ((1.176, 1.572, 1.801); .6, .8, .8)  

S3= ((1.288, 1.592, 1.818); .6, .8, .8) 

Set 4  

A= {< (0.37, 0.52, 0.72), (0.02, 0.06, 0.15), (0.12, 0.25, 0.42)>} 

B= {< (0.19, 0.44, 0.58), (0.06, 0.12, 0.25), (0.02, 0.06, 0.18)>} 

C= {< (0.44, 0.76, 0.85), (0.03, 0.1, 0.18), (0.01, 0.08, 0.15)>} 

Set 5 

A={<(-11,-8,-7);.6, (-12,-8,-5);.2, (-9,-8,-6);.5>} 

B= {<(-12,-6,-4);.7, (-9,-6,-2);.4, (-11,-6,-3).3>} 

Table 4.1 gives the comparison with the existing method. 

 

Table 4.1: Comparative results of the existing and proposed method 

Author and 

method 

Triangular 

neutrosophic 

number 

Set 1 Set 2 Set3 Set4 Set 5 

Proposed 

method  

 

Result 

A 

B 

 

 

7.16 

6.2 

 

A>B 

.888 

1.230 

1.186 

B>C>A 

2.07 

1.67 

1.70 

A>C>B 

6 

4.4 

7.5 

C>A>B 

-16.66 

-13.75 

 

B>A 

Score 

function and 

accuracy 

function[14] 

Result 

A 

B 

 

 

 

- - - 

.73 

.73 

.84 

 

A=B>C 

- 
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Value 

ambiguity 

weighted 

method[6] 

Result 

A 

B 

 

 

.49 

.144 

 

 

A>B 

.0212 

.237 

.0198 

 

C>B>A 

 

 

 

 

C>A>B 

- - 

Value 

ambiguity 

index 

method[15] 

Result 

A 

B 

 

 

1.78 

1.54 

 

 

A>B 

.2033 

.2254 

.3508 

 

C>B>A 

.485 

.165 

.170 

 

A>C>B 

- - 

K-weighted 

value 

function[17] 

K=.9,n=1 

Result 

A 

B 

 

 

1.3906 

.3565 

 

 

A>B 

.00957 

.0972 

.02451 

 

B>C>A 

.034168 

.06847 

.07373 

 

C>B>A 

.07761 

.0451 

.0719 

 

A>C>B 

-3.418 

-3.46 

 

 

A>B 

Ranking 

method 

proposed 

in[16] 

Result  

A 

B 

 

 

- - - 

.28 

.21 

.295 

C>A >B 

 

 

5. CONCLUSION 

In spite of many ranking methods ranking triangular numbers with human intuition 

consistency is not possible. Here drawbacks and shortcomings of the existing method are found. 

To overcome the shortcomings and to make the calculation simple a new ranking method is 

proposed. Also the new method is compared with existing method and justified for its accuracy 

and better result. 
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