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ABOUT CONFERENCE

The International conference on “Emerging Trends in Science and Technology (ETIST-2021)” is
being jointly organized by Departments of Biological Science, Physical Science and
Computational Science - Nallamuthu Gounder Mahalingam College, Pollachi along with ISTE,
CSI, IETE, IEE & RIYASA LABS on 27th OCT 2021. The Conference will provide common
platform for faculties, research scholars, industrialists to exchange and discus the innovative ideas
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Solution of Linear Fuzzy Volterralntegro-Differential Equations

using Generalized Differentiability

*S Indrakumar?, K Kanagarajan?, R.Santhi®

ONGMC 2021

ABSTRACT:Fuzzy Volterralntegro-differential equations are well adapted to describe physical phenomena, when
vagueness and uncertainty exists. In the perspective of growing applications of fuzzy Volterralntegro-differential
equations, this article discuss the solution of fuzzy Volterraintegro-differential equations under generalized
differentiability using Runge-Kutta method of fourth order. The proposed method was validated by numerical
examples. The comparison of exact and approximate solutions was tabulated with the corresponding errors. The

solution was also visualized.

KEYWORDS:Fuzzy Number, Generalized Differentiability, Fuzzy Volterralntegro-Differential Equations, Fourth
Order Runge-Kutta Method.

1.INTRODUCTION

Fuzzy set theory initiated by Zadeh [44] had widen its domain by its fusion with proven assertion and well-
established theories and had strengthened its ideas in dealing with data by which it is now an independent branch of
Applied Mathematics. Dubois and Prade [11] established fuzzy calculus using extension principle and fuzzy
integration. Riemann integral oriented fuzzy calculus was examined by Goetschal and Voxman [15]. Lebesque
model was preffered by Kaleva [30] for integration of fuzzy functions. Arbitrary Kernal was used in fuzzy integral
equations by Lakshmikantham and Mohapatra [20]. The theories under fuzzy integral equations were under
investigation by many researchers [6, 13, 28, 31, 33, 35, 38]. FVIDE with fuzzy set valued mappings combined by
existence and uniqueness theorems was put forth by Hajighasemiet. al. [25]. The concept of handling Numerical
methods in the solution of fuzzy integral equations along with arbitrary kernals was studied by Friedman et.al. [23].
The solution of Volterraintegro-differential equations (VIDE) of second kind was sought utilizing Runge-kutta
methods was studied by Lubich [21]. Allviranlooet. al. [3] founded the solution of fuzzy integro-differential
equations (FIDE) under strongly generalized H-differentiability by considering convex combination of 0-cut and 1-

cut solutions. Alikhani and Bahrami [36] discussed the global solutions of FIDE by the method of upper and lower
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solutions under generalized differentiability. Matinfaret. al. [24] studied variational iteration technique for
establishing numerical solution of FVIDE. In this work, we use Runge-Kutta method of order four for solving linear
FVIDE of the second kind under generalized differentiability.

This paper is frame worked as follows. The preliminary ideas and basic concepts were discussed
in section 2. Linear FVIDE under generalized differentiability was studied in section 3. Section 4 analyses the
extraction of numerical solution of FVIDE with Runge-Kutta method of order four under generalized
differentiability. Finally in section 5, the proposed method is illustrated with numerical examples.classic decision
making problem may not be satisfied, when the decision situation involves both fuzzy and crisp data. The classical
decision making methods cannot handle such problems effectively, because they are only suitable for dealing with
problems in which all performances of the criteria are represented by crisp numbers. The application of the fuzzy set
theory in the field of decision making is justified when the intended goals or their attainment cannot be defined or

judged crisply but only as fuzzy sets.

2. PRELIMINARIES
In this section, some basic notations of fuzzy integral equations and the concept of generalized

differentiability were provided.

DEFINITION 2.1: A fuzzy number is a fuzzy set U : R — R- =[0,1] which satisfies

(i) u isnormal, i.e., there exist t; € Rsuch that U(to) =1,

(if) u isfuzzy convex, i.e., there exist

u(At +(@1- A;)) 2 ut) ut)forany t,t, R, S e[04],

(iii) u is upper semi-continuous,
Gv) [u]’ =cl {t € R|u(t) > O}is compact
The space of fuzzy numbers is denoted by R . Obviously R < R

DEFINITION 2.2: A fuzzy numberu is a pair (U,U)of functions u(r) and u(r) 0<r <1, which satisfy the

following conditions are

(i) u(r) is a bounded monotonically increasing, left continuous function on (0,1] and right continuous at 0,
(i) u(r)is a bounded monotonically increasing, left continuous function on (0,1] and right continuous at 0,

Gii) u(r)<u(r),0<r<1.
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DEFINITION 2.3: If u,v e R. and if there exist a fuzzy number w e R such that U =V + W, then w is called
the H-difference of U,V and it is denoted by u © v.

Now, " © " stands for the H-difference and let us remark that u © v # u + (—1)v. Usually we denote u +
(—1)v by u — v stands for the H-difference.

If u,veR, the distance between u and v is defined by

D(u,Vv) = sup max{| u(r) —v(r) |,|G(r) —\_/(r) [}. (Re.D)is a complete metric space and the following properties
<1

o<r

are
D(u+w,v+w)=D(u,v), Vu,v,wE€ R,
D(k®Ou,k®v) = |k|D(u,v), Vk € R,u,v € R,
Dlu+w,v+e) <Dww)+D(v,e), Yu,v,w,e € R,
In this paper, for the integral concept, we will use the fuzzy Riemann integral and also if F:[a,b] > Rc,be

integrable fuzzy function and denote [F (t; )] = [E(t; 1), F(t:")]. Then the boundary functions F(t;r) and F(t:r) are

inegrale and | [ F(6nat] <[ [ E@nete, [ Fendt], r <o,

DEFINITION 2.4: A function F : (a,b) — R, is called H-differentiable att, < (a,b) if for h > 0 sufficiently small

there exist the H-differences F (to + h) © F(ty), F(ty) © F(to — h)and anelement F'(t,) e R, such that
lim D (w’p'(to)> = lim D (w,F'(to)) =0.
h-0t h h—-o0t h

Then F'(t,) is called the fuzzy derivative of F at t,.

DEFINITION 2.5: Let F:(a,b) » R.andt, e (a,b) . We say F is generalized differentiable at t , if there exist
an element F'(t,) € R, such that:
(1) forall h > Osufficiently small, there exist F (t, + h) © F(ty), F(ty) © F(t, — h)and the limits (in

the metric D)

lim F(to+h)OF(ty) — lim F(to)OF(to—h)

T
Jm N Jm =F (to)(or)

(2) for all h> Osufficiently small, thereexistF (ty) © F(t, — h), F(ty + h) © F(ty), and the limits
(in the metric D)

ETIST 2021
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lim F(to)OF (to+h) _ lim F(to—h)OF(to)

= F'(ty),
h—-0 -h h-0 -h ( 0)

(h and —h at denominator mean %and - % respectively).
DEFINITION 2.6: Let F : (a,b) — R, be a fuzzy function and [F (t)]" =[F (t; r), F(t;r)] for each r e[0].

(i) If F is (1)-differentiable then F_ and F . are differentiable functions and [D,F (t)]" =[F'(t;r), F'(t;1)].

(i) If F is (2)-differentiable then F and F, are differentiable functions and [D,F (t)]" =[F'(t;r), F'(t;1)].

DEFINITION 2.7: Let F:[ab]— R., for each partition P:{to,tl,._,,tn} of [a,b] and for arbitrary

& elt,5;],1<i<n suppose

R = Zn:F(f)(ti —tig) A=max{lt -t |i=1...n}

The definite integral of F (t) over [a,b]is
b
!F(t)dt = lim R,

provide that this limit exists in the metric D [14,15]. If the fuzzy function F(t) Is continuous in the metric D, its

definite integral exists [15]. Also,

U F(t; r)dtJ = T F(t;r)dt, U F(t; r)dtJ = TE(t; r)dt.

3. FVIDE UNDER GENERALIZED DIFFERENTIABILITY

In this section, the concept of generalized differentiability was employed to convert fuzzy Volterraintegro-
differential equations in to a system of Volterraintegro-differential equations.
Let us consider the linear FVIDE of the form
Y =fEy®)+ 2] ot yE)ds, ted, O
y(t) = Yo,
where 2 >0, f(t, y(t)) is continuous fuzzy function (f e C(J xR., R;)) on the interval
J(J €[a,b]), g(t,s, y(s)) is an arbitrary kernel function (g e C(I xR.,R.))over | ={(t,s)eJxJ:a<s<t<b}

andx, e R,
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The parametric form of f(t,y(t)), y'(t) and g(t,s,y(s)) are given as (fl(t,X(t;r),gl(t;r)),

f, (t,)_/(t;r),gl(t;r))), (y't;r), y'@:r)and (g,(t,s, y(s;r), y(s;r)), 9,(t. s, y(s;r), y(s;r))) (we assume that the

function g takes the formg(t,s, y(s)) = K(t,s)G(y(s)) so based on this FVIDE Eq (1) can be written in a new
discretized form as y'(t) = f(t, y(t))+J-tK(t,s)G(y(s))ds in which the r-cut representation form of G(y(s))

should be of the form [G(y(s))]" =[G, (y(s; ), y(s; ), G, (y(s; 1), y(s;r)]) 0<r<land a<t<h.

DEFINITION 3.1: Let y:J — R,, such that D,yand D,yexists. If yand D,y satisfy FVIDE (Eq (1)) we say

that y is a (1)-differentiable of FVIDE (Eq (1)). Similarly, y and D,y satisfy FVIDE (Eq (1)) we say that y is a (2)-
differentiable of FVIDE (Eq (1)).

(1) By using the generalized differentiability concept we convert the FVIDE into the system of VIDE as
follows.

If x(t)is (1)-differentiable, then D, y(t;r) :[x’(t;r),y(t;r)] and Eq (1) translates into the following system
of VIDE
YN = L YEN,YEN) +A] 6,65, y(sin), y(sin)ds
=U, (6 y(®), YO) + 2] V, 6.5, y(5), Y(5))ds,
yt) =Y, 2
Y(t:n) = Ly, yG )+ A[ 6,5, y(sir), y(sir)ds
=U, (1, y(0), X(0) + 2] V, (t.5, y(5), Y(s)ds,
Y(to) = Yo,
where
K(t.5)G,(y(5). Y(5)). K(t,5) >0,

V,(t,5,y(s), Y(s)) = g
K(t,s)G,(y(s), y(s)), K(t,s) <0,

and

K(t,9)G,(y(s), y(s)). K(t,s) >0,

V,(t,s,Y(5), Y(s)) = -
K(t,8)G,(y(s), y(s)), K(t,s) <0.

(1) If x(t)is (2)-differentiable, then D,y(t;r) :[V(t;r),x’(t;r)] and Eq (1) translates into the following
system of VIDE
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Y0 = £ yEn,yEN) + A[ 0,5 y(s:), y(s:r)ds
=U, (L y(®), YO) + A V, (6.5, y(5), Y(s))ds,
X(to)=XO1 3
V(0 = L yEn YEN) + ] 6,5 y(sir), y(s:0)ds
=U, (YO, YO)+ 2] Vi(t,5, y(5), Y(s))ds,
y(to):yw
where
_ K(t,5)G,(y(s), y(s)), K(t,5) >0,
Vi(t,s,y(s), ¥()) = =
- {K(t, $)G,(y(s), ¥(s)), K(t,5) <O,

and

- K(t,5)G,(y(s), y(s)). K(t,s) >0,
V,(t,s,y(s), y(s)) = v(s) v
(ts,y(s), y(s)) {K(t,s)Gz(z(S)yy(s))v K(t,s) <0.

foreach a<t<h.

THEOREM 3.2: Consider the FVIDE Eq(1) where f : J xR, — R, g:JxJxR. — R, are such that
() [F Gy =Lf &y ), yt:n), f @ y:n), y; n)l,
[9(t,s, YO =[g(t,s, y(s;r), y(s: 1), g(t. s, y(s; 1), y(s; )],
(i) f(t: r), f(t:r)and [ r), g(t; r) are equicontinuous functions,
(iii) thereexist L ,L,,L,,L, > 0are real constants
| f(tu(t;r),uct;n)— f (v n),vt;n) < L max{utr) -v;n Lur) -vie ) |3,
| F(tuctn),ut;n) - f (v, vit;n) < Lmax{ut; ) —v(t; r) L ut;r) —v(t;r) 3,
| g(t,s,u(s;r),u(s; ) = g(t,s,u(s;1), V(s; 1)) < Lymaxf u(s; r) —v(s;r) |, u(s; 1) —v(s; 1) [},
| g(t,s,u(s;r),u(s;n) = g(t.s,v(s; 1), v(s; 1) < L, max{lu(s;r) —v(s;r) |, u(s; r) —v(s;r) [},
foreach t,s,e J, r e[0,2]and u(t),v(t), u(s),v(s) € R. - Then for (1)-differentiability, the FVIDE Eq (1) and

the system of VIDE Eq (2) are equivalent and in (2)-differentiability, the FVIDE Eq (1) and the system of VIDE
Eq (3) are equivalent.
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4. RUNGE-KUTTA METHOD FOR FVIDE UNDER GENERALIZED DIFFERENTIABILITY

The method of solving FVIDE by Runge-Kutta method of order four under generalized differentiability

was developed in this section in detail.

LEMMA 4.1: Eq (1) is equivalent to one of the following fuzzy integral equations
v =yo +(J. 15, ye)es+ 2] ([ g(s.uywpau Jos). tey,
or

Yo =y(t) + (=1 O (f f(5,¥())ds+2 [ ([ g(s.u,y(w))du)ds), te],

depending on the strongly differentiability considered (1)-differentiability or (2)-differentiability, respectively.

LEMMA 4.2: The FVIDE Eq (1) considered under generalized differentiability has locally two solutions, and the

successive iterations

YO =Y,  or yn+1(t>=yo+(ja‘f(s,yn(s»dsmg(jjg(s,u,yn(u»du,)ds), or

Y(® = Y0, Y1 (® =30 © (=D ([, £(5,30())ds+2 [ ([} 9(s.w ya(w)du)ds),

converge to the (1)-differentiability or (2)-differentiability, respectively.

The Runge-Kutta method for FVIDE under (1)-differentiability is given by the formula
elu,,, (0.0, 0]

Y (N=1y, (N+hYb, [F(t,+chu)+v+w]lve t,+ch;r),z, (t, +cih;r)], ,
—=n+ ——=n i1

4, (
€|z, (02,0 @

uely,, (0.0, 0]
PROE Yln(r)+hzm:bi[Fz(tn+cih,u)+v+WJVe[z (t,+ch;r),z, (tn+cih;r)] :

we|Zy (10.2,,(0]

where
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uel U, (r)Uan(r)J
U, (0D=1% (r)+h2a[ (L, +Chu)+V+W:|V€ 7 (t

v
i)z, (tn+cjh;r)] :
we(z, (0.2,,(0]

ue|U,, (), LTln,-(r)]

—=n,]

U, (r= Zn(r)+hzm:aij[ F(t,+chu)+vew]ve| z (t+chir),z, (t,+c;h; r)] :
=

n n

[
we[ o zln,(r)]

Z,, (0= {hieuvl (t, +dshss, +c,—h,u)\u c [Lﬁn,j(r),tin,j(r)]},

Z,,(n= {hiei,-vz (t, +djh,s, +c,—h,u)\u elY;, (N, (r)]},

k-

ﬁn(tn +cjh;r):{h

LN

ibivl(yn +c;h,y; +cih,u)

-0 i=1

u e[lﬁj’i(r),u_lj,i(r)]}f

= o

M-

Il
N

J
K-

bY, (¥, +¢;h,y; +ch,u)

z_ln(tn+cjh;r):{h u e[Lﬁjyi(r),U_ljyi(r)]}

(Vi=1...,m).
Similarly, the Runge-Kutta method for FVIDE under (2)-differentiability is given by the formula
uelu,, .(r>,u_2n,i<r>]
Yo (=1, (N)+hY b [F,(t, +chu)+v+w] Ve[ (t,+ch; 1), 2,, (L, +ch; r)] ,
—N+ —n o1

we|z, (0.Z,,,(0] ©)

j=0

ue [ 2, (r) Uan(r
POE y_Zn(r)+th:bi[F +ch, u)+V+W]V€|:ZZ (t,+ch;r),z,, (t, +cih;r)], :
we|Z, (0.Z;,0)]

where
ue[ U, 0.0,,0]
U, (D=1Y, (r)+h2a[  (t, +chu)+v+w}v [z_zn(tn+cjh;r),Zn(tn+c,-h;r)], :

we|Z, (0.Z;,,(0]
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uelU, (00,0,
U_Zn_i(r): y_ZH(r)+th:aij[Fl(tn+cjh,u)+v+WJVG[Z_zn(tn+cjh;r),Zn(tn+cjh;r)] ,

u e[tﬁn,j(r),@n,j(r)}},

z, () :{hzm:eijvz (t, +d;h,s, +c;hu)
, <

Z,..(n) ={hieijvl(tn +d,h,s, +chu)lu e[tﬁn'j(r),@m(r)}},

k-1 m

2, (t,+¢;hir) :{hZZbivz(xn +¢;h, X, +¢h,u)

=0 i=1

oo, 00,0

k-1 m

z,.(t, +¢;h;r) :{hZZbiVl(xn +¢;h, X, +¢h,u)

j=0 i=1

uelu, j,i(r>,u2j,i(r)}},
(Vi=1,...,m).
We assumec, = ZLaH (i=1...,m) andd; >c; whenever g; = 0 to ensure that the argumentv,,V,
inEq (4) and (5) are in the domain V,,V,. The constantsc;,b;, a; ,e; in explicit Runge-Kutta method of order four

M = 4 for FVIDE which satisfy &; = €; are given by

1
18’

1 1 1 4
¢, =0, :Elcazz’cz: =la,=a, =a; =23, =23, :a44:0,a21:§,a31:§,832 =

and we have Runge-Kutta method of order four for FVIDE under generalized differentiability based on the

1 1 1 1
a43:1,b1=g,b2 =§:b3=§:b4=g

approximation ofﬁ(t; r), yl(t; r), &(t; r), y_z(t; I) and Eq (4) and (5) as follows,

for the (1)-differentiability

én,z(r) = {g|:vl[tn +g’sn +g’uj:|

Z_ln,z(r) = {g{vz (tn +2’Sn +g’ujj|

ue [Lﬁnyl(r),tin,l(r)]},

ue [tﬁnla),%,l(r)}},
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4
§[Fl(tn,u1)+vl+wl]+ u, |:
U

Zlns

= h
(N =9x,+ .

18

4
§[F2(t”’ul)+V1+W1]+

U_ln,s(r) = ;n +h

1 {F t 4N 2)+V2+W2} w e[z, (1).Z,,,(N]w, €[Z,
118 2’
4
SVilty )+ u eV, (0.0,,0)],
énz(r): h 1 h
_Evl(tn+ S, +— ,u,) [|U E[U (r)fuln,z(r)j|
. V (tn’ n’ 1)+ u1€|: (r)’LTln,l(r):la
Z,,5(r)=4h h h _ ,
_1 V (t S +E Uz) u €|: (r)’Uln,Z(r):|
Lﬁw(r) = {gn +h :Fl(tn +2,U)+V3 +W:| ue [lﬁnvs(r),LTlM(r)]WG [énvs(r),z_ms(r)J},
U,,,(= {;n +h :Fz(tn L0y, +w} uelU, (0.0, |we [gnvg(rxz_m,s(r)}},
128

_‘:Fl(tn +2,U2)+V2 +W2j| w, e[é

U, e[lﬁ

€ lﬁn,l(r)’u_ln,l(r)]uz E[lﬁ
n,1(r)’z_ln,1(r)]W2 € [é

n,1(r)’U_ln,1(r)]v u, e [li

n,2 (r)’LTln,z(r):

n,2 (r)’ Z_ln,z(r):

n,2 (r)’ LT1n,2 (r)],
n,2 (r)’ Z_ln,z (r)]
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I h h _
Z, (= {h _vl (tn +215, +E,uﬂ ue [lﬁna(r),uln,g(r)}},

Z,,,(n= {h :vz (tn +g,sn +2,uﬂ ue [lﬁnys(r),LTlns(r)}},

vle[ﬁn(tn;r),z_ln(tn;r) [EV(tn, s, ), V(tn, L)

|-
o lotr)ifoots]

= 2—hvl(tn D D,u ,@V2 tn+ﬂ,sn+h,uj
2’ 2 3 2 2

Vv, € ﬁn(tﬁ; r), zln(t +— r)}

= hV(t h,Sn-l‘E,Uj,ﬂvz(tn-l‘n,Sn—i—h uj
| 18 2 2 18 2 2

v, € ﬁn(tn +h;r),z,, (t, +h; r)]

uelu 1n,3(r),tTln,3(r)ﬂ,

= %Vl(tn +h,s, + h,u),%Vz(tn +h,s, +h,u)

ue [tﬁﬂ(r)ﬂw(r)ﬂ
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u e[y (00,0 v e[u, ,0.0;,,0],
U e|U,, (00,40 u €[ Uy, (0.0, ],

h _
A +_[F1(tn,u1)+vl +W, | v, e [ﬁn(tn; N,z (t,; r)]

2h h —
3 {F(t +2 2)+v2+W2} V, € ﬁn(tnjtg;rj,zln(tnvtg;rﬂ,

ﬁnﬁ.(t;r) - h - i
+E[F1(tn,u3)+v3+ws] v, e ﬁn(tn;r),zln(tn;r)]
+£[F1(tn +h,u,) +v, +Ww,] v, €|z (G +hir)z,, (€ +h r)},
w ez, (0.2,,00]|w e[, (02,0
we[2 Ot [ 2, 0.2,
u e Lﬁm(r),u_ln‘l(r)]u2 e [Lﬁn’z(r),u_ln’z(r)]
i w e[y, (005,00 v €Uy, 0.0,.00],
Yin +§[F2(t”’u1)+vl+wl] v, € :ﬁn(tn;r),z_ln(tn;r)]
2h h r _
_ +?{F2 (tn +E'u2j+vz +W2:| vV, el Z (tn +D;rj, Zln(tn +E;rj:|'
. _ —n 2 2
y1n+1(t’r) - h - .
+E[Fz(tn,u3)+v3 +W3] v, € _ﬂn(tni r),z,,(t,; r)},
+%[F2(tn +hu,)+v, +w, ] v, €|z (L, +hir), 2, (@ +h; r)],

[z (1), zlnl(r)]w{ (), zm(r)}
W, e [ (), zm(r)]wG[ (0, zm(r)]

for the (2) differentiability
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U, 0 ={uluely, (t:in).y, (i)} Un ) ={uluely, (tir).y, ()]}

Z,,,(N=0, Z,,(nN=0
U, (= {Xn+g[F(t U)+V, + W] uG[LﬁM(r),LTm(r)} WG[éM(r),z_hyl(r)J},
0rre)={ 3, ARG+ v wllu e[V, 00,0 we[ 2, 0.2,0])
énvz(r)z{g{vz(tﬁg sn+— uﬂ U€|: 2, (r) Um(r)}}
h h
ZZn,Z(r)z{E[Vl(tn 2 S, ﬂ'ue[ 2, (I’) U2nl(r):|}
§[F2(tn-u1)+vl+wl] b e[ Uy, (00,0 |, €U, (00,00
U, O={x+n " 0 _ T
_+E[F2(tn+§,u2)+v2+wzl e[z, 0.2, w e[ 2, (0.Z,,,0)]
B o GlRGw v rw] welU,, 0.0,,0] v ey, 0.0,,0]
Uzpa(r)=1¥,+h| = " - - ,
_+E{F (5 .0)+, +W21 we| 2, (0.2, | w €[ 2, ,(0,2,,00]
Y B
gVt Sp ) ule[U (r)Uzhl(r)}
z, (N=1n
Z2,, ivz(tn+ j uze[ r) UZHZ(I‘)}
18
4
_ g Vit snt) u e[V, (0.0;,,00],
Zppa( =10~
T vl(n juze[uz 0.0,
18
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" uelU,, (0.0,,,(0),
U, ,(N=qy +h Fz(tn+z,uj+v3+w o
, We[ényg(r),zm(r)

}
}
U, (1) = §/n+hF{tﬁg,ujﬂﬁw}uE[&n,g(r),Uzn,g(r? |

e|2,,,(0,Z:,0)
z (r):{h[v € +Ds 0 U):|UE|: (N0, (r)}}
“2n4 2\ 2 2 2n,3

_ h  h
Zzh,Ll(r):{h[Vz(thr2 S, +§ u)}

UG[ (), U2n3(r)}}

[gv (t,.s,,u), V(tn, S, U)

VE[Z (t,;r), ZZn(t r)

v, € _zzn(tn +h; r),z_2n(tn +h; r)}
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UE[ (), U2n2(r)ﬂ

uelu, nvs(r),tTm(r)ﬂ,

_ %vz(tn+h,sn+h,u),gv1(tn+h,sn+h,u)|ue[tﬁﬂ(r),LTm(r)]}
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U e Lﬁnl(r),u_m(r)]u2 e[lﬁnz(r),u_mz(r)]
uelu (r)U2n3(r)} u, e[ (r)um(r)]

h
Ys. +§[F2(tn,u1)+v1+W1] v, e[én(tn;r),z“(tn;r)],

2h h i _
+?{F2(tn+§’uz)+vz+wz:| v, €| Z, (tﬁh;r),z“(tﬁn;rﬂ,
hnﬂ(t; r) = —_n 2 2

+%[F2(tn,u3)+v3+w3] v, € z_zn(tn;r),zn(tn;r)]

Vv

V€| 2, G0, 2, (8 + i) |,
ez, (02,0 ] w e 2, ,(0.2,,,00]
welZ, (02,0 ]w ez, (0.2,,.0]

+%[F2(tn +h,u)+v, +w, ]

c

€|V, 00,0 ] u, e U, (0.0;,,0],
uae[ r)u“s(r)]uE[ (r)UZM(r)J
welz

— h
Y +§[Fl(tn,u1)+vl+wl]

vel 2, i 2, i) .

2h h h — h
+?{Fl(tn +E,u2j+v2+Wz} V, € _ﬁn (tn +§;rj'zz”(t” +§;rﬂ,

y_2n+l(t;r): h - -
+E[F1(tn’u3)+vs+w3] Vs € ﬁn(tn;r),z“(tn;r)]

l v, € _zz (tn+h;r),Zn(tn +h;r)]
welZ, (02,0 | we| 2, (0.2,,00]
we|Z, (10.Z,,0) | w2, ,(0.2,,,00]

+2[Fl(tn +hu,)+v, +w,

5. NUMERICAL EXAMPLES
This section illustrates the Runge-Kutta method of fourth order under generalized differentiability which was

proposed in previous section to solve FVIDE.

EXAMPLE 5.1
Consider the linear FVIDE
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y(t:r) = y(s:r)ds,

t€[0,1],

y(O;r)=(4+2r,10-4r), re[0,1].

The exact solution of the problem (8) are:

is the (1)-differentiable solution and

is the (2)-differentiable solution.

Yi(tr) =] (4+2r)((e " +€')/2),(10—4r)((e" +€)/2) ],

y,(t;r) = [(4+ 2r)(—(e™ +€")/2),A0-4r)(—(e " +e")/ 2)],

To find the approximate solutions, we divide | into N=10 equally spaced subintervals and apply Runge-

Kutta method of order four. The comparison of solutions att=0.1. is shown in the following Figures and Tables.

Table 1

Approximate value for (1)-differentiable solutions at t=0

FVIDE RK2 FVIDE RK4 Exact
" n@n) [nEn @0 e | e | e
0.0 4.0000 1.0000 4.0000 1.0000 4.0000 1.0000
0.1 4.2000 9.6000 4.2000 9.6000 4.2000 9.6000
0.2 4.4000 9.2000 4.4000 9.2000 4.4000 9.2000
0.3 4.6000 8.8000 4.6000 8.8000 4.6000 8.8000
0.4 4.8000 8.4000 4.8000 8.4000 4.8000 8.4000
0.5 5.0000 8.0000 5.0000 8.0000 5.0000 8.0000
0.6 5.2000 7.6000 5.2000 7.6000 5.2000 7.6000
0.7 5.4000 7.2000 5.4000 7.2000 5.4000 7.2000
0.8 5.6000 6.8000 5.6000 6.8000 5.6000 6.8000
0.9 5.8000 6.4000 5.8000 6.4000 5.8000 6.4000
1.0 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000
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Error in (1)-differentiable solutions at t=0

Error RK2

Error RK4

yi(t;7)

y1(t;7)

yi(t;7)

y1(t;T)

0.0

6.0000360235790100E-10

1.5000107822515900E-09

3.9506442561787500E-10

9.8765973177705800E-10

0.1

6.3000449301853200E-10

1.4400090009303300E-09

4.1481751367200600E-10

9.4815355566879600E-10

0.2

6.6000449550074300E-10

1.3800089959659100E-09

4.3457060172613600E-10

9.0864737956053400E-10

0.3

6.9000449798295500E-10

1.3200089910014900E-09

4.5432368978026700E-10

8.6914120345227300E-10

0.4

7.2000450046516600E-10

1.2600089860370600E-09

4.7407677783439800E-10

8.2963502734401100E-10

0.5

7.5000539112579700E-10

1.2000072047158000E-09

4.9382986588852900E-10

7.9012885123575000E-10

0.6

7.8000539360800800E-10

1.1400071997513800E-09

5.1358295394266000E-10

7.5062178694906800E-10

0.7

8.1000539609021900E-10

1.0800071947869600E-09

5.3333604199679000E-10

7.1111561084080700E-10

0.8

8.4000539857243000E-10

1.0200071898225400E-09

5.5309001822934100E-10

6.7160854655412600E-10

0.9

8.7000540105464100E-10

9.6000629667969400E-10

5.7284310628347200E-10

6.3210237044586400E-10

1.0

9.0000629171527200E-10

9.0000629171527200E-10

5.9259619433760200E-10

5.9259619433760200E-10

Figure 1: The exact and approximate (1)-differentiable solutions of FVIDE by Runge-Kutta method of order 4.

Table 3

Approximate value for (2)-differentiable solutions at t=0
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FVIDE Exact Exact
r p— p— p—
Y2(67) | (1) | Y2(6T) | yp(tsr) | Y2(67) | yy(t57)

0.0 | -4.0000 -1.0000 -4.0000 -1.0000 -4.0000 | -1.0000

0.1 | -4.2000 -9.6000 -4.2000 -9.6000 4.2000 -9.6000

0.2 | -4.4000 -9.2000 -4.4000 -9.2000 4.4000 -9.2000

0.3 | -4.6000 -8.8000 -4.6000 -8.8000 -4.6000 | -8.8000

s0.4 | -4.8000 -8.4000 -4.8000 -8.4000 -4.8000 | -8.4000

0.5 | -5.0000 -8.0000 -5.0000 -8.0000 -5.0000 | -8.0000

0.6 | -5.2000 -7.6000 -5.2000 -7.6000 -5.2000 | -7.6000

0.7 | -5.4000 -7.2000 -5.4000 -7.2000 -5.4000 | -7.2000

0.8 | -5.6000 -6.8000 -5.6000 -6.8000 -5.6000 | -6.8000

0.9 | -5.8000 -6.4000 -5.8000 -6.4000 -5.8000 | -6.4000

1.0 | -6.0000 -6.0000 -6.0000 -6.0000 -6.0000 | -6.0000

Table 4
Error in (2)-differentiable solutions at t=0
Error RK2 Error RK4
R p— p—
y2(t;7) V2 (&;7) y2(t;7) Va2 (t; 1)

0.0 | 9.0000717989369200E-10 | 1.2000072047158000E-09 | 9.8765973177705800E-10 | 3.9506353743945500E-10
0.1 | 9.0000717989369200E-10 | 1.1700063140551700E-09 | 9.4815355566879600E-10 | 4.1481662549358600E-10
0.2 | 9.0000717989369200E-10 | 1.1400071997513800E-09 | 9.0864737956053400E-10 | 4.3456971354771700E-10
0.3 | 9.0000629171527200E-10 | 1.1100063090907500E-09 | 8.6914120345227300E-10 | 4.5432280160184700E-10
0.4 | 9.0000629171527200E-10 | 1.0800071947869600E-09 | 8.2963413916559200E-10 | 4.7407766601281800E-10
0.5 | 9.0000629171527200E-10 | 1.0500063041263300E-09 | 7.9012796305733000E-10 | 4.9383075406694800E-10
0.6 | 9.0000629171527200E-10 | 1.0200063016441200E-09 | 7.5062178694906800E-10 | 5.1358295394266000E-10
0.7 | 9.0000629171527200E-10 | 9.9000629916190500E-10 | 7.1111561084080700E-10 | 5.3333604199679000E-10
0.8 | 9.0000629171527200E-10 | 9.6000629667969400E-10 | 6.7160854655412600E-10 | 5.5309001822934100E-10
0.9 | 9.0000629171527200E-10 | 9.3000629419748300E-10 | 6.3210237044586400E-10 | 5.7284310628347200E-10
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1.0

- Exact
o RK2
081 RK-4
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Figure 2: The exact and approximate (2)-differentiable solutions of FVIDE by Runge-Kutta method of order 4.

EXAMPLE 5.2
Consider the linear FVIDE

YN =[ ysnds,  te {o%

y(0;r)=(@2+0.5r,2-0.5r), ref0,1]. (g

The exact solution of the problem (9) are:
. 3 3 —t t 3 3 ~t t
y,(t;r) = cos(t)(1+0.5r)—Ecos(t)+z(e +e), cos(t)(2—0.5r)—5cos(t)+Z(e +e’) |,
is the (1)-differentiable solution andss
y,(tr) = [—cos(t)(1+ 0.5r) —gcos(t) Jr%(e’t +e'), —cos(t)(2—-0.5r) —gcos(t) Jrg(e’t +e‘)]

is the (2)-differentiable solution.

To find the approximate solutions, we divide | into N=10 equally spaced subintervals and apply Runge-

Kutta method of order four. The comparison of solutions at t=0.1 is shown in the following Figures and Tables.

Table 5
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Approximate value for (1)-differentiable solutions at t=0

FVIDE Exact Exact
RGO CRIRCRIZCRIFACRIEZCL
0.0 1.0000 2.0000 1.0000 2.0000 1.0000 2.0000
0.1 1.0500 1.9500 1.0500 1.9500 1.0500 1.9500
0.2 | 1.1000 1.9000 1.1000 1.9000 1.1000 1.9000
0.3 | 1.1500 1.8500 1.1500 1.8500 1.1500 1.8500
0.4 | 1.2000 1.8000 1.2000 1.8000 1.2000 1.8000
0.5 1.2500 1.7500 1.2500 1.7500 1.2500 1.7500
0.6 | 1.3000 1.7000 1.3000 1.7000 1.3000 1.7000
0.7 | 1.3500 1.6500 1.3500 1.6500 1.3500 1.6500
0.8 | 1.4000 1.6000 1.4000 1.6000 1.4000 1.6000
0.9 1.4500 1.5500 1.4500 1.5500 1.4500 1.5500
1.0 | 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000

Table 6
Error in (1)-differentiable solutions at t=0
Error RK2 Error RK4
r Yt ) (T y(tT) yi(t;1)

0.0

1.5000090058947500E-10

3.0000180117895100E-10

0.8766106404468700E-11

1.9753221280893700E-10

0.1

1.5750112325463300E-10

2.9250202260300300E-10

1.0370437841800100E-10

1.9259371875080000E-10

0.2

1.6500112387518600E-10

2.8500179993784500E-10

1.0864265043153400E-10

1.8765544673726700E-10

0.3

1.7250112449573900E-10

2.7750179931729200E-10

1.1358092244506700E-10

1.8271717472373400E-10

0.4

1.8000112511629100E-10

2.7000179869674000E-10

1.1851919445859900E-10

1.7777890271020200E-10

0.5

1.8750134778144900E-10

2.6250179807618700E-10

1.2345746647213200E-10

1.7284063069666900E-10

0.6

1.9500134840200200E-10

2.5500179745563400E-10

1.2839573848566500E-10

1.6790213663853100E-10

0.7

2.0250134902255500E-10

2.4750157479047600E-10

1.3333401049919800E-10

1.6296386462499900E-10

0.8

2.1000134964310700E-10

2.4000157416992400E-10

1.3827250455733500E-10

1.5802559261146600E-10

0.9

2.1750135026366000E-10

2.3250157354937100E-10

1.4321077657086800E-10

1.5308732059793300E-10

1.0

2.2500157292881800E-10

2.2500157292881800E-10

1.4814904858440100E-10

1.4814904858440100E-10
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¥t

Figure 3: The exact and approximate (1)-differentiable solutions of FVIDE by Runge-Kutta method of order 4.
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Table 7
Approximate value for (2)-differentiable solutions at t=0
FVIDE Exact Exact
D [HEn [ 260 [7RED [ RED e
0.0 | -1.0000 | -2.0000 | -1.0000 | -2.0000 | -1.0000 | -2.0000
0.1 | -1.0500 | -1.9500 |-1.0500 | -1.9500 | -1.0500 | -1.9500
0.2 | -1.1000 |-1.9000 |-1.1000 |-1.9000 | -1.1000 | -1.9000
0.3 | -1.1500 | -1.8500 |-1.1500 |-1.8500 | -1.1500 | -1.8500
0.4 | -1.2000 | -1.8000 |-1.2000 |-1.8000 | -1.2000 | -1.8000
0.5 | -1.2500 | -1.7500 | -1.2500 | -1.7500 | -1.2500 | -1.7500
0.6 | -1.3000 | -1.7000 |-1.3000 |-1.7000 | -1.3000 | -1.7000
0.7 | -1.3500 | -1.6500 | -1.3500 |-1.6500 | -1.3500 | -1.6500
0.8 | -1.4000 | -1.6000 | -1.4000 |-1.6000 | -1.4000 | -1.6000
0.9 | -1.4500 -1.5500 -1.4500 -1.5500 -1.4500 -1.5500
1.0 | -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000
Table 8
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Error in (2)-differentiable solutions at t=0

Error RK2

Error RK4

Y2(t;7)

V2 (t;1)

Y2(t;7)

V2 (t; 1)

0.0

2.5000157499732700E-10

2.0000134881570400E-10

1.9753199076433200E-10

9.8765884359863800E-11

0.1

2.4750157479047600E-10

2.0250157106716000E-10

1.9259371875080000E-10

1.0370437841800100E-10

0.2

2.4500157458362500E-10

2.0500157127401100E-10

1.8765544673726700E-10

1.0864265043153400E-10

0.3

2.4250157437677400E-10

2.0750157148086100E-10

1.8271717472373400E-10

1.1358092244506700E-10

0.4

2.4000157416992400E-10

2.1000157168771200E-10

1.7777890271020200E-10

1.1851919445859900E-10

0.5

2.3750157396307300E-10

2.1250157189456300E-10

1.7284063069666900E-10

1.2345746647213200E-10

0.6

2.3500157375622200E-10

2.1500157210141400E-10

1.6790213663853100E-10

1.2839573848566500E-10

0.7

2.3250157354937100E-10

2.1750157230826500E-10

1.6296386462499900E-10

1.3333401049919800E-10

0.8

2.3000157334252000E-10

2.2000157251511600E-10

1.5802559261146600E-10

1.3827250455733500E-10

0.9

2.2750157313566900E-10

2.2250157272196700E-10

1.5308732059793300E-10

1.4321077657086800E-10

1.0

2.2500157292881800E-10

2.2500157292881800E-10

1.4814904858440100E-10

1.4814904858440100E-10

Figure 4:The exact and approximate (2)-differentiable solutions of FVIDE by Runge-Kutta method of order 4.

6.

CONCLUSION

In this paper we have used fourth order Runge-Kutta method for solving FVIDE under generalized

differentiability. From the examples provided in section 5, we see that the approximate solutions by Runge-Kutta

method of order four coincide with the exact solutions. This work which presents applicable model for improved
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approximation which suits the FVIDE theoretical findings with the real time applications. Higher order Runge-Kutta

methods will be considered in future work.
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