DEPARTMENT OF CHEMISTRY SYLLABUS 2018 - 2021

(OUTCOME BASED EDUCATION)

BOARD OF STUDIES 2018

I, II, III, IV, V & VI SEMESTER

NALLAMUTHU GOUNDER MAHALINGAM COLLEGE (AUTONOMOUS)

Re-Accredited with 'A' Grade by NAAC

An ISO 9001: 2008 Certified Institution

POLLACHI - 642 001

NGM College

Vision

Our dream is to make the college an institution of excellence at the national level by imparting quality education of global standards to make students academically superior, socially committed, ethically strong, spiritually evolved and culturally rich citizens to contribute to the holistic development of the self and society.

Mission

Training students to become role models in academic arena by strengthening infrastructure, upgrading curriculum, developing faculty, augmenting extension services and imparting quality education through an enlightened management and committed faculty who ensure knowledge transfer, instill research aptitude and infuse ethical and cultural values to transform students into disciplined citizens in order to improve quality of life.

DEPARTMENT OF CHEMISTRY

VISION

The Department of Chemistry aspires to be among the top in the nation by preparing the students in such a way that they are self reliant, highly informed and a better choice in the demanding and ever changing world.

MISSION

The teaching of Chemistry aims to: gear the students to be liberative, transformative and empowering the Learner and the Learned (Teacher)

Scheme of examination

		FIR	ST SEN	MESTE	R			
Course Code	PART	Course	Hrs / Week	Hours Exam	Max. Int.	Marks S.E	Total Marks	Credits
18UTL101	I	Tamil / Hindi paper – I	6	3	25	75	100	03
18UEN101	II	Applied English -I	5	3	25	75	100	03
18UCY101	III	Core Paper – I Inorganic and Organic chemistry	7	3	25	75	100	04
18UCY203		Core Practical- I Inorganic Qualitative Analysis	2			-		
18UCY1A1		Allied Mathematics Paper- I	8	3	25	75	100	04
18UHRI01		Skill Based Elective Human Rights in India	1	2		50	50	02
	IV							
18HEC101		HE – (Personal values &SKY Yoga practice -I)	1	2	25	25	50	01
	V	Extension Activities (NSS, NCC, Sports & Games						
				l	1		500	17

		SECOND SE	MESTE	R				
Course	PART	Course	Hrs/	Hrs/	Max.	Marks	Total	Credits
Code			Week	Exam	Int.	S.E	Marks	
18UTL202	I	Tamil paper – II/	6	3	25	75	100	03
		Hindi Paper II						
18UEN202	II	Applied English - II	5	3	25	75	100	03
18UCY202		Core Paper –II	6	3	25	75	100	04
		Organic and Physical						
	111	chemistry						
18UCY203	III	Core Practical- I	3	3	40	60	100	03
		Inorganic Qualitative Analysis						
18UCY2A2	-	Allied Mathematics Paper-II	8	3	25	75	100	04
18EVS201		Environmental studies	2	2		50	50	02
18HEC202	-	HE – (Family values & SKY	1	2	25	25	50	01
	IV	Yoga practice -II)						
	V	Extension Activities (NSS,		1	I	1	1	1
		NCC, Sports & Games						
	1	1					600	20

		THIRD SEM	ESTER					
Course	PART	Course	Hrs/	Hours	Ma	ax.	Total	Credits
Code			Week	Exam	Ma	rks		
					Int.	S.E		
18UTL303	I	Tamil paper/ Hindi Paper – III	5	3	25	75	100	03
18UEN303	II	English for Excellence-	6	3	25	75	100	03
		Paper - I						
18UCY304		Core Paper – III	6	3	25	75	100	04
		Inorganic and Physical						
		Chemistry						
18UCY406		Core Practical II Volumetric						
	III	and Organic Qualitative	3					
	111	Analysis						
18UCY3A1		Allied Physics Paper -I	5	3	25	75	100	04
18UCY4A3		Allied Physics Practical for	3					
		Mathematics and Chemistry	3					
18HEC303		HE – (Professional values &	1	2	25	25	50	01
		SKY Yoga practice –III)						
18UCY3N1/		Skill Based Non Major	1	2		50	50	02
18UCY3N2		Elective I						
		Food Science and						
	IV	Technology/						
		Skill Based Non Major						
		Elective I						
		Chemistry of Consumer						
		Products						
	V	Extension Activities (NSS,				ı		
		NCC, Sports & Games						
							500	17

		FOURTH SEM	MESTER					
Course		Course	Hrs /	Hours	M	ax.	Total	Credits
Code	PART		Week	Exam	Ma	rks		
					Int.	S.E		
18UTL404	I	Tamil Paper/ Hindi Paper IV	5	3	25	75	100	03
18UEN404	II	English for Excellence Paper -II	6	3	25	75	100	03
18UCY405	III	Core Paper – IV Inorganic, Organic and Physical Chemistry	6	3	25	75	100	04
18UCY406	III	Core Practical II Volumetric and Organic Qualitative Analysis	3	6	80	120	200	05
18UCY4A2	III	Allied Physics Paper - II	5	3	25	75	100	04
18UCY4A3	III	Allied Physics Practical for Mathematics and Chemistry	3	3	40	60	100	04
18HEC404	IV	HE – (Social Values & SKY Yoga practice -IV)	1	2	25	25	50	01
18UCY4N3/ 18UCY4N4	IV	Skill Based Non Major Elective II Water and Water Treatment Processes/ Skill Based Non Major Elective II Diagnostic Chemistry	1	2		50	50	02
18UNC401/ 18UNS402/ 18USG 403	V	Extension Activities- NCC/NSS/ Sports and Games				50	50	01
							850	27

		FIFTH SEM	ESTER					
Course		Course	Hrs /	Hrs/	Max.		Total	Credits
Code	PART		Week	Exam	Marks			
					Int.	S.E		
18UCY507		Core Paper – V	4	3	25	75	100	04
		Nuclear and Co-ordination						
		Chemistry						
18UCY508	1	Core Paper – VI	4	3	25	75	100	04
	111	Organic Chemistry- I						
18UCY509	III	Core Paper – VII	4	3	25	75	100	04
		Electro Chemistry						
18UCY510		Core Paper- VIII	4	3	25	75	100	05
		Dye Chemistry						
18UCY511	-	Core Elective I- Analytical	4	3	25	75	100	05
		Chemistry						
18UCY617	•	Core Practical III Gravimetric	6					
		Analysis and Physical						
		Chemistry						
18UCY5S1		Skill Based Elective -I	1	2		50	50	02
18001381		Food Chemistry/						
18UCY5S2		Skill Based Elective -I						
1800 1382	IV	Nano chemistry						
18GKL501		General Knowledge& General	SS	2		50	50	02
		Awareness						
18HEC505		HE – (National Values &	1	2	25	25	50	01
		SKY Yoga practice -V)						
	ı	1	I	L	ı	1	650	27

		SIXTH SEM	ESTER					
Course			Hrs/	Hrs/	Max.Marks		Total	Credits
Code	PART	Course	Week	Exam	Int.	S.E	1	
18UCY612		Core Paper – IX	4	3	25	75	100	05
		Physical Methods and Chemical						
		Structure						
18UCY613		Core Paper – X	4	3	25	75	100	04
		Organic Chemistry-II						
18UCY614		Core Paper – XI	4	3	25	75	100	05
		Chemical Kinetics and Photo						
		Chemistry						
18UCY615	III	Core Elective II- Polymer	4	3	25	75	100	05
	111	Chemistry						
18UCY616		Project work	6	-	25	75	100	05
18UCY617	1	Core Practical III Gravimetric	6	6	80	120	200	05
		Analysis and Physical Chemistry						
		Skill Based Elective -II	1	2		50	50	02
18UCY6S3/		Green chemistry /						
18UCY6S4		Skill Based Elective -II						
		Clean energy						
18HEC606		HE – (Global values & SKY	1	2	25	25	50	01
		Yoga practice -VI)						
	-						800	32
		GRAND TOTAL	•				3900	140

Bloom's Taxonomy Based Assessment Pattern

K1-Remember; K2- Understanding; K3- Apply; K4-Analyze; K5- Evaluate

1. Theory: 75 Marks Part- I, II, III

(i) TEST- I & II and ESE:

Knowledge Level	Section	Marks	Description	Total
K1	A(Answer all)	10x1=10	MCQ/Define	
K2	B (Either or pattern)	5x5=25	Short Answers	
K3& K4	C(Answer 4 out of 6 and Question No. 16 is compulsory, 17-21	4x10=40	Descriptive/ Detailed	75
	Answer any Three)			

2. Theory: 50 Marks Part - IV

Knowledge Level	Section	Marks	Description	Total
K1	A(Answer all)	10x1=10	MCQ/Define	
K2	B (Answer 5 out of	5 x 8 =40	Descriptive/ Detailed	50
K3& K4	8)		_	

3. Practical Examinations Part – III (D1 Core & Allied Practicals)

Knowledge	Section	Marks	Total
Level			
K3	Practicals &	60	
K4	Record work	40	100
K5			

4. Practical Examinations Part – III (D2 & D3 Core Practicals)

Knowledge	Section	Marks	Total
Level			
K3	Practicals &	120	
K4	Record work	80	200
K5			

5. Project Part – III (D3 Core Paper)

Knowledge	Section	Marks	Total
Level			
K3	Project &	60	
K4	Dissertation	40	100
K5			

Components of Continuous Assessment

Compo	nents	Calculation	CIA Total
Test 1	75	75+75+25	
Test 2	75	7	25
Assignment/Seminar	25	,	

Components of Continuous Assessment (D3 & D2 Core Practicals)

Components		Calculation	CIA Total
Model	40		
Skilled	20	40+20+20	80
Record	20		

Components of Continuous Assessment (D1 & Allied Practicals)

Components		Calculation	CIA Total
Model	20		
Skilled	10	20+10+10	40
Record	10		

Programme Outcomes

The students will be able to

PO1 Demonstrate the in-depth knowledge and understanding the scientific principles in chemical science

PO2 Think intellectually, display professional and practical skills in their career and communicate effectively to the team or society

Programme Specific Outcomes

On successful completion of the programme, the students will be able to

PSO1 have adequate knowledge in the main areas of chemical sciences

PSO2 understand the underlying principles in every experiment and able to design, carry out, record and analyze the results of chemical experiments carried out in the laboratory

PSO3 develop critical thinking, problem solving ability and effective communication both written and oral

PSO4 gain exposure and ideas in frontier areas of chemical research

PSO5 achieve employability in chemical related industries and as academicians

HOD- Chemistry

Dr.M. Durairaju

Dr. R. Muthukumaran (Controller of Examinations)

(CDC-Co-ordinator)

Programme	B.Sc.	Programme Title :	CHEMISTRY	
code:				
Course Code:	18UCY101	Title	Batch:	2018-2021
		Core Paper – I	Semester	I
Hrs/Week:	6	Inorganic and Organic Chemistry	Credits:	4

To enable the students to

- > understand basic theoretical concepts on chemical bonding and hybridization
- > acquire knowledge on the mechanistic pathway of aliphatic nucleophilic substitutions and aromatic electrophilic substitutions in organic reactions
- > gain knowledge on aromaticity

Course Outcome

On the successful completion of the course, students will be able to

Knowledge	CO	CO Statement	
Level	Number		
K4	CO1	interpret the types of chemical bonding present in molecules	
K2	CO2	deduce the geometry of the molecules	
K2,K3	CO3	understand and apply the concepts in determining the mechanisms of	
		aliphatic nucleophilic substitution reactions	
K3, K4	CO4	apply and interpret the factors affecting in determining the	
		orientation and reactivity of substituted benzene	

Unit	Content	Hrs
I	Long form of Periodic Table: Main features advantages and defects.	19
	Periodic properties of elements.	
	Chemical bonding: Variable electrovalency - pseudo inert gas	
	configuration-inert pair effect. Ionic Bonding-Conditions for the	
	formation of an ionic compound. Characteristics of ionic	
	compounds. Crystal lattice energy and its determination by Born-	
	Haber Cycle.	
	Covalent Bonding: Lewis – Langmuir concept. Octet rule.	
	Characteristics of covalent compounds. Partial ionic character in	
	covalent bond Fajan's rules & its application in explaining	
	properties like melting points and solubility.	
	Co-ordinate covalent bonding: Characteristics.	
	Hydrogen bonding-types-application of concept of hydrogen	
	bonding -melting and boiling points of hydrides of Nitrogen,	
	Oxygen and Fluoride, Lesser density of ice.	
II	Concept of Hybridization: sp, sp ² and sp ³ with reference to C ₂ H ₂ ,	18
	C ₂ H ₄ and CH ₄ . Application of VSEPR Theory to BeCl ₂ , BCl ₃ , H ₂ O,	
	NH ₃ , CH ₄ , PCl ₅ and SF ₆ molecules.	
	Molecular Orbital Theory: Symmetry of molecular orbitals.	
	Application to simple Homonuclear and Heteronuclear molecules -	
	H ₂ , He ₂ , O ₂ , F ₂ , N ₂ , CO and NO. Bond order and magnetic	
	properties.	
	Ozone: Preparation, properties, structure and uses.	
	Ozone depletion: Causes and effects.	
	Sulphur: Peracids of sulphur and Sodium thiosulphate - Preparation,	
	properties, structure and uses.	
III	ORGANIC CHEMISTRY:	18

	electrophilic aromatic substitution in phenol and nitrobenzene.	
	Orientation and reactivity of Monosubstituted Benzene: ortho, para and meta directing. Role of inductive and mesomeric effects in	
	alkylation and acylation in benzene Orientation and reactivity of Managyhatitytad Panzanas ortho para	
	mechanism of nitration, sulphonation, halogenation, Friedel-crafts	
	Aromatic Electrophilic Substitution: Arenium ion mechanism,	
	Cyclopropenyl cation, cyclopentadienyl anion and Tropylium cation.	
	Aromaticity: Huckel's rule. Non-benzenoid aromatic compounds.	
V	Benzene: Resonance, Resonance energy and structure.	17
	nucleophile and solvent.	
	S N ¹ and SN ² mechanism. Effect of structure of substrate,	
	Aliphatic Nucleophilic Substitution:	
	magnesium iodide.	
	Grignard reagent - Preparation and its synthetic utility of Ethyl	
	formation of acetylides and Ozonolysis.	
	Reaction: Hydroboration, addition of hydrogen halides, water,	
	dehalogenation and electrolysis.	
	Alkynes: Preparation of alkynes by dehydrohalgenation,	
	Butadiene. Diels-Alder reaction.	
IV	Dienes: Classification and stability. 1,2 and 1,4 addition of	18
	HIO ₄ and Ozonolysis.	
	sulphuric acid, water, hydroboration, oxidation by alkaline KMnO ₄ ,	
	Reactions of Alkenes: Addition of hydrogen halide, hypohalous acid,	
	rules.	
	Mechanism of β-Elimination: E1 and E2 . Saytzeff and Hofmann	
	dehalogenation, reduction of alkynes and Wittig reaction.	
	Alkenes: Preparations involving dehyrohalogenation, dehydration,	
	carbanion, stability. Electrophiles and nucleophiles with examples.	
	Homolytic and Heterolytic fission: Free radicals, carbocation,	
	electromeric and hyperconjugative effects.	
	Polar Effects: Inductive, mesomeric, steric inhibition of resonance,	

Total contact hours/Semester	90

*Italics denotes self study topics

Teaching Methods

Lecture by chalk & talk, power point presentations, group discussions, seminar, quiz, assignment, experience Discussion, brain storming, Activity, Models.

Text Books

S.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Soni. P.L	Text book of Inorganic Chemistry	Sultan Chand & Sons, New Delhi	2012
2.	Bahl.B.S. and Arun Bahl	Advanced Organic Chemistry	S.Chand & Company Ltd., New Delhi	2007
3.	Soni. P.L.	Text book of Organic Chemistry	Sultan Chand & Sons, New Delhi	2012
4.	Madan. R.D.	Advanced Inorganic Chemistry	S.Chand & Company Ltd., New Delhi	2011

Reference Books

S.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Finar I.L.	Organic Chemistry	Longmans	2006
2.	Morrision. R.T. and Boyd. R.N.	Organic Chemistry	Allyn and Bacon Ltd., NewYork	1976

3.	Wahid U.Malik,	Selected Topics in	S.Chand &	2006
	G.D, Tuli, and	Inorganic Chemistry	Company, New	
	Madan. R.D.		Delhi	

Mapping with Programme Outcomes

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	Н	Н	S
CO2	Н	S	Н	S	Н
CO3	S	S	S	Н	S
CO4	S	Н	S	Н	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.Indumathy Ramasamy	Dr.A. Ayyasamy	Dr.M. Durairaju	Dr.R.Muthukumaran

Programme	B.Sc.	Programme Title :	CHEMISTRY	
code:				
Course Code:	18UCY202	Title	Batch:	2018-2021
		Core Paper – II	Semester	II
Hrs/Week:	6		Credits:	4
		Organic and Physical		
		Chemistry		
		· ·		

To make the students to

- > acquire knowledge on the mechanisms of naming reactions in carbonyl compounds
- > gain knowledge in the synthetic utility of active methylene compounds
- > understand basics concepts on quantum mechanics and important laws of thermodynamics

Course Outcome

On the successful completion of the course, students will be able to

Knowledge	CO	CO Statement	
Level	Number		
K1	CO1	recollect the mechanisms of various naming reactions	
K2,K3	CO2	understand and apply usage of active methylene compounds in	
		synthesizing different substituted carboxylic acids and ketones	
K3	CO3	apply quantum mechanical treatment to sub-atomic particles of atom	

K4	CO4	interpret the significance of laws of thermodynamics and its
		applications in deriving various other laws of physical chemistry

Unit	Content	Hrs
I	Alcohols: Distinction between primary, secondary and tertiary	18
	alcohols.	
	Manufacture of ethanol from molasses. Absolute alcohol,	
	methylated spirit and power alcohol.	
	Dicaboxylic acids: Preparation and properties of oxalic,	
	malonic, succinic and phthalic acid.	
	Acetoacetic ester: Preparation and its application in the	
	synthesis of acetone, adipic acid, crotonic acid and 4-methyl	
	uracil. Keto-enol tautomerism.	
	Malonic ester: Preparation and its application in the synthesis	
	of crotonic acid, barbutric acid, succinic acid and dimethyl	
	acetic acid.	
	Acid derivatives: Acetyl chloride and acetic anhydride:	
	Preparation, properties and uses.	
II	Carbonyl compounds: Preparation by Rosenmund reduction,	18
	Stephen reaction and dry distillation of calcium salt of fatty	
	acids.	
	Mechanism of Nucleophilic addition reaction in aldehydes and	
	ketones: Addition of Grignard reagent, HCN, NaHSO ₃ and NH ₃ .	
	Addition with NH ₂ -NH ₂ , C ₆ H ₅ NHNH ₂ , NH ₂ OH,	
	H ₂ NCONHNH ₂ and ROH.	
	Mechanism of Aldol, Perkin, Benzoin condensation,	
	Cannizzaro reactions and Reformatsky reaction.	
	Reduction: Wolff-Kishner, Clemmensen, MPV, Lithium	
	Aluminium Hydride and Sodium Borohydride.	

	Oxidation of aldehydes and ketones using Tollen's reagent, Fehling's solution, SeO ₂ , CrO ₃ , PCC, PDC and Oppenauer oxidation	
III	Quantum Theory: Failure of classical theory in explaining the	18
	black body radiation. Planck's radiation theory, Quantisation of	
	energy. Einstein's theory of Photoelectric effect.	
	Wave mechanics: Characteristics of wave motion. De-Broglies	
	equation. Davison and Germer experiment. Heisenberg's	
	uncertainty principle.	
	Schrodinger wave equation and significance of Ψ and Ψ^2	
	(Derivation not required)	
IV	Thermodynamics: Importance, Limitations and	18
	Thermodynamic terms. Types of Thermodynamic equilibrium	
	and processes.	
	First law of Thermodynamics: Law of conservation of energy,	
	internal energy.	
	Enthalpy and Heat capacity: Relation between Cp and Cv.	
	Work done in an isothermal reversible expansion of an ideal gas.	
	Reversible adiabatic expansion of an ideal gas: Relation	
	between temperature and volume/ pressure.	
	Joule- Thomson Experiment: J-T -Effect, Joule -Thomson	
	coefficient for an ideal gas, Inversion Temperature.	
	Zeroth law of thermodynamics. Absolute zero of temperature.	
V	Second law of thermodynamics: Limitations of First law. Need	18
	for Second law of thermodynamics. Various statements of	
	Second law of thermodynamics.	
	· ·	i

Total hours/Semester	90
Third law of Thermodynamics (statement only).	
energy with temperature or pressure- Gibbs Helmholtz equation.	
Helmholtz and Gibbs free energy functions: Variation of free	
significance of entropy.	
ideal gas with change in pressure, volume and temperature. Entropy of mixing of ideal gases. Carnot's cycle, Physical	
accompanying change of phase, isothermal expansion of an	
irreversible spontaneous processes. Entropy change	
Entropy: Definition, Entropy changes in reversible and	
Measurement of enthalpy of reactions by Bomb Calorimeter.	
and Enthalpy of neutralization. Bond energy and its applications	
Thermo chemistry: Definition – Standard Enthalpy of formation	

^{*}Italics denotes self study topics

Teaching Methods

Lecture by chalk & talk, power point presentations, group discussions, seminar, quiz, assignment, experience Discussion, brain storming, Activity, Models.

Text Books

S.No.	Author(s)	Title of the Book	Publisher	Year of
				Publication
1.	Bahl.B.S. and Arun	Advanced Organic	S.Chand &	2007
	Bahl	Chemistry	Company Ltd.,	
			New Delhi	
2.	Soni. P.L	Text book of	Sultan Chand &	2012
		Inorganic Chemistry	Sons, New Delhi	
3.	Puri B.R.,Sharma	Principles of	Vishal Publishing	2013
	L.R and Madan S.	Physical Chemistry	House	
	Pathania			

4.	Negi. A.S., and	A text book of	New Age	2009
	Anand S.C.	physical chemistry	International PVT	
			Ltd	

Reference Books

S.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Finar I.L.	Organic Chemistry, Vol.I and II	Pearson Education, Singapore	2003
2.	Soni. P.L. and Dharmarha O.P.	Text book of Physical Chemistry	Sultan Chand & Sons, New Delhi	2005

Mapping with Programme Outcomes

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	Н	S
CO2	Н	Н	Н	S	Н
CO3	S	S	Н	M	S
CO4	S	Н	S	Н	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.Indumathy Ramasamy	Dr.A. Ayyasamy	Dr.M. Durairaju	Dr.R.Muthukumaran

Programme	B.Sc.	Programme Title :	CHEMISTRY	
code:				
Course Code:	18UCY203	Title	Batch:	2018-2021
		Core Practical-I	Semester	II
		Inorganic Qualitative		
		Analysis		
Hrs/Week:	3		Credits:	3

To enable the students to

- > gain knowledge in the identification of given two acidic and basic radicals
- > develop analytical skill in inorganic qualitative analysis

Course Outcomes

Knowledge	CO	CO Statement
Level	Number	
K3	CO1	To remember the procedure for the analysis of given acid and basic radicals
K4	CO2	To understand the chemical reactions responsible for the precipitation or other reactions leading to identification of the given radicals
K4	CO3	To apply the theoretical knowledge/concept studied to their practical sessions

Syllabus

Unit	Content	Hrs
	a) Reactions of the following ions:	
	Lead, Copper, Nickel, Bismuth, Cadmium, Iron, Manganese,	
	Zinc, Calcium, Strontium, Barium, Magnesium and Ammonium.	
	Carbonate, Nitrate, Fluoride, Sulphate, Chloride, Oxalate,	
	Phosphate and Borate.	
	b) Analysis of a mixture containing two cations and two anions of which	
	one will be an interfering ion.	
	Total hours/Semester	30

Teaching Methods

Lab activity, Quiz, Assignment, Experience Discussions, Demonstration

Text Books for Study

S.No.	Author(s)	Title of the Book	Publisher	Year of
				Publication
1.	Venkateswaran,V.,	Basic Principles of	S.Chand	2004
	Veeraswamy. R and	Practical Chemistry	Publications,	
	Kulandaivelu. A.R.		New Delhi	

Reference Books

S.No.	Author(s)	Title of the Book	Publisher	Year of
				Publication

1.	Thomas, A.O.,	Practical Chemistry	Scientific Book	2003
			Center,	
			Cannanore	

Mapping with Programme Outcomes

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	Н	S	S
CO2	Н	S	Н	S	Н
CO3	S	S	S	Н	S

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.T.Gowrani	Dr.A. Ayyasamy	Dr.M. Durairaju	Dr.R.Muthukumaran

Programme	B.Sc.	Programme Title:	CHEMISTRY	
code:				
Course Code:	18UCY304	Title	Batch:	2018-2021
		Core Paper- III	Semester	III
Hrs/Week:	6	Inorganic and Physical Chemistry	Credits:	04

To learn the industrial aspects of inorganic materials and thermodynamics of solution

Course Outcome

Knowledge	CO	CO Statement
Level	Number	
K1	CO1	To remember the basic metallurgical operations for extraction
K2	CO2	To understand the concept of thermodynamics of solution
K3	CO3	To apply the concept of law of mass action to various equilibria
K4	CO4	To acquire knowledge in colligative properties

Unit	Content	Hours
	Basic Metallurgical operations: Concentration, calcination, roasting,	
т	reduction and refining. Allows Proportion and proportion Composition and uses of some	18
1	Alloys: Preparation and properties. Composition and uses of some important alloys of Al, Ni, Sn and Pb.	10

	Fertilizers: Important nutrients and their functions. Primary and	
	secondary nutrients. Manufacture of urea, ammonium sulphate, super	
	phosphate of lime, triple super phosphate and potassium nitrate.	
	Cement: Types of cement, composition, manufacture and setting of	
	cement.	
II	Glass: Manufacture, types and coloured glass.	18
	Inorganic Polymers: Silicones-Preparation, properties and applications.	
	Fuels: Classification of fuels, calorific value and characteristics of	
	good fuel.	
	Gaseous Fuels: Advantages, Composition and uses of natural gas, water	
	gas, producer gas, oil gas, LPG, CNG and Gobar gas.	
	Liquid fuels –Petroleum-composition and classification.	
	Refining of crude petroleum and uses of various fractions.	
	Petroleum industries in India. Anti-Knocking agents, Octane and Cetane	
	numbers. Synthetic Petrol – Catalytic Cracking of petroleum.	
	Chemical potential, Gibbs – Duhem equation, variaton of chemical	
	potential with temperature and pressure. Chemical potential of ideal	
III	gases. Clapeyron-Clausius equation-application to various equilibria.	18
	Chemical equilibrium: Law of mass action - relationship between Kp	
	and Kc .Van't Hoff's reaction isotherm and isochore. Dedonders	
	concept of chemical equilibria. Hydrogen – Iodine equilibrium,	
	dissociation of PCl ₅ and N ₂ O ₄ .	
	Lechatelier's principle: Application to synthesis of ammonia.	
	Thermodynamics of solutions:	
	Types of solutions: Solution of liquids in liquids. Ideal solution.	
IV	Raoult's law, Henry's law (Statement only). Non-ideal solution-	
1,4	deviation from Raoults law.	18
	Duhem – Margules equation. Fractional distillation and azeotropes.	

	Total contact Hrs/Semester	90
	of dilute solution. Abnormal molecular weight and Van't Hoff's factor.	
	Laws of Osmotic pressure. Van't Hoff's equation for osmotic pressure	
	Osmotic pressure: Berkley and Hartley's method of determination.	
	method of determination of molecular weight.	
	Depression of freezing point: Thermodynamic derivation .Beckmann's	
	method of determination of molecular weight.	
	Elevation of Boiling point: Thermodynamic derivation .Cottrell's	
\mathbf{V}	pressure by Static method and molecular weight.	18
	Lowering of vapour pressure: Determination of lowering of vapour	
	Colligative properties of solutions:	
	acid and study of $I_2+I^-=I_3^-$.	
	law-thermodynamic derivation, application to association of benzoic	
	Completely immiscible liquids: steam distillation. Nernst distribution	
	system-phenol-water, triethylamine –water and nicotine –water system.	
	Phase equilibria between condensed phases: Partially miscible liquid	

^{*}Italics denotes self study topics

Teaching Methods

Lecture by Chalk and Talk, Power point Presentations, Group discussions, Seminar, Quiz, Assignment.

Text Books

S.No.	Author(s)	Title of the Book	Publisher	Year of
				Publication

1	Puri and Sharma	Principles of Inorganic	Milestone	2013
	and.Kalia. K.C.	Chemistry,31 st Edition	Publishers and	
			Distributors	
2	Soni. P.L.	Text book of Inorganic	Sultan Chand &	2002
		Chemistry, 20 th edition	Sons	
3	Puri, Sharma and	Principles of Physical	Vishal Publishing	2013
	Pathania.	Chemistry,46th Edition	Co., Jalandar	

References

S.No.	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Jain.P.C and Monaka Jain	Engineering Chemistry, 15th Edition	Dhanpat Rai Publishing Company (P) Ltd.,	2005
2	Soni.P.L. and Dharmarha. O.P	Text book of Physical Chemistry, 7th Edition	Sultan Chand & Sons,. New Delhi.	2005

Mapping with Programme Outcomes

PSO CO	- PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	Н	S
CO2	Н	S	Н	S	Н
CO3	S	S	S	Н	S
CO4	S	Н	Н	S	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	СОЕ
Dr. T. Gowrani	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

Programme	B.Sc.	Programme Title :	CHEMISTRY	
code:				
Course Code:	18UCY3N1	Title	Batch :	2018-2021
		Non Major Elective- I	Semester	III
Hrs/Week:	1	Food Science And Technology	Credits:	02

To create an awareness regarding food and nutrition

Course Outcome

Knowledge	CO	CO Statement	
Level	Number		
K1	CO1	To remember the sources of food and its function	
K2	CO2	To get the idea about food preservation methods	
K3	CO3	To deploy the food adulterants and their effects	
K4	CO4	To interpret the functions of food corporation of India	

Unit	Content	Hours
I	Food and Nutrition: Functions of food, food sources, energy value of foods, elementary idea about digestion and metabolism of Carbohydrates, Fats and Proteins.	3
II	Food preservation: Importance of food preservation, causes of food spoilage, principles of	3
	food preservation. Methods of food preservation-	

	Bacterostatic Methods: Dehydration, pickling and salting	
	Bacterocidal Methods: Canning and cooking.	
***	Milk Processing – Pasteurisation and milk products	•
III	Food Additives: Antioxidants, Food Colours, Food enzymes, Spices	3
	and flovouring agents. Merits and demerits of additives and	
	preservatives.	
	Food adulteration: Common adulterants and their effects. Intentional	3
IV	and incidental adulterants. Metallic contamination, contamination by	
	pests and pesticide residues. Simple physical and chemical tests for	
	detection of food adulterants.	
	Packaging hazards. Food poisoning and food borne diseases.	
\mathbf{v}		3
	Food Laws: FSSAI	
	Food Standard: ISI standards and the Agmark standards.	
	Functions of Food Corporation of India.	
	Total contact Hrs/Semester	15

^{*}Italics denotes self study topics

Teaching Methods

Lecture by Chalk & Talk, Power point Presentations, Group discussions, Seminar, Quiz, Assignment.

Text Books

S.No.	Author(s)	Title of the Book	Publisher	Year of
				Publication

1	Swaminathan M	Essentials of Food and	Ganesh Publishers,	2002
		Nutrition, Volume I and II, 2 nd Edition	Madras	
2	Sumati R. Mudambi and Rajagopal M.V	Fundamentals of Foods and Nutrition, 3 rd Edition	Wiley Eastern Ltd., New Delhi	1990

References

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Jayashree Ghosh	Applied Chemistry, 1st Edition	S.Chand and company Ltd., New Delhi	2006
2	Srilakshmi B	Food Science, Third Edition	New Age International Publishers, New Delhi	2006

Mapping with Programme Outcomes

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	Н	S
CO2	S	Н	Н	S	Н
CO3	Н	S	S	S	Н
CO4	S	S	S	S	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.T.Gowrani	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

Programme	B.Sc.	Programme Title :	CHEMISTRY	
code:				
Course Code:	18UCY3N2	Title	Batch:	2018-2021
		Non Major Elective- I Chemistry of Consumer	Semester	III
Hrs/Week:	1	Products	Credits:	02

To acquire the basic knowledge in consumer product chemistry

Course Outcome

Knowledge	CO	CO Statement	
Level	Number		
K1	CO1	To recollect the ingredients present in consumer products	
K2	CO2	To get the idea about action of soaps and detergents	
K3	CO3	To update the knowledge relevant to modern trends in the industry.	
K4	CO4	To analyze the hazards of cosmetics	

Unit	Content	Hours
	SOAPS : Saponification of oils and fats. Manufacture of soaps.	
I	Formulation of toilet soaps. Different ingredients used. Their functions.	
	Medicated soaps. Herbal soaps. Mechanism of action of soap. Soft	
	soaps. Shaving soaps and creams.	
	DETERGENTS: Different ingredients in the formulation of detergent	
II	powders and soaps. Liquid detergents. AOS (alpha olefin sulphonates.	3
	cationic detergents: examples. Manufacture and applications. Non-ionic	
	detergents: examples.	
	Mechanism of action of detergents. Comparison of soaps and	
	detergents.	
	COSMETICS: Introduction and classification	
III	Face creams: cold cream, vanishing cream, cleansing and bleaching	3
	cream-ingredients, formulation and uses.	
	Face powder: Requirements and ingredients.	
	Hand cream: Formulations, Ingredients and uses.	
	Nail preparations: Nail bleach, nail lacquers, nail lacquers and nail	
	removers – requirements ingredients and formulations.	
IV	MAKE UP PREPARATIONS:	3
1	Lipstick, Rouge, Mascara – characteristics and ingredients	J
	Dentifrices: Tooth paste and tooth powder -Essential and special	
	ingredients and their functions.	
	Hair preparations: Hair oils and hair tonics. Ingredients and their	
	functions.	
V	Hair cream: Formulations.	3
	Shampoos: constituents and functions.	
	Hair Dyes: Primary requirements of a dye. Vegetable colorings, metal	
	salts and dye used in hair dyes.	
	Hair removers: Temporary and permanent removal of hair.	
	Quality control of cosmetics in India. Hazards of cosmetics.	. =
	Total contact Hrs/Semester	15

^{*}Italics denotes self study topics

Teaching Methods

Lecture by chalk & Talk, Power point Presentations, Group discussions, Seminar, Quiz, Assignment.

Text Book

S.No	Author(s)	Title of the Book	Publisher	Year of Publication
1	Thangamma Jacob	Text book of Applied Chemistry, 1 st Edition	Macmillion	1987

Reference

S.No	Author(s)	Title of the Book	Publisher	Year of Publication
1	Gobala Rao, .S	Outlines of chemical technology	Affiliated East West press	1998

Mapping with Programme Outcomes

PSO CO	~ PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	M	Н	S
CO2	S	S	Н	S	Н
CO3	Н	S	S	Н	Н
CO4	Н	S	Н	S	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by	Verified by		
Name with Signature	HOD Name with Signature	CDC	COE
Dr.T.Gowrani	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

Programme	B.Sc.	Programme Title :	CHEMISTRY	
code:				
Course Code:	18UCY405	Title	Batch:	2018-2021
		C P W	G 4	TX7
		Core Paper – IV	Semester	IV
Hrs/Week:	6	Inorganic,Organic and	Credits:	04
		Physical Chemistry		

To study the periodic properties of elements, reactions of organic compounds and phase rule

Course Outcome

Knowledge	CO	CO Statement
Level	Number	
K1	CO1	To recollect the properties of transition and inner transition elements
K2	CO2	To understand the mechanisms of naming reactions
K3	CO3	To execute the concept of isomerism in various compounds
K4	CO4	To figure out the phase diagram of various systems

Transition Elements: Characteristics of transition elements. Trends in periodic properties- electronic configuration, Atomic and ionic sizes, oxidation states, ionization potentials, magnetic behaviour, colour, magnetic properties, catalytic properties and ability to form complexes. Extraction and uses of Ti,V,Mo,W and Co. Platinum Metals: Metallurgy of platinum. Platinum black, Platinised asbestos, colloidal platinum-preparation and uses. Group Discussions: (i) Cr, Mo and W (iii) Fe,Co and Ni. Alloy steels. Heat treatment of steel. Iron and steel industry in India. Preparation and uses of the following compounds. TiO ₂ , TiCl ₄ , CrO ₂ Cl ₂ , ZrOCl ₂ , V ₂ O ₅ , FeSO ₄ , ammonium molybdate and Platinic chloride. Inner Transition Elements: Lanthanides and Actinides: Occurrence, electronic structure, oxidation states, colour and absorption spectra, magnetic properties. Lanthanide contraction and its consequences. Separation of Lanthanide elements by ion exchange method. Comparison of Lanthanides and Actinides. Extraction of Uranium from Pitch blende. Preparation of phenols- from aryl halide and grignard reagent. Reactions of Phenols: Nitration. sulphonation, halogenation, Kolbes schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction, Duff's reaction, Lederer –Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism. Aromatic nitro compounds: Reduction of Nitrobenzene in neutral, acidic	Unit	Contents	Hours
A oxidation states, ionization potentials, magnetic behaviour, colour, magnetic properties, catalytic properties and ability to form complexes. Extraction and uses of Ti,V,Mo,W and Co. Platinum Metals: Metallurgy of platinum. Platinum black, Platinised asbestos, colloidal platinum-preparation and uses. Group Discussions: (i) Cr, Mo and W (iii) Fe,Co and Ni. Alloy steels. Heat treatment of steel. Iron and steel industry in India. Preparation and uses of the following compounds. TiO2, TiCl4, CrO2Cl2, ZrOCl2, V2O5, FeSO4, ammonium molybdate and Platinic chloride. Inner Transition Elements: Lanthanides and Actinides: Occurrence, electronic structure, oxidation states, colour and absorption spectra, magnetic properties. Lanthanide contraction and its consequences. Separation of Lanthanide elements by ion exchange method. Comparison of Lanthanides and Actinides. Extraction of Uranium from Pitch blende. Preparation of phenols- from aryl halide and grignard reagent. Reactions of Phenols: Nitration. sulphonation, halogenation, Kolbes schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction, Duff's reaction, Lederer –Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.		Transition Elements: Characteristics of transition elements. Trends in	
magnetic properties, catalytic properties and ability to form complexes. Extraction and uses of Ti,V,Mo,W and Co. Platinum Metals: Metallurgy of platinum. Platinum black, Platinised asbestos, colloidal platinum-preparation and uses. Group Discussions: (i) Cr, Mo and W (iii) Fe,Co and Ni. Alloy steels. Heat treatment of steel. Iron and steel industry in India. Preparation and uses of the following compounds. TiO2, TiCl4, CrO2Cl2, ZrOCl2, V2O5, FeSO4, ammonium molybdate and Platinic chloride. Inner Transition Elements: Lanthanides and Actinides: Occurrence, electronic structure, oxidation states, colour and absorption spectra, magnetic properties. Lanthanide contraction and its consequences. Separation of Lanthanide elements by ion exchange method. Comparison of Lanthanides and Actinides. Extraction of Uranium from Pitch blende. Preparation of phenols- from aryl halide and grignard reagent. Reactions of Phenols: Nitration. sulphonation, halogenation, Kolbes schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction, Duff's reaction, Lederer –Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.		periodic properties- electronic configuration, Atomic and ionic sizes,	
Extraction and uses of Ti,V,Mo,W and Co. Platinum Metals: Metallurgy of platinum. Platinum black, Platinised asbestos, colloidal platinum -preparation and uses. Group Discussions: (i) Cr,Mo and W (iii) Fe,Co and Ni . Alloy steels. Heat treatment of steel. Iron and steel industry in India . Preparation and uses of the following compounds. TiO2 , TiCl4, CrO2Cl2 , ZrOCl2 , V2O5 , FeSO4, ammonium molybdate and Platinic chloride. Inner Transition Elements: Lanthanides and Actinides: Occurrence, electronic structure, oxidation states, colour and absorption spectra, magnetic properties. Lanthanide contraction and its consequences. Separation of Lanthanide elements by ion exchange method. Comparison of Lanthanides and Actinides. Extraction of Uranium from Pitch blende. Preparation of phenols- from aryl halide and grignard reagent. Reactions of Phenols: Nitration. sulphonation , halogenation, Kolbes schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction, Duff's reaction, Lederer –Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.	I	oxidation states, ionization potentials, magnetic behaviour, colour,	18
Metallurgy of platinum. Platinum black, Platinised asbestos, colloidal platinum -preparation and uses. Group Discussions: (i) Cr ,Mo and W (iii) Fe,Co and Ni . Alloy steels. Heat treatment of steel. Iron and steel industry in India . Preparation and uses of the following compounds. TiO ₂ , TiCl ₄ , CrO ₂ Cl ₂ , ZrOCl ₂ , V ₂ O ₅ , FeSO ₄ , ammonium molybdate and Platinic chloride. Inner Transition Elements: Lanthanides and Actinides: Occurrence, electronic structure, oxidation states, colour and absorption spectra, magnetic properties. Lanthanide contraction and its consequences. Separation of Lanthanide elements by ion exchange method. Comparison of Lanthanides and Actinides. Extraction of Uranium from Pitch blende. Preparation of phenols- from aryl halide and grignard reagent. Reactions of Phenols: Nitration. sulphonation , halogenation, Kolbes schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction, Duff's reaction, Lederer –Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.		magnetic properties, catalytic properties and ability to form complexes.	
platinum -preparation and uses. Group Discussions: (i) Cr ,Mo and W (iii) Fe,Co and Ni . Alloy steels. Heat treatment of steel. Iron and steel industry in India . Preparation and uses of the following compounds. TiO ₂ , TiCl ₄ , CrO ₂ Cl ₂ , ZrOCl ₂ , V ₂ O ₅ , FeSO ₄ , ammonium molybdate and Platinic chloride. Inner Transition Elements: Lanthanides and Actinides: Occurrence, electronic structure, oxidation states, colour and absorption spectra, magnetic properties. Lanthanide contraction and its consequences. Separation of Lanthanide elements by ion exchange method. Comparison of Lanthanides and Actinides. Extraction of Uranium from Pitch blende. Preparation of phenols- from aryl halide and grignard reagent. Reactions of Phenols: Nitration. sulphonation , halogenation, Kolbes schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction, Duff's reaction, Lederer —Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.		Extraction and uses of Ti,V,Mo,W and Co. Platinum Metals:	
Group Discussions: (i) Cr ,Mo and W (iii) Fe,Co and Ni . Alloy steels. Heat treatment of steel. Iron and steel industry in India . Preparation and uses of the following compounds. TiO ₂ , TiCl ₄ , CrO ₂ Cl ₂ , ZrOCl ₂ , V ₂ O ₅ , FeSO ₄ , ammonium molybdate and Platinic chloride. Inner Transition Elements: Lanthanides and Actinides: Occurrence, electronic structure, oxidation states, colour and absorption spectra, magnetic properties. Lanthanide contraction and its consequences. Separation of Lanthanide elements by ion exchange method. Comparison of Lanthanides and Actinides. Extraction of Uranium from Pitch blende. Preparation of phenols- from aryl halide and grignard reagent. Reactions of Phenols: Nitration. sulphonation , halogenation, Kolbes schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction, Duff's reaction, Lederer –Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.		Metallurgy of platinum. Platinum black, Platinised asbestos, colloidal	
Heat treatment of steel. Iron and steel industry in India . Preparation and uses of the following compounds. TiO ₂ , TiCl ₄ , CrO ₂ Cl ₂ , ZrOCl ₂ , V ₂ O ₅ , FeSO ₄ , ammonium molybdate and Platinic chloride. Inner Transition Elements: Lanthanides and Actinides: Occurrence, electronic structure, oxidation states, colour and absorption spectra, magnetic properties. Lanthanide contraction and its consequences. Separation of Lanthanide elements by ion exchange method. Comparison of Lanthanides and Actinides. Extraction of Uranium from Pitch blende. Preparation of phenols- from aryl halide and grignard reagent. Reactions of Phenols: Nitration. sulphonation , halogenation, Kolbes schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction, Duff's reaction, Lederer –Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.		platinum -preparation and uses.	
and uses of the following compounds. TiO ₂ , TiCl ₄ , CrO ₂ Cl ₂ , ZrOCl ₂ , V ₂ O ₅ , FeSO ₄ , ammonium molybdate and Platinic chloride. Inner Transition Elements: Lanthanides and Actinides: Occurrence, electronic structure, oxidation states, colour and absorption spectra, magnetic properties. Lanthanide contraction and its consequences. Separation of Lanthanide elements by ion exchange method. Comparison of Lanthanides and Actinides. Extraction of Uranium from Pitch blende. Preparation of phenols- from aryl halide and grignard reagent. Reactions of Phenols: Nitration. sulphonation, halogenation, Kolbes schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction, Duff's reaction, Lederer –Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.		Group Discussions: (i) Cr ,Mo and W (iii) Fe,Co and Ni . Alloy steels.	
V ₂ O ₅ , FeSO ₄ , ammonium molybdate and Platinic chloride. Inner Transition Elements: Lanthanides and Actinides: Occurrence, electronic structure, oxidation states, colour and absorption spectra, magnetic properties. Lanthanide contraction and its consequences. Separation of Lanthanide elements by ion exchange method. Comparison of Lanthanides and Actinides. Extraction of Uranium from Pitch blende. Preparation of phenols- from aryl halide and grignard reagent. Reactions of Phenols: Nitration. sulphonation, halogenation, Kolbes schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction, Duff's reaction, Lederer –Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.		Heat treatment of steel. Iron and steel industry in India . Preparation	
Inner Transition Elements: Lanthanides and Actinides: Occurrence, electronic structure, oxidation states, colour and absorption spectra, magnetic properties. Lanthanide contraction and its consequences. Separation of Lanthanide elements by ion exchange method. Comparison of Lanthanides and Actinides. Extraction of Uranium from Pitch blende. Preparation of phenols- from aryl halide and grignard reagent. Reactions of Phenols: Nitration. sulphonation, halogenation, Kolbes schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction, Duff's reaction, Lederer –Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.		and uses of the following compounds. TiO ₂ , TiCl ₄ , CrO ₂ Cl ₂ , ZrOCl ₂ ,	
Lanthanides and Actinides: Occurrence, electronic structure, oxidation states, colour and absorption spectra, magnetic properties. Lanthanide contraction and its consequences. Separation of Lanthanide elements by ion exchange method. Comparison of Lanthanides and Actinides. Extraction of Uranium from Pitch blende. Preparation of phenols- from aryl halide and grignard reagent. Reactions of Phenols: Nitration. sulphonation, halogenation, Kolbes schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction, Duff's reaction, Lederer –Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.		V ₂ O ₅ , FeSO ₄ , ammonium molybdate and Platinic chloride.	
II states, colour and absorption spectra, magnetic properties. Lanthanide contraction and its consequences. Separation of Lanthanide elements by ion exchange method. Comparison of Lanthanides and Actinides. Extraction of Uranium from Pitch blende. Preparation of phenols- from aryl halide and grignard reagent. Reactions of Phenols: Nitration. sulphonation, halogenation, Kolbes schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction, Duff's reaction, Lederer –Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.		Inner Transition Elements:	
contraction and its consequences. Separation of Lanthanide elements by ion exchange method. Comparison of Lanthanides and Actinides. Extraction of Uranium from Pitch blende. Preparation of phenols- from aryl halide and grignard reagent. Reactions of Phenols: Nitration. sulphonation, halogenation, Kolbes schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction, Duff's reaction, Lederer –Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.		Lanthanides and Actinides: Occurrence, electronic structure, oxidation	
ion exchange method. Comparison of Lanthanides and Actinides. Extraction of Uranium from Pitch blende. Preparation of phenols- from aryl halide and grignard reagent. Reactions of Phenols: Nitration. sulphonation, halogenation, Kolbes schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction, Duff's reaction, Lederer –Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.	П	states, colour and absorption spectra, magnetic properties. Lanthanide	18
Extraction of Uranium from Pitch blende. Preparation of phenols- from aryl halide and grignard reagent. Reactions of Phenols: Nitration. sulphonation, halogenation, Kolbes schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction, Duff's reaction, Lederer – Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.		contraction and its consequences. Separation of Lanthanide elements by	
Preparation of phenols- from aryl halide and grignard reagent. Reactions of Phenols: Nitration. sulphonation, halogenation, Kolbes schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction, Duff's reaction, Lederer –Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.		ion exchange method. Comparison of Lanthanides and Actinides.	
Reactions of Phenols: Nitration. sulphonation, halogenation, Kolbes schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction, Duff's reaction, Lederer – Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.		Extraction of Uranium from Pitch blende.	
Reactions of Phenols: Nitration. sulphonation, halogenation, Kolbes schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction, Duff's reaction, Lederer – Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.			
III schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction, Duff's reaction, Lederer – Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.			
Duff's reaction, Lederer –Manasse reaction and Gattermann aldehyde synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.		1	
synthesis. Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.	III	schimid reaction, Friedel Crafts reaction, Reimer Tiemann reaction,	18
Nitro Compounds: Aliphatic nitro compounds: Nitromethane and Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.		Duff's reaction, Lederer –Manasse reaction and Gattermann aldehyde	
Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.		synthesis.	
		Nitro Compounds: Aliphatic nitro compounds: Nitromethane and	
Aromatic nitro compounds : Reduction of Nitrobenzene in neutral, acidic		Nitroethane- preparation and properties. Nitro-Acinitro tautomerism.	
		Aromatic nitro compounds : Reduction of Nitrobenzene in neutral, acidic	
and alkaline media and electrolytic reduction. Preparation of ortho, meta		and alkaline media and electrolytic reduction. Preparation of ortho, meta	
and para dinitrobenzenes, T.N.T.		and para dinitrobenzenes, T.N.T.	

	Amines:	
	Aliphatic amines: separation of mixture of amines, Basicity of amines.	
IV	Aromatic amines: Preparation and properties of Aniline Diazotisation –	18
	Coupling with mechanism	
	Conformational analysis of Ethane, n- Butane and Cyclohexane.	
	Distinguish between Conformational and Configuration.	
	Stereoisomerism.: Types, R-S -configuration, optical isomerism in lactic	
	acid and tartaric acid, racemisation, methods of resolution, asymmetric	
	synthesis.	
	Geometrical isomerism in maleic and fumaric acid. E-Z notation,	
	Phase rule and phase equilibria:	
	Concept of phase, components and degrees of freedom with examples.	
${f V}$	Thermodynamic derivation of Gibbs-Phase Rule.	18
	One component system: Phase diagram and discussion of water and	
	sulphur system.	
	Two component system : Construction of phase diagram by thermal	
	analysis. Simple eutectic- Pb-Ag System.	
	Formation of compounds with congruent melting point: Zn-Mg system.	
	Formation of compounds with incongruent melting point: Na-K system.	
	Salt- Water system: Potassium Iodide-Water system.	
	Total contact Hrs/Semester	90

^{*}Italics denotes self study topics

Lecture by chalk & Talk, Power point Presentations, Group discussions, Seminar, Quiz, Assignment.

Text Books

S.No	Author(s)	Title of the Book	Publisher	Year of Publication
1	Soni. P.L.,	Text book of Inorganic Chemistry, 20 th edition	Sultan Chand & Sons	2002
2	Bahl, B.S and Arun Bahl	A textbook of Organic Chemistry, 18th Edition	Sultan Chand & Sons	2007
3	Soni P.L	Text book of Organic Chemistry, 29 th Revised Edition	Sultan Chand & Sons, New Delhi	2012
4	PuriB.R.,Sharma.L.R and Madan S. Pathania	Principles of Physical Chemistry, 46 th Edition	Vishal Publishing House, Jalandar	2013

References

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Finar, I.L	Organic Chemistry, Vol. I	Pearson Education, Singapore	2003
2	Morrison, R.T. and Boyd	Organic Chemistry, 6th Edition	Pearson Education, Singapore	2003

Mapping with Programme Outcomes

PSO CO	- PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	Н	S
CO2	Н	S	Н	S	Н
CO3	S	Н	S	Н	S
CO4	Н	Н	Н	S	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	СОЕ
Dr.T. Gowrani	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

Programme code:	B.Sc	Programme Title :	CHEMISTRY	
Course Code:	18UCY406	Title Core Practical II	Batch : Semester	2018-2021 IV
Hrs/Week:	3	Volumetric and Organic Qualitative Analysis	Credits:	5

To develop the analytical skills in volumetric and organic qualitative analysis.

Course Outcome

Knowledge	CO	CO Statement
Level	Number	
K1	CO1	To understand the apparatus used in volumetric analysis and correct titrimetric procedure
K2	CO2	To develop preparative skills in the organic preparations
К3	CO3	To get the idea about organic qualitative analysis
K4	CO4	To analyse the elements and functional groups of organic compounds.

Unit	Content			
	I) Volumetric Analysis			
	a) Permanganometry:			
	1. Estimation of Ferrous ion.			
	2. Estimation of Oxalic acid.			
	3. Estimation of Sodium nitrite.			
	4. Estimation of calcium (Demonstration only).			
	b) Dichrometry:			
	1) Estimation of Ferrous ion using internal indicator.			
	2) Estimation of Ferric ion using external indicator			
	c) Iodometry:			
	1) Estimation of Copper.(Demonstration only)			
	2) Estimation of Potassium dichromate.			
	d) EDTA-Titrations:			
	1) Estimation of Calcium.			
	2) Estimation of Zinc.			
	3) Estimation of Magnesium.			
	4) Estimation of hardness of water-temporary and permanent5)			

Organic Qualitative Analysis	
a) Systematic qualitative analysis of organic compounds containing one	
functional group: Aldehydes, Ketones, Primary amines,	
Nitrocompounds, Amides, Anilides, Carbohydrates, Carboxylic acids	
and Phenols.	
b) Organic Preparations:	
1) Acetylation of aniline to acetanilide.	
2) Acetylation of Salicylic acid to acetyl salicylic acid.	
3) Hydrolysis of benzamide to benzoic acid.	
4) Nitration of nitrobenzene to m-dinitrobenzene.	
5) Hydrolysis of ester. (ethylbenzoate to benzoicacid)	
Total hours/Semester	45

Group discussions, Assignment and Experience Discussion.

Text Book

S.No	Author(s)	Title of the Book	Publisher	Year of Publication
1	Venkateswaran,V., R.Veeraswamy and A.R.Kulandaivelu	Basic Principles of Practical Chemistry.	S.Chand Publications, New Delhi	2004

Reference

S.No	Author(s)	Title of the Book	Publisher	Year of Publication
1	Thomas, A.O.	Practical Chemistry	Scientific Book Cente	2003

Mapping with Programme Outcomes

PSO CO	> PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	Н	S
CO2	S	S	Н	S	Н
CO3	S	S	S	M	S
CO4	S	Н	S	S	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.M.Amutha	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

Programme	B.Sc	Programme Title :	CHEMISTRY	
code:				
Course Code:	18UCY4N3	Title	Batch:	2018-2021
		Non Major Elective -II	Semester	IV
Hrs/Week:	1	Water and Water Treatment Processes	Credits:	02

To develop the knowledge in industrial waste water treatment

Course Outcome

Knowledge	CO	CO Statement
Level	Number	
K1	CO1	To recollect the source and nature of water
K2	CO2	To understand the concept of soft water and hard water
K3	CO3	To apply the various softening methods of hard water
K4	CO4	To analyze the nature, effect and treatment of industrial wastes

Syllabus

Unit	Content	Hours
	Hardness of water – Hard water and Soft water. Types of hardness,	
I	Units of hardness, Equivalents of Calcium carbonate.	3
	Estimation of hardness of water by EDTA method. Total hardness,	
	temporary hardness and permanent hardness.	
	Disadvantages of hard water in domestic and industrial use. Scales	
II	and Sludge formation, prevention of scales. Internal conditioning and	3
	external conditioning. Caustic embrittlement – boiler corrosion –	
	priming and foaming.	
	Softening of hard water: Lime soda process, Cold and Hot process.	
III	Zeolite process: Natural and synthetic zeolites.	3
	Ion exchange process: Cation exchange and anion exchange resins.	
	Regeneration of cation and anion exchangers.	
	Purification of water for municipal purposes: Filtration, Sedimentation	
IV	and Coagulation, Sterilization, Physical and Chemical methods.	3
	Sea water as a source of drinking water: Desalting, electrodialysis and	
	reverse osmosis.	
	Industrial wastewater treatment: Removal of Iron and Silica . Water for	
V	boiler use.	3
	Industrial wastes and treatment processes: Types of industrial wastes,	
	The nature, effect and treatment of paper, pulp and food processing	
	industrial wastewater.	
	Total contact Hrs/Semester	15

^{*}Italics denotes self study topics

Teaching Methods

Lecture by Chalk & Talk, Power point Presentations, Group discussions, Seminar, Quiz, Assignment.

Text Books

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Jain. P.C. and Monika Jain	Engineering Chemistry, 15 th Edition	Dhanpat Rai Publishing Company (P) Ltd.	2005
2	Sharma, B.K	Environmental chemistry, 2 nd Edition	Goel Publishing Company(P) Ltd.	2000

Reference

S.No	Author(s)	Title of the Book	Publisher	Year of Publication
1	Ravishanker. N	Applied chemistry, 3 rd Edition	National Pathippaham	2002

Mapping with Programme Outcomes

PSO CO	- PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	Н	S
CO2	Н	Н	Н	S	Н
CO3	S	S	S	Н	Н
CO4	Н	S	Н	S	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by	Verified by		
Name with Signature	HOD Name with Signature	CDC	COE
Dr.T.Gowrani	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

Programme	B.Sc.	Programme Title :	CHEMISTRY	
code:				
Course Code:	18UCY4N4	Title	Batch:	2018-2021
		Non Major Elective - II	Semester	IV
Hrs/Week:	1	Diagnostic Chemistry	Credits:	02

To develop their knowledge in diagnosis process

Course Outcome

Knowledge	CO	CO Statement
Level	Number	
K1	CO1	To remember the basic concepts of metabolism of carbohydrates
K2	CO2	To get the idea about hemoglobin, renal, and liver function
K3	CO3	To familiarize with mechanism of regulations of blood sugar and the clinical tests
K4	CO4	To analyze and execute the clinical laboratory techniques

Unit	Content	Hours
	Enzymes: classification and properties of enzymes. Co-enzymes and	
I	examples Digestion and absorption of carbohydrates, fats and proteins.	3
II	Metabolism of carbohydrates. Glycolysis, Glycogenesis.	3
	Regulation of blood sugar: Mechanism of maintaining blood sugar	
	level. Glycosuria, Glucose tolerance test, Normal GTT curves. GTT	
	curves in Diabetes mellitus Diabetes Mellitus –symptoms and control	
	measures.	
	Blood lipids, Ketogenesis, ketolysis and ketosis Urine: composition of	
III	urine . General characteristics, Normal and abnormal constituents of	3
	urine.	
	Formation of urine: Glomerular filtration and tubular reabsorption. Renal	
IV	function tests: Inulin clearance test, urea concentration test and dye test.	3
	Haemoglobin: Functions and properties of Haemoglobin. Conversion of	
	Haemoglobin to Bilepigments. Jaundice –Types and diagnosis.	
	Liver : Functions of liver. Liver function tests: Tests based on excretory	
V	functions, metabolic function and the capacity for detoxication.	3
	Total contact Hrs/Semester	15

^{*}Italics denotes self study topics

Lecture by Chalk & Talk, Power point Presentations, Group discussions, Seminar, Quiz, Assignment.

Text Book

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Ambika Shanmugam	Fundamentals of Biochemistry for Medical Students, Seventh, Indian Edition,	Lippincott Williams & Wilkins	2012

Reference

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Soni. P.L	Text book of Organic Chemistry, 29 th revised edition	Sultan Chand & Sons, New Delhi	2012

Mapping with Programme Outcomes

PSO CO	- PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	Н	S
CO2	S	S	Н	S	Н
CO3	Н	S	S	Н	S
CO4	Н	Н	Н	S	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by	Verified by		
Name with Signature	HOD Name with Signature	CDC	COE
Dr.T.Gowrani	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

Programme code:	B.Sc	Programme Title :	CHEMISTRY	
Course Code:	18UCY507	Title	Batch:	2018-2021
		Core Paper- V	Semester	V
Hrs/Week:	4	Nuclear chemistry and Co-ordination chemistry	Credits:	4

To develop the skill to aesthetically appreciate Nuclear and Co-ordination chemistry

Course Outcome

Knowledge	CO	CO Statement
Level	Number	
K1	CO1	To understand the theory of radioactivity
K2	CO2	To have knowledge on uses of radio-active elements in various fields
К3	CO3	To understand various theories of bonding in coordination compounds and their importance
K4	CO4	To know the chemistry of carbonyls, basic knowledge on metallic bonding and semiconductors

Unit	Content	Hrs	
	Radio activity. Mass defect, packing fraction. Nuclear binding energy, n/p		
	ratio and stability of the nucleus. Differences between nuclear and chemical		
	reactions. Half- life period.		
	Applications of artificial radioactivity: Age of the earth and C ¹⁴ dating,	11	
Ι	medical field applications		
	Isotopes: Detection of isotope by Aston Mass Spectrograph.		
	Separation of isotopes by Electromagnetic, Thermal diffusion and		
	Electrolytic techniques.		
	Nuclear fission and fusion. Types of nuclear wastes and different methods		
	of disposal of High and low radioactive wastes.		
	Co-ordination chemistry: Basic concepts of Co-ordination Chemistry.		
	Definitions of the terms: Ligands and Co-ordination number. Classification		
	of ligands. Nomenclature of Co-ordination compounds. Theories of Co-		
	ordination compounds: Werner's Theory: Designation of Cobalt (III)-		
II	ammine complexes. Sidgwick's Theory: Electronic interpretation of Co-		
	ordination bond - Effective atomic number rule.		
	Pauling's valence bond theory: Postulates and its applications in the		
	determination of geometry and magnetic property of the complexes.		
	Crystal field theory: Postulates. C.F.T- splitting of d-orbital in tetrahedral		
	and Octahedral complexes. C.F.T.stabilization energy. Spectrochemical		
III	series.	13	
111	Chelates: Definition, classification, stability factors, sequestration and		
	sequestering agents. Detection and structure determination of Complexes:		
	Solubility method, change in colour, pH measurements and conductance		
	measurements.Molecular orbital theory -concepts and Molecular orbital		
	energy level diagram for [Co(NH ₃) ₆]Cl ₂ complex.		
	Isomerism in Co-ordination compounds:		
	Structural isomerism: Ionisation, Hydrate and Linkage isomerism.		

	Total contact Hrs/Semester	60
	Structures of alloys: Interstitial, substitutional and intermetallic alloys	
	type - Properties and uses.	
•	Semiconductors: Intrinsic and Extrinsic Semi Conductors - n-type and p-	
${f v}$	Metallic bond: Electron Sea model, Valence bond theory and Band theory.	11
	Fe ₂ (CO) ₉ , Co ₂ (CO) ₈ , and Cr(CO) ₆ - synthesis, properties, structure and EAN.	
	Carbonyls Compounds: Mono and Binuclear carbonyls of Ni(CO) ₄ , Fe(CO) ₅ ,	
	uses of trans effect.	
	Tran's effect in square planar complexes: Definition, trans effect series and	
	Substitution reactions with out breaking Metal-Ligand bond.	
	Nucleophilic ligands substitution reactions, S_N^1 and S_N^2 mechanisms.	
	Ligands substitution in octahedral complexes: Inert and Labile complexes	
1,7	D.M.G. and Mg using Oxine.	
IV	Applications of complexes in quantitative analysis: Estimation of Ni using	12
	complexes. Optical isomerism in 4 -and 6- Co-ordination compounds.	
	Stereo isomerism: Geometrical isomerism in 4 and 6 - Co-ordination	

^{*}Italics denotes self study topics

Lecture by chalk & Talk, Power point Presentations, Group discussions, Seminar, Quiz, Assignment.

Text Books

S.No	Author(s)	Title of the Book	Publisher	Year of Publication
1	Puri and Sharma and.Kalia. K.C.	Principles of Inorganic Chemistry,31 st Edition	Milestone Publishers and Distributors	2013
2	Soni. P.L.	Text book of Inorganic Chemistry,20 th Edition	Sultan Chand & Sons	2012
3	Madan, Malik and Tuli.	Selected Topics in Inorganic Chemistry	Sultan Chand & Sons	2006

References

S.No	Author(s)	Title of the Book	Publisher	Year of Publication
1	Lee. J.D	Concise Inorganic Chemistry,5 th Edition	Black Well Science Ltd, London.	2006
2	Jain. P.C. and Monika Jain	Engineering Chemistry,15 th Edition	Dhanpat Rai Publishing Company	2005
3	Gopalan. R. and Ramalingam V.	Concise Coordination Chemistry,3 rd Edition	Vikas Publishing house	2006

Mapping with Programme Outcomes

PSO CO	- PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	Н	S
CO2	Н	S	Н	S	Н
CO3	S	S	S	S	Н
CO4	S	Н	Н	S	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by	Verified by		
Name with Signature	HOD Name with Signature	CDC	COE
Dr.N. Karpagam	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

Programme	B.Sc.	Programme Title :	CHEMISTRY	
code:				
Course Code:	18UCY508	Title	Batch:	2018-2021
		Core Paper – VI	Semester	V
Hrs/Week:	4	Organic Chemistry-I	Credits:	4

To make the students to

- > understand the mechanisms in molecular rearrangements
- > acquire knowledge on heterocyclic compounds
- > gain knowledge in carbohydrate chemistry
- > acquire knowledge on structural elucidation of natural products

Course Outcome

On the successful completion of the course, students will be able to

Knowledge	CO	CO Statement	
Level	Number		
K1, K4	CO1	recollect and interpret the mechanisms of molecular rearrangements	
K2	CO2	understand the significance of heterocyclic compounds	
K2	CO3	understand the importance of carbohydrate chemistry	
K3,K4	CO4	apply and interpret various chemical methods in deducing the	
		structures of natural products	

Unit	Content	Hrs
I	Molecular Rearrangements: Pinacol - Pinacone. Beckmann,	12
	Hoffmann, Curtius, Schmidt, Benzidine, Benzilic acid, Fries, Baeyer	
	Villiger, Cope and Claisen rearrangements.	
II	Heterocyclic Compounds: Chemistry of Furan, Pyrrole, Thiophene,	10
	Pyridine, Quinoline, Isoquinoline and Indole.	
	Pyrazole - Preparation and properties	
III	Carbohydrates: Classification, chemistry and structural elucidation of	12
	Glucose and Fructose, configuration of Monosaccharides and	
	interconversion in sugar series. [Glucose to Fructose and vice versa,	
	Glucose to Arabinose and vice versa] Mutarotation and	
	epimerization. Sucrose, Maltose, Lactose, and Saccharin -	
	Preparation, Properties and uses [Structural elucidation is not	
	needed].	
IV	Alkaloids: Definition, occurrence and extraction of alkaloids from	13
	plants. General methods of determining structure. Determination of	
	structure of Conine, Piperine, Papaverine and Nicotine	
V	Terpenoids: Classification, isoprene rule and Gemdialkyl rule,	13
	Extraction from plants, structural elucidation of Citral, Camphor, α -	
	terpineol and Menthol. Stereochemistry of Menthol.	
	Total hours/Semester	60

^{*}Italics denotes self study topics

Lecture by chalk & talk, power point presentations, group discussions, seminar, quiz, assignment, experience Discussion, brain storming, Activity, Models.

Text Books

S.No.	Author(s)	Title of the Book	Publisher	Year of
				Publication
1.	Finar. I.L.	Organic Chemistry	ELBS Edition	2006
2.	Bahl.B.S. and Arun	Advanced Organic	S.Chand &	2010
	Bahl	Chemistry	Company Ltd.,	
			New Delhi	
3.	Soni. P.L.	Text book of Organic	Sultan Chand &	2012
		Chemistry	Sons, New Delhi	

Reference Books

S.No.	Author(s)	Title of the Book	Publisher	Year of
				Publication
1.	Gurtu. J.N. and	Organic Reactions and	S.Chand &	1998
	Kapoor. R.	Reagents	Company,	
			Newdelhi	
2.	Gurdeep. R.	Organic Chemistry of	Goel Publishing	2004
	Chatwal	Natural Products,	House	
		Volume I and II		

Mapping with Programme Outcomes

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	Н	S
CO2	S	S	S	S	Н
CO3	S	S	Н	Н	S
CO4	S	Н	S	Н	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.Indumathy Ramasamy	Dr.A. Ayyasamy	Dr.M. Durairaju	Dr.R.Muthukumaran

Programme code:	B.Sc.	Programme Title :	CHEMISTRY	
Course Code:	18UCY509	Title	Batch:	2018-2021
		Core Paper – VII	Semester	V
Hrs/Week:	4	Electro Chemistry	Credits:	4

- (i) To understand the concepts between electrochemistry and thermodynamics.
- (ii) To apply electro chemical principles to fuel cells, batteries and mechanism of corrosion.

Course Outcome

Knowledge	CO	CO Statement
Level	Number	
K1	CO1	Able to write balanced half –cell reactions, determine overall cell reactions and calculate the standard reduction potential
K2	CO2	To understand the principles and applications of conductance measurements
K3	CO3	To describe and understand the operation of electrochemical systems for the production of electric energy, i.e. batteries and fuel cells
K4	CO4	To describe general corrosion in terms of electrochemistry and methods for minimizing corrosion

Unit	Content	Hrs		
	Electrolytic Conduction and Electrolysis:	15		
I	Faradays Laws of electrolysis. Measurement of conductivity in electrolytic			
	solution. Variation of specific and equivalent conductances with dilution.			
	Transport Number:			
	Determination of transport number by the Hittorf's method and the Moving			
	Boundary Method. Arrhenius theory of electrolytic dissociation and the			
	Ostwalds dilution law. Kohlrausch's law of independent migration of ions			
	and its applications. Debye -Huckel theory of strong electrolytes.			
	Explanation and Debye Huckel Onsager equation for the equivalent			
	conductivity of strong electrolytes.(Derivation not required).Wein and			
	Debye Falkenhagen effects.			
	Applications of conductance measurements:	12		
II	Determination of degree of dissociation of weak electrolytes, determination			
	of ionic product of water, determination of solubility of sparingly soluble			
	salts and conductometric titrations.			
	Electrochemical cells: Nernst Equation, EMF of a cell and it's measurement.			
	Thermodynamic quantities of cell reactions: ΔH , ΔS and ΔG from EMF data.			
	Reversible electrodes and their types: Metal - Metal ion, Metal - insoluble			
	salt, Gas - ion and redox electrodes. Single electrode potentials, standard			
	electrode potentials, electrochemical series, computation of standard EMF			
	and writing cell reactions.			
	Electrodes for the measurement of pH:	11		
III	Hydrogen gas electrode, Quinhydrone electrode and glass electrode			
	Buffer solution: Buffer action, Henderson's equation and the evaluation of			
	the dissociation constant.			
	Acid-Base Indicators: Theory of Acid-Base Indicators. Acid-Base			
	Titrations and use of Indicators.			

	Hydrolysis of Salts: Degree of hydrolysis, Relationship between K _h , K _w and	
	the dissociation constant for salts such as sodium acetate, ammonium	
	chloride and ammonium acetate.	
	Electrochemical cells:	11
IV	Concentration cells with and without transference. Liquid junction potential	
	- Formation and elimination.	
	Applications of EMF measurements: Calculation of valency of ions in	
	doubt- ful cases (Hg ⁺ /Hg ²⁺), equilibrium constant of a electrochemical	
	reaction, determination of transport number, determination of solubility of	
	sparingly soluble salts.	
	Batteries: Dry Cell, Lead-Acid storage cell and Nickel- Cadmium	11
V	accumulator. Fuel Cell: Hydrogen - Oxygen fuel cell.	
	Hydrogen over voltage: Measurement and its application to metal	
	deposition.	
	Electrochemical corrosion: Mechanism, Galvanic and differential aeration	
	corrosion.	
	Prevention of corrosion: Proper designing, using pure metal, using metal	
	alloys, cathodic protection, modifying the environment and uses of	
	inhibitors. (Brief account only)	
	Metallic coatings: Anodic and cathodic coatings. Method of application of	
	metallic coatings: Hot dipping and electro plating. (Nickel and chromium	
	plating).	
	Total hours/semester	60

^{*}Italics denotes self study topics

Lecture by Chalk & Talk, Power point Presentations, Group discussions, Seminar, Quiz, Assignment.

Text Books

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Puri and Sharma	Principles of	Milestone Edition,	2007
	and. Pathania	Physical Chemistry	Vishal Publishing	
			House	
2	Soni. P.L., and	Text book of	Sultan Chand &	2005
	Dharmarha. O.P.	Physical Chemistry,	Sons,	
		7 th Edition		
3	Jain. P.C. and	Engineering	Dhanpat Rai	2005
	Monica Jain.,	Chemistry, 17th	Publishing	
		Edition	Company(P) Ltd	

References

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Samuel H.Maron.	Principle of Physical	Amerind ublishing	1972
	and Carl F.Prutton.,	Chemistry, 4th	Co. Pvt.Ltd	
		Edition		
2	Negi. A.S. and	A Text book of	New Age	1995
	Anand. S.C	Physical Chemistry,	International (P)	
		4th Edition	Ltd.	
3	Atkins. P.W.,	Physical Chemistry	ELBS/ Oxford	1987
			University Press	

Mapping with Programme Outcomes

PSO CO	~ PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	Н	S
CO2	Н	S	Н	S	Н
CO3	S	S	S	Н	S
CO4	S	Н	Н	S	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.M.Amutha	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

Programme	B.Sc.	Programme Title:	CHEMISTRY	
code:				
Course Code:	18UCY510	Title	Batch:	2018-2021
		Core Paper – VIII	Semester	V
Hrs/Week:	4	Dye Chemistry	Credits:	4

To encourage the students to opt their career as dye chemists in dyeing and textile industry

Course Outcome

Knowledge	CO	CO Statement
Level	Number	
K1	CO1	To learn the basic concepts and theories of colour and its constitution
K2	CO2	To understand the preparation and properties of various types of dyes
К3	CO3	To know the classification and application of different dyes
K4	CO4	To acquire knowledge in process and applications of dyes

Unit	Content	Hrs
	Electromagnetic spectrum: Various regions. Relationship of colour observed	
	to wavelength of light absorbed. Complementary colours. Terms used in	
	dye chemistry - Chromophores, Auxochrome, Bathochromic shift,	
I	Hypsochromic shift, Hypochromic shift and Hyperchromic shift.	11
	Requisites of a true dye: Classification of dyes according to their chemical	
	constitution and mode of applications.	
	Theories of colour and constitution: Witt's theory, Quinonoid theory and	
	Molecular orbital theory of various transitions.	
	Nitro dyes: Picric acid, Martius yellow, Naphthol Yellow S – synthesis and	
	applications.	
	Nitroso dyes: Fast Green O, Naphthol Green Y - synthesis and applications	
II	Azo dyes: Diazotisation, Mechanism of diazotization, Effects of substitutents	13
	on diazotization. Diazo coupling and coupling with phenols and Amines.	
	Classification of azo dyes as monoazo and bisazo dyes.	
	Synthesis and applications of important azo dyes: Methyl orange, Orange I,	
	Orange II, Metanil yellow, Eriochrome Black – T, Bismark brown and	
	Congo red.	
	Diphenyl methane dyes: Auramine O and Auramine G - synthesis and uses.	
	Triphenyl methane dyes: Malachite green, Rosaniline, and Crystal violet -	
III	Synthesis and uses.	13
	Phthalein and Xanthene dyes: Phenolphthalein, , and Rhodamine B -	
	Synthesis and uses.	
	Indigoid dyes: Indigotin – Synthesis and application to fibre. Indigosol O –	
	Synthesis.	
	Anthroquinone dyes: Anthraquinone acid dyes – Alzarin cyanine green and	
	Solway ultra blue B, Mordant dyes – Alizarin and Alizarin Blue, Vat dyes-	
	CI Vat Blue 43 and Carbazole and Disperse dyes - Disperse Red 15.	

	Total contact Hrs/Semester	60
	colour photography and indicators.	
	Non-textile uses of dyes: Uses of dyes in leather, paper, foods and drugs,	
	Pollution problems in dyeing industry.	
	the fibre.	
	dyeing, Mordant dyeing, Vat dyeing, Disperse dyeing. Formation of dye on	
	Process of dyeing: A simple treatment, various methods of dyeing - Direct	
	Selection of dyes for different fibre, Fastness properties of dyes.	
	forces, Covalent bonds.	
	Binding of dyed with fibre- Ionic forces, Hydrogen bonds, Vander Waals	
V	and polyester.	11
	Wool, Silk, Cellulose acetate, Viscose rayon, polyamides, polyacrylonitrile	
	Types of textile fibres: Natural, Semisynthetic and Synthetic fibres – Cotton,	
	brighteners for a. cellulosiic fibers b. acrylic fibers.	
	Fluorescent brightening agents. Classification and properties. Fluorescent	
	Phthalocyanines.	
	Pigments - Lakes, Toners. Ionic and non-ionic Pigments.	
IV	Organic Pigments: Characteristics of pigments, uses of pigments. Types of	12

^{*}Italics denotes self study topics

Lecture by chalk & Talk, Power point Presentations, Group discussions, Seminar, Quiz, Assignment.

Text Books

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Tyagi. O.D. and	Text Book of	Anmol publications	2001
	Yadav. M.A.	Synthetic Dyes	Pvt. Ltd.	
2	Bahl and Arun Bhal	Advanced Organic	S.Chand &	2007
	B.S.	Chemistry	Company Ltd.	

References

S.No.	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Rao. R.S., Vidya	An Introduction to	Himalaya	1997
	Chawathe and Shah.	Synthetic Drugs and	publishing House	
	S.J.	Dyes		
2	Lubs. H.A.	The Chemistry of	Robert E.Krieger	1997
		Synthetic Dyes and	Publishing	
		Pigments	Company	
3	Arora. M.G.	A Text Book of	Anmol publication	1996
		Synthetic Dyes		

Mapping with Programme Outcomes

PSO CO	~ PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	Н	S
CO2	Н	S	Н	S	Н
CO3	Н	S	S	S	S
CO4	S	S	Н	S	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.T.Gowrani	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

Programme code:	B.Sc.	Programme Title :	CHEMISTRY	
Course Code:	18UCY511	Title	Batch:	2018-2021
		Core Elective Paper – I	Semester	V
Hrs/Week:	4	Analytical chemistry	Credits:	4

To develop the skill to aesthetically appreciate Analytical chemistry

Course Outcome

Knowledge	CO	CO Statement	
Level	Number		
K1	CO1	To learn instrumentation and basic principles and applications of modern analytical tools such as thermogravimetry and polarography	
K2	CO2	To have knowledge on uses of nephlometry and flame photometry	
K3	CO3	To understand the polarography, electrogravimetry and chromatography	
K4	CO4	To acquire knowledge and applications of various analytical tools	

Unit	Content	Hrs
	Data Analysis: Definition and terms – absolute and relative error.	
	Precision and accuracy. Classification of errors. Sources and	
	minimisation of errors. Significant figures.	
I	Gravimetric Analysis: Precipitation methods. Conditions of precipitation,	12
	coprecipitation and post precipitation. Precipitation from homogeneous	
	solution. Washing of the precipitate. Organic precipitants – DMG, Cupron,	
	Cupferron, oxine and salicylaldoxime.	
	Thermogravimetric Analysis (TGA): Principle, factors affecting	
	thermogravimetric curves. Applications: Evaluation of gravimetric	
	precipitation, curie point determination and study of organic	
II	compounds.Electrogravimetry- principle only	12
	Differential thermal analysis (DTA): Principle, factors affecting the DTA	
	curve. Applications: heat of reaction, specific heat and quality control.	
	Thermometric titrations (TTA): Principle and applications.	
	Polarimetry: Theory and instrumentation. Comparison of acid strength using	
	polarimeter.	
III	Nephlometry and Turbidimetry: Theory, principles and applications in	11
	Inorganic analysis, turbidimetric titrations and phase titrations.	
	Flame photometry: Theory, principle and applications in Qualitative and	
	Quantitative analysis.	
	Polarography: Principle, dropping mercury electrode – advantages and	
	disadvantages Experimental assembly, current – voltage curves. Significance	
	of Ilkovic equation. (derivation not required)	
	Half wave potential. Application in qualitative and quantitative analysis.	
IV	Amperometric Titrations: Principle, apparatus and technique. Dead stop end	11
	point method. Advantages and disadvantages of amperometric titrations.	
	Chromatographic techniques:	

	Paper Chromatography: Principle, RF value and experimental details.				
V	Applications in qualitative and quantitative analysis.	14			
	Thin Layer Chromatrography: Principle, brief account of experimental				
	details and its advantages. Applications in the separation of amino acids				
	Coloumn Chromatography: Principle, experimental details, factors affecting				
	the column efficiency and applications.				
	Ion Exchange Chromatography: Principle, resins, action of resins and				
	applications in softening of hard water.				
	Total contact Hrs/Semester	60			

^{*}Italics denotes self study topics

Lecture by Chalk & Talk, Power point Presentations, Group discussions, Seminar, Quiz, Assignment.

Text Books

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Chatwal and Anand	Instrumental	Himalaya	2005
		Methods of	publishing House	
		Chemical Analysis,		
		5 th Edition		
2	Arthur. I.Vogel	Inorganic	Longmans	1964
		Quantitative		
		Analysis,3rd Edition		
3	Khopkar	Basic concepts of	Wiley Eastern Ltd	1992
		Analytical		
		Chemistry, 3rd		
		Edition		

Reference

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Usharani. S.	Analytical	Macmillan India Ltd	2000
		Chemistry,		
		1 st Edition		

Mapping with Programme Outcomes

PSO CO	> PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	Н	S
CO2	Н	S	Н	S	S
CO3	Н	S	S	S	Н
CO4	S	Н	Н	S	Н

S-Strong; H-High; M-Medium

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.A.Ayyasamy	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

Programme code:	B.Sc.	Programme Title :	CHEMISTRY	
Course Code:	18UCY5S1	Title	Batch:	2018-2021
		Skill Based Elective-I	Semester	V
Hrs/Week:	1	Food Chemistry	Credits:	02

To develop the skill to aesthetically appreciate Food Science

Course Outcome

Knowledge	CO	CO Statement
Level	Number	
K1	CO1	To learn about the importance and the basic principles of food processing
K2	CO2	To understand the practical methods of home preservation of foods
K3	CO3	To know about awareness on safety of food supply
K4	CO4	To encourage the students to opt their career as Food chemists in Food industry

Unit	Content	Hrs
I	Food: Definition for food and nutrition. Functions of food and nutrients. Energy values of foods. Recommended dietary intake, functions and deficiency of the following: Carbohydrate, fat, proteins, vitamins, minerals.	3
	Food Preservation: Principles and importance of food preservation.	
II	Methods of food preservation: Bacterostatic Methods: Dehydration, pickling and salting Bacterocidal Methods: Canning and cooking.	3
	Milk Processing - Pasteurisation. Brief account of dairy products- Butter,	
	cream, cheese, condensed milk and milk powder.	
III	Food Additives: Food preservatives, food colours, food enzymes and antioxidants.	3
IV	Food adulteration: Adulterants and their effects. Incidental and intentional adulterants, metallic contamination. Simple physical and chemical tests for detection of food adulterants. Packaging hazards. Food poisoning and food	3
	borne diseases.	
v	Packaging hazards. Food Laws: FSSAI Food Standard: ISI standards and the Agmark standards. Functions of Food Corporation of India. Outlines of Preparation and bottling of Fruit squashes, fruit juices, pickles, jams and jellies.	3
	Total contact Hrs/Semester	15

^{*}Italics denotes self study topics

Lecture by chalk & Talk, Power point Presentations, Group discussions, Seminar, Quiz, Assignment.

Text Books

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Swaminathan M	Essentials of Food and Nutrition	Ganesh Publishers, Madras	1977
2	Sumati R. Mudambi and Rajagopal M.V	Fundamentals of Foods and Nutrition	Wiley Eastern Ltd., New Delhi.	_

References

S.No.	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Subbulakshmi.G. and	Food Processing and	New Age International	_
	Shobha A. Udipi	Preservation	Publishers, New Delhi	
2	Jayashree Ghosh	Applied Chemistry	S.Chand and company	2006
			Ltd., New Delhi	
3	Mahindru S.N	Food Additives	Tata Mc Graw Hill	2000
			Publishing Company Ltd	

Mapping with Programme Outcomes

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	Н	S
CO2	Н	Н	Н	S	Н
CO3	S	S	S	M	Н
CO4	S	Н	Н	Н	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by	Verified by		
Name with Signature	HOD Name with Signature	CDC	COE

Ms. R. Sudha	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

Programme code:	B.Sc.	Programme Title :	CHEMISTRY	
Course Code:	18UCY5S2	Title	Batch:	2018-2021
		Skill Based Elective-I	Semester	V
Hrs/Week:	1	Nano Chemistry	Credits:	2

To develop the skill to aesthetically appreciate Nano chemistry

Course Outcome

Knowledge	CO	CO Statement								
Level	Number									
K1	CO1	learn lochem		the	importance	and	the	basic	concepts	of

K2	CO2	To acquire knowledge on carbon nano tubes and its various methods
		of preparation
К3	CO3	To know about the quantum dots
K4	CO4	To learn the applications of nanomaterials in various fields

Content	Hrs
Nano and nature -Diversity in Nanosystems. Significance of	
Nanomaterials.Fullerenes-introduction – Preparation by Pyrolysis and	3
purification of fullerenes Chemistry of fullerenes in the condensed phase.	
Carbon Nanotubes- IntroductionW - Preparation by Chemical Vapour	
deposition and purification—Tungston Sulphide and Titanium dioxide.	3
Fabrication techniques, imaging and manipulation tools at the nanoscale-	
nanoscale Devices and circuits. (e.g.) FETS, Quantum dots.	3
Nano medicine and its importance in medical diagnostics, molecular	
therapeutics - Nano electronic - Nano optical and Nano chemical.	3
Molecular manufacturing – Nano / molecular communication – Nano	
navigation – Nano scale manipulation and control Nano robots for medical	3
application.	
Total contact Hrs/Semester	15
	Nano and nature -Diversity in Nanosystems. Significance of Nanomaterials.Fullerenes-introduction – Preparation by Pyrolysis and purification of fullerenes Chemistry of fullerenes in the condensed phase. Carbon Nanotubes- IntroductionW – Preparation by Chemical Vapour deposition and purification– Tungston Sulphide and Titanium dioxide. Fabrication techniques, imaging and manipulation tools at the nanoscalenanoscale Devices and circuits. (e.g.) FETS, Quantum dots. Nano medicine and its importance in medical diagnostics, molecular therapeutics - Nano electronic – Nano optical and Nano chemical. Molecular manufacturing – Nano / molecular communication – Nano navigation – Nano scale manipulation and control Nano robots for medical application.

^{*}Italics denotes self study topics

Teaching Methods

Lecture by Chalk & Talk, Power point Presentations, Group discussions, Seminar, Quiz, Assignment.

Text Book

S.No	Author(s)	Title of the Book Publisher		Year of
				Publication
1	Sulabha. K.K	Elements of	M/S IBD Publications New	2007
		Nanotechnology	Delhi	

Reference

S.No.	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Pradeep.T	Nano: The essentials	Tata McGraw Hill Publishing	2007
			Co. Ltd. New Delhi	

Mapping with Programme Outcomes

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	Н	S
CO2	Н	Н	Н	S	Н
CO3	S	M	S	S	Н
CO4	S	Н	Н	Н	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Ms.R.Sudha	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

Programme	B.Sc.	Programme Title :	CHEMISTRY	Y
code:				
Course Code:	18UCY612	Title	Batch:	2018-2021
		Core Paper – IX	Semester	VI
Hrs/Week:	5	Physical Methods and	Credits:	5
		Chemical Structure		

To make the students to

- > acquire knowledge on basic concepts in spectroscopy
- gain basic knowledge in various spectroscopic techniques like rotational, vibrational, Raman, UV-visible, NMR and EPR
- > understand the electrical and magnetic properties of molecules

Course Outcome

On the successful completion of the course, students will be able to

Knowledge CO CO Statement		CO Statement
Level	Number	
K1, K2	CO1	recollect and understand the basic theoretical concepts in various types of spectroscopy
K4	CO2	interpret the structure of the unknown molecules from the given spectra
K4	CO3	evaluate various parameters like bond length, vibrational frequency from spectroscopic techniques
K3	CO4	apply electrical and magnetic properties in solving the structures of the molecules

Unit	Content	Hrs		
I	Absorption Spectroscopy:	15		
	Types of changes induced by the interaction of electromagnetic radiation			
	with matter. Types of Electromagnetic spectrum, theory, selection rules and			
	principles.			
	Theoretical principles of spectroscopy:			
	Microwave Spectroscopy: Theory, Rigid and non-rigid rotar models,			
	patterns of spectral lines, Determination of bond length and accurate mass of			
	atom.			
	IR spectroscopy: Theory, Molecular vibrations, vibrational degrees of			
	freedom, Harmonic and anharmonic oscillator model. Force constant,			
	Vibrational frequency, factors affecting carbonyl stretching frequency			
	(inductive and mesomeric effects), hydrogen bonding. Pattern of spectral			
	lines of harmonic oscillator, Overtones, combination bands, Fermi			
	resonance and fingerprint region.			
II	Raman spectroscopy:	15		

	Origin of Raman lines - stokes and anti-stokes line. Characteristics of Raman	
	lines, Mechanism of Raman effect, Differences between Raman and Infrared	
	spectra.	
	UV and Visible Spectroscopy:	
	Theory, types of electronic transition, chromophore, auxochrome, intensity	
	shifts, absorption bands and intensity.	
	Franck – Condon principle, pre-dissociation spectra, Birge-Spooner method	
	of evaluation of dissociation energy from electronic spectra. Woodward	
	Fischer rule of calculation of absorption maxima in dienes.	
III	NMR: Theory and principles, chemical shift, factors affecting chemical	15
	Shift, Anisotropy and inductive effect, reference standard TMS and solvents	
	used. Splitting of signals, spin-spin coupling, coupling constant (elementary	
	ideas). Application of NMR in the study of simple molecules (Ethanol, Ethyl	
	bromide, Benzene, Toluene, Xylene and Mesitylene).	
	ESR: Theory, 'g' factor, derivative curves. Hyperfine splitting, line width.	
	Application to •CH ₃ and Mn ²⁺ ion.	
IV	Calla Charla Charrian	1.5
_ •	Solid State Chemistry:	15
- '	Unit Cell, crystal systems, Bravais Lattice, Law of rational indices, Miller	15
- '		15
	Unit Cell, crystal systems, Bravais Lattice, Law of rational indices, Miller	15
	Unit Cell, crystal systems, Bravais Lattice, Law of rational indices, Miller indices.	15
	Unit Cell, crystal systems, Bravais Lattice, Law of rational indices, Miller indices. Geometrical requirement in close packed structures. Packing in ionic	15
	Unit Cell, crystal systems, Bravais Lattice, Law of rational indices, Miller indices. Geometrical requirement in close packed structures. Packing in ionic crystals. Simple cubic (SC), body centered cubic (BCC) and hexagonal close	15
	Unit Cell, crystal systems, Bravais Lattice, Law of rational indices, Miller indices. Geometrical requirement in close packed structures. Packing in ionic crystals. Simple cubic (SC), body centered cubic (BCC) and hexagonal close packed (HCP) structure – crystal structures of ionic and covalent compounds	15
	Unit Cell, crystal systems, Bravais Lattice, Law of rational indices, Miller indices. Geometrical requirement in close packed structures. Packing in ionic crystals. Simple cubic (SC), body centered cubic (BCC) and hexagonal close packed (HCP) structure – crystal structures of ionic and covalent compounds like NaCl, ZnS, diamond and graphite. Defects in crystals: Point defects,	15
	Unit Cell, crystal systems, Bravais Lattice, Law of rational indices, Miller indices. Geometrical requirement in close packed structures. Packing in ionic crystals. Simple cubic (SC), body centered cubic (BCC) and hexagonal close packed (HCP) structure – crystal structures of ionic and covalent compounds like NaCl, ZnS, diamond and graphite. Defects in crystals: Point defects, Schottky defects, Frenkel defects, metal excess defects and metal deficiency	15
	Unit Cell, crystal systems, Bravais Lattice, Law of rational indices, Miller indices. Geometrical requirement in close packed structures. Packing in ionic crystals. Simple cubic (SC), body centered cubic (BCC) and hexagonal close packed (HCP) structure – crystal structures of ionic and covalent compounds like NaCl, ZnS, diamond and graphite. Defects in crystals: Point defects, Schottky defects, Frenkel defects, metal excess defects and metal deficiency defects.	15
V	Unit Cell, crystal systems, Bravais Lattice, Law of rational indices, Miller indices. Geometrical requirement in close packed structures. Packing in ionic crystals. Simple cubic (SC), body centered cubic (BCC) and hexagonal close packed (HCP) structure – crystal structures of ionic and covalent compounds like NaCl, ZnS, diamond and graphite. Defects in crystals: Point defects, Schottky defects, Frenkel defects, metal excess defects and metal deficiency defects. The radius-ratio rule. X-Ray examination of crystals by Debye-Scherer	15
	Unit Cell, crystal systems, Bravais Lattice, Law of rational indices, Miller indices. Geometrical requirement in close packed structures. Packing in ionic crystals. Simple cubic (SC), body centered cubic (BCC) and hexagonal close packed (HCP) structure – crystal structures of ionic and covalent compounds like NaCl, ZnS, diamond and graphite. Defects in crystals: Point defects, Schottky defects, Frenkel defects, metal excess defects and metal deficiency defects. The radius-ratio rule. X-Ray examination of crystals by Debye-Scherer method.	
	Unit Cell, crystal systems, Bravais Lattice, Law of rational indices, Miller indices. Geometrical requirement in close packed structures. Packing in ionic crystals. Simple cubic (SC), body centered cubic (BCC) and hexagonal close packed (HCP) structure – crystal structures of ionic and covalent compounds like NaCl, ZnS, diamond and graphite. Defects in crystals: Point defects, Schottky defects, Frenkel defects, metal excess defects and metal deficiency defects. The radius-ratio rule. X-Ray examination of crystals by Debye-Scherer method. Electrical properties of Molecules:	

of dipolemoment of polar gas, Application of dipolemoment in the study of	
simple molecules.	
Magnetic properties of molecules:	
Meaning of the terms – magnetic susceptibility, magnetic permeability,	
magnetic moment. Diamagnetism, Paramagnetism and	
Ferromagnetism.Curie-Weiss Law. Determination of magnetic	
susceptibility of paramagnetic substance using Guoy balance. Application	
of magnetic properties in solving structural problems involving in simple	
and complex molecules.	
Total hours/Semester	75

^{*}Italics denotes self study topics

Lecture by chalk & talk, power point presentations, group discussions, seminar, quiz, assignment, experience Discussion, brain storming, in-house lab Activity, Models.

Text Books

S.No.	Author(s)	Title of the Book	Publisher	Year of
				Publication
1.	Puri, Sharma and	Principles of Physical	Millennium	2007
	Pathania	Chemistry	Edition, Vishal	
			Publishing	
			House	
2.	Sharma. Y.R.	Elementary Organic	Sultan Chand &	2007
		Absorption	Sons	
		Spectroscopy		

3.	Gurdeep Chatwal &	Instrumental Methods	Himalaya	2005
	Sham K.Anand	of Analysis	Publishing	
			House	

Reference Books

S.No.	Author(s)	Title of the Book	Publisher	Year of
				Publication
1.	Soni. P.L.	Text book of Organic	Sultan Chand &	2002
		Chemistry	Sons	
2.	William kemp	Organic Spectroscopy	ELBS edition	1985
3.	Manas Chanda	Atomic Structure and	Tata Mc Graw	1988
		Chemical bonding	Hill Company	

Mapping with Programme Outcomes

PSO CO	~ PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	S	S
CO2	Н	S	Н	S	Н
CO3	S	S	S	S	S
CO4	S	Н	S	S	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.Indumathy Ramasamy	Dr.A. Ayyasamy	Dr.M. Durairaju	Dr.R.Muthukumaran

Programme code:	B.Sc.	Programme Title :	CHEMISTRY	
Course Code:	18UCY613	Title	Batch:	2018-2021
		Core Paper - X	Semester	VI
Hrs/Week:	4	Organic chemistry-II	Credits:	4

To develop the skill to aesthetically appreciate Organic chemistry

Course Outcome

Knowledge	CO	CO Statement
Level	Number	
K1	CO1	To develop the knowledge in solving the problems in organic chemistry
K2	CO2	To understand the structure and properties of proteins, DNA, vitamins and lipids
К3	CO3	To create awareness regarding chemotherapy
K4	CO4	To help the students to opt their career as biotechnologists, pharamacologists or medical representative

Unit	Content	Hrs
	Solving problems of structures of organic compounds based on reactions of	
	the following: Aldehydes, Ketones, Amines, Nitrocompounds, Phenols and	
	Acids.	
I	ii) Polynuclear hydrocarbons: Condensed system – Naphthalene ,	13
	Anthracene and phenanthrene-Preparation, properties and uses. Structural	
	elucidation of Naphthalene and Anthracene.	
	Amino acids: Classification, Glycine and Alanine: Properties and synthesis	
	by the following methods: Amination of α - halogen acids, Gabriel's	
	phthalimide synthesis and Strecker synthesis. Synthesis of polypeptides by	
II	carbobenzoxy method.(Berg method)	12

	ii) Proteins: Classification, primary and secondary structure of proteins,	
	denaturation and biological functions of proteins.	
	Nucleic Acids: Carbohydrates present in nucleic acids. Nitrogen bases	
	present in nucleic acids. Nucleosides-Examples. Nucleotides- Examples	
III	.Functions of nucleotides. Nucleotide as energy carriers. Structure of DNA.	13
	Replication of DNA. Functions of DNA.	
	ii) Lipids: Classification according to Bloor. Sources, extraction. Properties	
	and analysis of oils and fats.	
	Vitamins: Introduction, Definition and classification of fat and water	
IV	soluble vitamins, occurrence, deficiency diseases. Synthesis of the	12
	following: Vitamin A1(retinol), Vitamin B1, Pyridoxine and Ascorbic acid	
	Chemotherapy: Introduction, Definition and classification of drugs.	
	i) Sulphadrugs: Mode of action. Structure and uses of sulphanamide,	
V	sulphapyridine, sulphadiazine, sulphaacetamide, sulphathiazole and sulpha	10
	guanidine.	
	ii) Antimalarials: Classification, structure and uses of chloroquine and	
	pamaquine.	
	iii) Antiseptics: Definition, structure and uses of chloramine-T and	
	Iodoform.	
	iv) Anaesthetics: characteristics, structure and uses of Procaine and Pentothal	
	sodium.	
	v) Antibiotics: Introduction, structure and uses of Penicillin and Tetracycline.	
	(Note: Structural elucidation of drugs not required	
	Total contact Hrs/Semester	60

^{*}Italics denotes self study topics

Lecture by Chalk&Talk, Power point Presentations, Group discussions, Seminar, Quiz, Assignment.

Text Book

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Soni.P.L. and	Text Book of	Sultan Chand &	1992
	Chawla	Organic Chemistry	Sons, New Delhi	
2	Gurdeep R. Chatwal	Organic Chemistry	Himalaya	2006
		of Natural Products,	Publishing House	
		Volume II. Edition		
3	Bahl. B.S and Arun	Advanced Organic	Advanced Organic	2007
	Bhal	Chemistry, 1 st	Chemistry	
		Edition		

Reference

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Finar I.L	Organic Chemistry.,	Longmans	2006
		Volume I		

Mapping with Programme Outcomes

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	Н	S
CO2	Н	S	Н	S	S
CO3	Н	S	S	S	Н
CO4	S	Н	Н	M	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.A.Ayyasamy	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

Programme code:	B.Sc.	Programme Title :	CHEMISTRY	
Course Code:	18UCY614	Title	Batch:	2018-2021
		Core Paper – XI	Semester	VI
Hrs/Week:	4		Credits:	4

	Chemical kinetics and	
	photochemistry	

To develop the skill to aesthetically appreciate Chemical Kinetics and Photochemistry

Course Outcome

Knowledge	CO	CO Statement
Level	Number	
K1	CO1	To understand the concept of rate of reaction
K2	CO2	To derive rate equations of various orders
K3	CO3	To understand the effect and consequence of radiation on molecular level
K4	CO4	To get basic knowledge in adsorption theories

Unit	Content			
	The concept of Reaction Rate, Rate law and Rate equation. Factors			
	influencing rates of chemical reactions. Order and Molecularity of a reaction.			
	Setting and solving simple differential equations for first order, Second order			
	and Zero order reactions. Pseudounimolecular reactions. Half-life time of a			
I	reaction – Expressions for t½ - for first, second and nth order reactions.	13		

	Experimental techniques for measuring reaction Kinetics – Volumetry and	
	Polarimetry.	
	Methods of determining order of a reaction – Differential rate expressions,	
	Integral rate expressions and Half-life method. Equilibrium approximation	
	and Steady state approximation. Effect of Temperature on reaction rates -	
	Temperature co-efficient, The Arhenius equation – Derivation, activation	
II	energy and its determination.	13
	Theories of reaction rates: Lindemann theory of Unimolecular reactions,	
	Collision theory and Absolute reaction rate theory. Comparision of ARRT	
	with Collision theory.	
	Catalysis: General characteristics of Catalytic reactions. Types of catalysis	
	- Theories of Homogeneons and Heterogeneons catalysis- Kinetics of acid -	
TTT	base catalysed reactions.	12
III	Enzyme catalysis: Kinetics of enzyme-catalysed reactions - Michaelis-	14
	Menten equation. Effect of Temperature and pH on enzyme catalysis.	
	Adsorption: Chemisorption and physisorption, Adsorption of gases by solids.	
	Factors affecting adsorption – Types of adsorption isotherms – Freundlich	
	adsorption isotherm – Laugmuir adsorption isotherms.	
	Photochemistry: Consequence of light absorption – The Jablonski diagram,	
	Laws of Photochemistry - Lambert and Lambert-Beer's laws, Grothus-	
	Draper law, The Stark-Einstein law of photochemical equivalence, Quantum	
	efficiency and its experimental determination. The photochemical rate law:	
	Kinetics of H ₂ - Cl ₂ reaction, Kinetics of H ₂ -Br ₂ reaction, Comparison of	
IV	thermal and photochemical reactions. Photosensitization and Quenching,	11
	Chemiluminescence. Lasers and their uses (Elementary idea only).	
	Colloids: Classification, preparation and application of colloids	
	Properties of colloids:	
V	Optical properties: Tyndall effect and Brownian movement	11
•	Electrical properties: Charge on colloidal particle, Electrical double layer and	11
	Zetapotential.	
	Electrokinetic properties: ElectroOsmosis and Electrophoresis.	

Emulsions: Preparation, Properties and Applications.		
Gels: Properties and Applications.		
Total contact Hrs/Semester	60	

^{*}Italics denotes self study topics

Power point Presentations, Group discussions, Seminar, Quiz, Assignment.

Text Books

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Puri. B.R., Sharma. L.R. and Madan S.Pathania	Principles of Physical Chemistry, Millennium Edition	Vishal Publishing House	2007
2	Gurdeep Raj	Chemical Kinetics,6 th Revised Edition	Goel publishing house	1997
3	Jain and Jain	Engineering Chemistry,5 th Edition	Dhanpat Rai Publishing Company (P) Ltd.	2005

References

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Samuel H.Maron	Principles of	Amerind publishing	1972
	and Carl F.Prutton	Physical Chemistry,	Co. Pvt.Ltd.	
		Millennium Edition		

2	Negi. A.S. and	A Text book of	New Age	1995
	Anand.S.C	Physical	International (P) Ltd	
		chemistry,4 th Edition		
3	Chakrabarty. D.K	An introduction to	Narosa Publishing	1996
		Physical Chemistry	House	

Mapping with Programme Outcomes

PSO CO	- PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	Н	S
CO2	Н	S	Н	S	Н
CO3	S	S	S	S	S
CO4	S	Н	Н	S	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
D.M.A. II			
Dr.M.Amutha	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

Programme	B.Sc.	Programme Title :	CHEMISTRY
code:		Trogramme Title.	

Course Code:	18UCY615	Title	Batch:	2018-2021
		Core Elective – II	Semester	VI
Hrs/Week:	4	Polymer Chemistry	Credits:	4

- (i) To highlight the commercially important polymers and their various forms
- ii) To understand various industrial polymerization processes

Course Outcome

Knowledge	CO	CO Statement
Level	Number	
K1	CO1	To recognize the principles of polymer recycling and can select appropriate recycle or reuse methods to balance economics and environmental responsibility
K2	CO2	To describe the mechanisms of chain polymerizations, and can predict reaction rates
К3	CO3	To identify the repeat units of particular polymers and specify the isomeric structures which can exist for those repeat units
K4	CO4	To estimate the number- and weight-average molecular masses of polymer samples given the degree of polymerisation and mass fraction of chains present

Unit	Content	Hrs
	Basic Concepts: Monomers, Polymers, Polymerization, Degree of	15
I	polymerization. Classification of polymers:	

	Plastics: Definition – Thermoplastic, Thermosetting plastics,	
	Reinforced Plastic.	
	Elastomers: Definition – Natural & synthetic rubber – smoked rubber	
	Reclaimed rubber – Foam rubbers – Spongy rubber – Laminate rubber.	
	Adhesives: Definition – thermosetting – thermo resins.	
	Fibres: Definition –Natural and synthetic. Classification: comfort –	
	safety – Industrial fibres.	
	Thermal stabilisers- Antioxidants-photostabilisers.	
	Polymerization Techniques: Bulk, Solution, Suspension and Emulsion	
	Polymerization.	
	Different types of polymerisation: Addition Polymerization &	11
II	Condensation polymerization.	
	Types of Initiators. Inhibitors. Chain transfer agents.	
	Addition Polymerization – Free radical Mechanism	
	Ionic Polymerisation: Anionic and Cationic Polymerizations.	
	Step growth of polymerisation (Condensation polymerisation)	
	Co-Polymerisation: Random - Alternating - Block and	
	Graft co polymers.	
	Stereo Regular Polymers: Isotatic, syndiotactic & Atactic. Geometrical	12
III	isomers. Factors influencing Structural regularity.	
	Ziegler – Natta Catalysts – Bi metallic and Mono metallic mechanisms.	
	Glass transition temperature (Tg) and Tm. Determination of Tg by	
	differential scanning calorimeter. Factors affecting Tg	
	Tg of copolymers.	
	Degradation - Types of degradation - Thermal., Photo, High energy	
	radiation and Oxidative	
	Molecular weights of polymers: Number-Average, Weight-Average,	11
IV	Sedimentation-Average & Viscosity-Average molecular weights.	
	Molecular weight distribution – GPC method .Determination of	
	Average molecular weight: Ebulliometry method, Cryoscopy method,	
	osmometry method, Light Scattering method and Viscosity method	

	Polymer processing techniques: Calendaring, film casting,	11
V	compression moulding, injection moulding, blow moulding, extrusion	
	moulding foaming and filament winding technique	
	Preparation and uses of the following polymers:	
	Polyethylene (LDPE & HDPE), P.V.C, Teflon, polystyrene, Nylon-6,	
	Nylon-66,Polyester, Phenol formaldehyde resins and Polycarbonates.	
	Total hours/Semester	60

^{*}Italics denotes self study topics

Power point Presentations, Group discussions, Seminar, Quiz, Assignment.

Text Books

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Gowariker.V.R.	Polymer Science,	New Age	1999
	Viswanathan. N.V,	13th reprint	International (P)	
	Jeyadev Sreedhar		Limited, Publishers	
2	Fred.W.Billmeyor, Jr	Text Book of	Wiley –Interscience	2011
		Polymer Science,	and Sons.Inc	
		2nd edition		
3	Madan.R.L., and	Physical chemistry,	S.Chand and	1999
	Tuli.G.D.	I edition	Company Ltd	

References

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Misra. G.S.	Polymer Chemistry,	New age International(P)	1989
		2nd Reprint	Ltd	

2	Charles	Chemistry and Our	Publishers(Singapore),	1997
	G.Geberlein,	World	ISBN 069716574-4	
	Brown. Wm.C			
3	M.Gopala Rao	Drydens Outlines of	East-West Press	1997
	and Marshall	Chemical Technology		
	Sitig	for the 21 st Centuary,		
		3 rd Edition		

Mapping with Programme Outcomes

PSO CO	~ PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	Н	S
CO2	Н	S	Н	S	Н
CO3	S	S	S	Н	S
CO4	S	Н	Н	S	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.T.Gowrani	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

Programme	B.Sc.	Programme Title :	CHEMISTRY	
code:				
Course Code:	18UCY616	Title	Batch:	2018-2021
		Core Elective Paper-III	Semester	VI
Hrs/Week:	6	Project	Credits:	5

To enable the students to

- > acquire knowledge about the qualitative analysis of potable water
- > gain awareness about research
- > create research aptitude

Course Outcome

Knowledge	CO	CO Statement
Level	Number	
K4	CO1	To understand the importance of analyzing the quality of potable
		water
K4, K3	CO2	To analyse, compare and interpret the results of water quality in all
		the locations
K4, K5	CO3	To decide and interpret the precautionary measures to be taken to
		save and improve the quality of water in different locations

Unit	Content	Hrs
	To test the quality of potable water in and around Pollachi taluk and assign the geochemical type of water available. To create awareness among the people about the quality of drinking water presently used by them and to take necessary precautionary measures to save and improve the quality of water in their area.	
	Total Hrs/semester	78

Teaching Methods

Field work, lab analysis, Power point presentations, Group discussions, Seminar, Lab activity, Quiz, Assignment, Experience Discussions, Demonstration,

Text Book

S.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Satinder Ahuja	Monitoring water quality, Ist edition	Elsevier Publications	2013

Reference Book

S.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.		Standard Methods for the	APHA, AWWA	2012
		Examination of Water and	and WEF	
		Wastewater, 22 nd edition		

Mapping with Programme Outcomes

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	S	Н
CO2	Н	S	Н	S	S
CO3	S	S	S	Н	S

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.A. Ayyasamy	Dr.A. Ayyasamy	Dr.M. Durairaju	Dr.R.Muthukumaran

Programme	B.Sc.	Programme Title :	CHEMISTRY	
code:				
Course Code:	18UCY617	Title	Batch:	2018-2021
		Core Practical – III	Semester	VI
Hrs/Week:	8	Gravimetric analysis and physical chemistry	Credits:	5

To develop analytical skills in gravimetric analysis and Physical Chemistry

Course Outcome

Knowledge	CO	CO Statement
Level	Number	
K1	CO1	To understand the basic concept of gravimetric analysis
K2	CO2	To get the idea about Physical chemistry experiments
К3	CO3	To enable the students to acquire analytical skills (qualitative and quantitative skills)
K4	CO4	To develop practical skills in analytical and Physicl chemistry experiments

Unit		Hrs	
	I: Gra		
	2.	Lead as Chromate Barium as Chromate	
	· ·	Barium as Sulphate	
	4.	Nickel as dimethyl glyoxime complex (for class	
		pose only)	
	3.	Calcium as Calcium oxalate.	
	II: Phy	vsical Chemistry:	
	1.	Heterogeneous Equilibria:	
	i)	Determination of transition temperature	
	ŕ	(thermometric method)	
		a) Sodium acetate	
		b) Sodium thiosulphate	
		c) Strontium chloride	
	ii)	Eutectic systems :	
	ŕ	a) Naphthalene and diphenyl	
		b) Naphthalene and diphenylamine	
		c) Naphthalene and benzophenone	
		d) Naphthalene and p-nitrotoluene	
	iii)	Critical solution temperature:	
	·	a) Phenol – Water system.	
		b) Effect of NaCl on C.S.T. (between 1 to	
		2.0%)	
		c) Effect of Succinic acid on C.S.T. (between 1 to 2.0%)	
	iv)	Molecular weight:	
	117)	Rast's method	
	Solvents – Naphthalene and diphenyl.		
	2.		
		Kinetics:	
	a)	Acid catalysed hydrolysis of methyl acelate	

b)	Potassium persulphate oxidation.	
3.	Conductivity Experiments:	
a)	Cell constant	
b) c)	Verification of Debye – Huckel Onsager Equation. Conductometric Acid – Base titrations (HCl X NaOH).	
4.	Potentiometric Titrations(Demonstration only)	
a)	Acid – Base titration (HCl X NaOH).	
b)	Redox titrations (FeSO ₄ X K ₂ Cr ₂ O ₇)	
	Total Hrs/semester	90

Demonstration, Seminar, Experience discussions, Assignment

Text Book

S.No	Author(s)	Title of the Book	Publisher	Year of Publication
1	Venkateswaran. V.,	Basic principles of	Sultan Chand &	1997
	Veeraswamy. R.and Kulandaivelu. A.R	Practical chemistry	Sons	

Reference

S.No	Author(s)	Title of the Book	Publisher	Year of Publication
1	Thomas. A.O.	Practical Chemistry for B.Sc., Main Students	Scientific Book Centre	1985

Mapping with Programme Outcomes

PSO CO	- PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	Н	S
CO2	Н	S	S	S	Н
CO3	S	S	S	Н	S
CO4	S	Н	S	Н	S

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	СОЕ
Dr.Indumathy Ramasamy	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

Programme code:	B.Sc.	Programme Title :	CHEMISTRY	
Course Code:	18UCY6S3	Title	Batch :	2018-2021
		Skill Based Elective –II	Semester	VI
Hrs/Week:	1	Green Chemistry	Credits:	2

To develop the skill to aesthetically appreciate Green Chemistry

Knowledge	CO	CO Statement		
Level	Number			
K1	CO1	To recollect the principles of green chemistry		
K2	CO2	To understand the awareness on environment friendly technologies and working conditions		
K3	CO3	To apply eco-friendly and less wasteful manufacturing process for the sustainable development of our country		
K4	CO4	To acquire awareness about research in the field of green chemistry		

Unit	Content	Hrs
	The need for green chemistry: Sustainability and cleaner production. Green	
I	chemistry and Eco- efficiency. Environmental Protection Laws. Challenges	3
	ahead for a chemist. Green chemistry education.	
	Twelve Principles of Green Chemistry- Explanation with examples. Awards	
II	for Green Chemistry.	3
	An alternative approach to solvent chemistry: Solvent free reactions.	
III	Solvent free microwave assisted organic synthesis.	3
	Ionic Liquids: Prospects and retrospects	
	Super critical fluid extraction: Supercritical fluids. Advantages and	
IV	applications of super fluid extraction technology.	3
	Carbon dioxide as a super critical fluid: Advantages and industrial	
	applications.	
	Green Techniques:	
V	Use of Bio- catalysis, Transition metal catalysts, Supported metal catalysts	3
	for green synthesis. Solventless synthesis. Oxidation technology for waste	
	water treatment. Agrochemicals from nature. Chitin – Green polymer.	
	Total contact Hrs/Semester	15
L		

^{*}Italics denotes self study topics

Teaching Methods

Lecture by Chalk & Talk, Power point Presentations, Group discussions, Seminar, Quiz, Assignment.

Text Book

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication

1	Rashmi Sanghi	Green Chemistry,	Narosa Publishing House,	2007
	and M.M.	(Environment Friendly	New Delhi.	
	Srivastava	Alternatives), First		
		Edition		

References

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	V.K. Ahluwalia	Green Chemistry,	Ane Books Pvt.Ltd.,	2006
		(Environmentally Benign	New Delhi	
		Reaction), First Edition		
2	Samuel Delvin	Green Chemistry, First	IVY Publishing House,	2006
		Edition	New Delhi.	
3	Asim K. Das	Environmental Chemistry	Books and Allied (P)	2010
		with Green Chemistry,	Ltd., Kolkata.	
		First edition		

PSO CO	- PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	Н	Н	S
CO2	Н	S	Н	S	Н
CO3	S	Н	M	S	Н
CO4	S	Н	Н	S	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by	Verified by		
Name with Signature		CDC	COE

	HOD Name with Signature		
Ms.R.Sudha	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

Programme code:	B.Sc.	Programme Title :	CHEMISTRY	
Course Code:	18UCY6S4	Title	Batch:	2018-2021
		Skill Based Elective-II	Semester	VI
Hrs/Week:	1	Clean Energy	Credits:	2

To develop the skill to aesthetically appreciate Clean Energy

Knowledge	CO	CO Statement
Level	Number	
K1	CO1	To learn about renewable sources of energy patterns
K2	CO2	To understand the Harvesting technologies for its utilization
K3	CO3	To develop policy objectives of sovereignty, national security and self-sufficiency about awareness on safety of food supply
K4	CO4	To ensure alternative sources of energy that are clean, reliable stable and sustainable

Unit	Content	Hrs
	Consumption of energy - Indian and global energy status- commercial and	
I	non –commercial energy sources. Renewable and non-renewable energy	3
	resources- Conservation of energy.	
	SOLAR ENERGY	
II	Solar Radiation – Solar Thermal Collectors – Flat Plate and Concentrating	3
	Collectors- Solar Applications – fundamentals of photo Voltaic Conversion	
	- Solar Cells - PV Systems - PV applications.	
	WIND ENERGY	
III	Wind power – mean wind velocity- factors affecting velocity- Wind Energy	3
	generators-types Important Factors for building windmill.	
	BIO - ENERGY	
IV	Biomass, Biogas, Source, Composition, Technology for utilization –	3
	Biomass direct combustion – Biomass gasifier – Biogas plant – Digesters –	
	Ethanol production., Bio-Diesel production.	
	TIDAL, OCEAN AND GEOTHERMAL ENERGY	
V	Wave energy - converting system. Ocean thermal energy -Open and closed	3
	cycles. Geothermal energy sources-utilizations-environmental aspects.	
	Total contact Hrs/Semester	15
	Total contact Hrs/Semester	15

^{*}Italics denotes self study topics

Teaching Methods

Lecture by chalk & Talk, Power point Presentations, Group discussions, Seminar, Quiz, Assignment.

Text Book

S.No	Author(s)	Title of the Book	Publisher	Year of Publication
1	Rai, G.D	Non Conventional Energy Sources	Khanna publishers New Delhi	1999

References

S.No.	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Sukhatme, S.P	Solar Energy	Tata McGraw-Hill Publishing Company Ltd., New Delhi.	1997
2	Asim K Das	Environmental chemistry with Green chemistry	Books and Allied (P) Ltd, Kolkata.	2010

Mapping with Programme Outcomes

PSO CO	- PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	Н	S
CO2	Н	S	Н	S	Н
CO3	M	S	S	Н	S
CO4	S	Н	Н	S	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by	Verified by		
Name with Signature		CDC	COE

Programme	B.Sc.	Programme Title :	CHEMISTE	RY
code:		0		
Course Code:	18UPS3A3/	Title	Batch:	2018-2021
	18UBY3A4/	Allied Chemistry Paper – I	Semester	III
	18UZY3A4	Inorganic, organic and physical		
Hrs/Week:	6	chemistry	Credits:	4

	HOD Name with Signature		
Ms.R.Sudha	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

To develop the skill to aesthetically appreciate General Chemistry

Knowledge	CO	CO Statement
Level	Number	
K1	CO1	To understand the principles of coordination chemistry and applications to biologically important molecules
K2	CO2	To gain knowledge on industrially important materials and water treatment

K3	CO3	To understand the principles of volumetric analysis
K4	CO4	To know the basic principles of electro chemistry

Unit	Content	Hrs
	Chemical bonding: Molecular orbital theory - bonding, anti-bonding and non-	
	bonding orbitals, Application of Molecular orbital theory – MO configuration	
	of H ₂ , N ₂ , O ₂ , F ₂ , bond order.	
_	Coordination Chemistry: Ligands–Mono and bidentate ligands;	
I	Coordination number. Nomenclature – Mononuclear complexes. Werner &	16
	Sidgwick Theories; Chelation and its industrial importance with reference to	
	EDTA. Biological role of Haemoglobin and Chlorophyll. Applications in	
	qualitative and quantitative.	
	Volumetric Analysis: Primary and Secondary standard substances.	
	Principles of volumetric analysis. Preparation of normal, molal and molar	
	solutions. Principle of acid - base titration	
	Water treatment: Hardness of water. Temporary and permanent hardness.	
II	Units of hardness. Disadvantages of hard water. Softening of hard water –	16
	Zeolite process and De-mineralization process – Purification of water for	
	domestic use – Disinfection by Chlorine, Ozone and UV light.	
	Covalent bond: Orbital overlap, hybridization, geometry of organic	
	molecules – CH ₄ , C ₂ H ₄ , C ₂ H ₂ , C ₆ H ₆ . Inductive, Electrometric, Mesomeric,	
	Hyperconjugative and Steric effects. Effect in properities of compounds.	

III	Aromatic compounds: Electrophilic substitution in benzene. Mechanism of	15
	nitration, halogenation, alkylation, acylation, sulphonation.	
	Chemotherapy: Introduction, Sulphadrugs: Mode of action.	
	Antimalarials : Classification and use of chloroquine and	
	Pamaquine.	
	Antiseptics : Definition and uses of chloramines $-T$,	
	Iodoform and Dettol.	
IV	Anaesthetics : Classification, characteristics and uses of	16
	procaine and pentothal sodium.	
	Antibiotics : Introduction, use of Penicillin, Chloromycetin,	
	Streptomycin and Tetracyclin.	
	Vitamins : Classifications, occurrence and deficiency	
	diseases caused by Vitamin A, B complex, C, D,	
	E and K.	
	(Note: In Unit – IV structure of the compounds are not required.)	
	Electrochemistry: Electronic and electrolytic conductors – Faraday's laws of	
	electrolysis - Arrhenius theory of electrolytic dissociation - Ostwald's	
T 7	dilution law.	15
V	Conductance: Specific and molar conductance, Variation of conductance	15
	with dilution . Determination of molar conductance of an electrolyte,	
	Kohlrausch law and its applications.	
	pH: Definition, Buffer solutions, Importance of buffer in the living systems.	
	Total contact Hrs/Semester	78

^{*}Italics denotes self study topics

Teaching Methods

Lecture by Chalk & Talk, Power point Presentations, Group discussions, Seminar, Quiz, Assignment.

Text Books

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Yadav, M.S	Electrochemistry, 2 nd Edition	Anmol Publications	2001
2	Veeraiyan., V. and Vasudevan, A.N.S.	Ancillary chemistry,1 st Edition	Einstein publishing house	2001
3	Vaidyanathan, K., Venkateswaran, A. and Ramasamy, R	Allied chemistry, 1 st Edition	Priya publications.	2005

References

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Puri, Sharma and Pathania	Principles of Physical Chemistry	Vishal Publishing House	2007
2	Jain, P.C. and	Engineering	Dhanpat Rai	2005
	Monica Jain	Chemistry, 17 th Edition	Publishing Company(P) Ltd.	

PSO CO	- PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	Н	S
CO2	Н	S	Н	S	Н
CO3	Н	S	S	M	S
CO4	S	Н	Н	S	Н

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr.N.Karpagam Dr.N.Santhi Ms.R.Sudha	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

Programme	B.Sc.	Programme Title :	CHEMISTRY		
code:		Trogramme Title.			
Course Code:	18UPS4A4/	Title	Batch:	2018-2021	
	18UBY4A5/	Allied Chemistry Paper – II	Semester	IV	
	18UZY4A5	Inorganic, Organic and			
Hrs/Week:	6	Physical Chemistry	Credits:	4	

To develop the skill to aesthetically appreciate General Chemistry

Knowledge Level	CO Number	CO Statement
K1	CO1	To have a basic ideas on synthetic dyes

K2	CO2	To understand the chemistry of biologically important molecules
K3	CO3	To know the common drugs and their use
K4	CO4	To have a basic idea in polymers & Fuels

Unit	Content	Hrs		
	Fuels: Types of fuels. Characteristics of a good fuel. Calorific value of a			
	fuel. Advantages of gaseous fuels. Natural gas, water gas, producer gas, oil			
	gas, LPG and Gobar gas - Composition and uses (manufacturing details	16		
I	not needed)	16		
	Fertilizers: Manufacture of urea, ammonium sulphate, super phosphate of			
	lime, Triple super phosphate and potassium nitrate.			
	Silicones: Preparation, properties and uses.			
	Glass: Manufacture, typ			
	es of glass – soft glass, hard glass, flint glass, Pyrex glass and Coloured			
	glass.			
	Synthetic Dyes:			
	Definition, classification based on structure and application. Colour and			
	constitution – Chromophore – Auxochrome Theory. Synthesis and uses of the			

II	following dyes: Azo dyes - methyl orange Vat dyes - Indigo (from					
	anthranillic acid) Anthraquinone dyes (Alizarin) Pthalein dyes -	16				
	Phenophthlein					
	Synthetic Polymers:					
	Classification - Homo and copolymers - Natural, Synthetic, organic,					
	Inorganic polymers. Thermo plastics and thermosetting plastics. Types of					
	polymerization, PVC, polystyrene, Bakelite, Teflon, Nylon – 6.6, Buna – S					
	rubber – Preparation and uses.					
	Amino acids and Protein Classification of amino acids. Preparation and					
	properties of Glycine. Action of heat on amino acids. Peptides. Synthesis of					
III	glycylalanine by carbobenzoxy method.					
	Proteins: Classification, simple and conjugated proteins. Denaturation and	16				
	colour reactions of proteins. Primary and secondary structure. Biological					
	functions.					
	Carbohydrates: Classification – preparation and properties of Glucose and					
	Fructose. Elucidation of structure of Glucose. Comparison of properties of					
	glucose and fructose. Conversion of Glucose to Fructose and Fructose to					
	Glucose.					
IV	Sucrose: Preparation, properties and structure (Elucidation of structure not	15				
	necessary)Starch and Cellulose: Properties and uses (Elucidation of structure					
	not necessary).					
	Colloidal state: Types of colloids. Preparation and properties of					
	colloids and applications.					
\mathbf{V}	Emulsions and gels: Preparation, properties and applications.					
	Catalysis: Characteristics, types, mechanism of catalytic action and Industrial	15				
	application					
	Total contact Hrs/Semester	78				

^{*}Italics denotes self study topics

Teaching Methods

Lecture by chalk & Talk, Power point Presentations, Group discussions, Seminar, Quiz, Assignment.

Text Books

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Vaidyanathan, K.,	Allied chemistry, 1 st	Priya publications,	2005
	Venkateswaran, A.	Edition	Karur	
	and Ramasamy, R			
2	Bahl, B.S. and Arun	Advanced Organic	S.Chand &	2007
	Bhal	Chemistry1 st Edition	Company Ltd.	

References

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Tyagi, O.D.,	A Text Book of Synthetic Dyes,	Anmol publications	2001
	Yadav, M.	1 st Edition	Pvt. Ltd.	
2	Soni, P.L.	Text book of Organic	Sultan Chand &	2002
		Chemistry, 28 th Revised Edition	Sons	
3	Lubs, H.A.	Chemistry of Synthetic Dyes	Robert E. Krieger	1995
		and Pigments, 1 st Edition	publishing company	

PSO CO	> PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	Н	S
CO2	Н	S	Н	S	Н

Programme code:	B.Sc.	Program	Programme Title :		CHEMISTRY	
Course Code:	18UPS 4A5	5/ Title	Title		2018-2021	
	18UBY4A6	Practical	Chemistry	Semester	III & IV	
Hrs/Week:	2			Credits:	2	
CO3	M	S	S	S	Н	
CO4	S	Н	Н	S	Н	

S-Strong; H-High; M-Medium; L-Low

Compiled by	Verified by		
Name with Signature	HOD Name with Signature	CDC	COE
Dr.N.Karpagam Dr.N.Santhi Ms.R.Sudha	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran

Course Objective

To develop analytical skills in volumetric and organic qualitative analysis

Knowledge	CO	CO Statement
Level	Number	
K1	CO1	To understand the basic concept of volumetric analysis
K2	CO2	To get the idea about organic qualitative analysis
K3	CO3	To distinguish between aliphatic and aromatic, saturated and unsaturated compounds.
K4	CO4	To analyze the functional groups of organic compounds

Unit	Contents	Hours
	Volumetric Analysis:	
	1. Estimation of sodium carbonate.	
	2. Estimation of oxalic acid (Acidimetry)	
	3. Estimation of ferrous ion.	
	4. Estimation of oxalic acid.(Permanganometry)	
	5. Estimation of potassium dichromate using sodium thiosulphate	
	6. Estimation of copper using Sodium thiosulphate.(Demonstration	
	only)	
	7. Estimation of temporary, permanent and total hardness of water	
	8. Estimation of Zinc using EDTA.	
	9. Estimation of Mg using EDTA.	
	Organic analysis:	
	Detection of elements. Nitrogen, Sulphur and Halogens.	
	1. To distinguish between aliphatic and aromatic, saturated and	
	unsaturated compounds.	
	2. Functional group tests for :	
	i) Mono and Dicarboxylic acids;	

Total contact Hrs/Semester	45
v) Amides.	
iv) Amines and	
iii) Carbohydrates(Reducing and non reducing)	
ii) Phenols	

Teaching Methods

Demonstration, Group discussions, Quiz, Experience discussion.

Text Book

S.No	Author(s)	Title of the Book	Publisher	Year of Publication
1	Venkateswaran. V,	Basic principles of	Sultan Chand &	1997
	Veeraswamy. R and	Practical chemistry,	Sons	
	Kulandaivelu. A.R	1 st Edition		

Reference

S.No	Author(s)	Title of the Book	Publisher	Year of
				Publication
1	Thomas. A.O	Practical Chemistry for B.Sc., Main Students,. 3 rd Edition	Scientific Book Centre	1985

PSO CO	~ PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	Н	S
CO2	Н	S	Н	S	Н
CO3	S	S	S	Н	Н

CO4	Н	S	Н	S	Н

S-Strong; H-High; M-Medium; L-Low

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	СОЕ
Dr.N.Karpagam			
Dr.N.Santhi	Dr.A.Ayyasamy	Dr.M.Durairaju	Dr.R.Muthukumaran
Ms.R.Sudha			